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Abstract

A phase-space inequality is derived for beams of arbitrary state of spatial coherence. It applies to the product of a

factor which expresses the e�ective coherence area of the source that generates the beam and the e�ective angular spread

of the beam; and, by analogy with coherent beams, it may be regarded as a measure of the beam quality. It is found that

the factor attains a minimum for the entire class of Gaussian Schell-model beams (which include the Hermite Gaussian

laser mode). Ó 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Since Siegman [1] introduced in a well-known
paper a measure of the quality of laser beams there
have been numerous publications dealing with
such measures for other types of beams. However,
most of the investigations were concerned with
fully coherent beams. In this connection it should
be noted that the usual reciprocity relations (often
referred to as uncertainty relations because of
formal analogy with the quantum mechanical un-
certainty principle) are derived for sources and
®elds which are fully spatially coherent. This is so,
because in such case one can utilize a well-known
inequality which involves the product of second
moments of both the squared modulus of a func-

tion and the squared modulus of its Fourier
transform.

In recent years there has also been a good deal
of interest in partially coherent beams, partly be-
cause high-power lasers and diode lasers give rise
to such beams and also because such beams have
found useful applications, for example to suppress
disturbing e�ects of speckles [2, pp. 259±260], re-
ducing the in¯uence of atmospheric turbulence [3],
and in connection with laser fusion [4,5]. A num-
ber of papers deal with measures of quality of
beams which are partially coherent (see, for ex-
ample Refs. [6±11]). In particular, Bastiaans [12]
derived reciprocity relations (``uncertainty rela-
tions'') for coherent as well as for partially co-
herent light. The lower bound is expressed in terms
of the eigenvalues of an integral equation whose
kernel is the mutual intensity.

In the present paper we introduce a new phase-
space product for beams of arbitrary state of
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coherence. It is the product of a factor which is
related to the e�ective coherence area of the source
that generates the beam and the e�ective angular
spread of the beam. This factor is shown to attain
a minimum for the so-called Gaussian Schell-
model (GSM) beams, which includes, but is not
restricted to, the lowest order, fully coherent
Hermite Gaussian laser mode.

2. A reciprocity relation for beams of arbitrary state

of spatial coherence

Let us consider a planar, secondary source of
any state of spatial coherence, located in the plane
z � 0 and radiating into the half-space z > 0. We
assume that the source is statistically stationary
and we will characterize its second-order coher-
ence properties by the cross-spectral density func-
tion W �2��q; q0; m� [2, Section 4.3.2] where q and q0

denote the position vectors of any two points in
the source plane (see Fig. 1), and m is the fre-
quency.

It was shown in Ref. [13] (see also Ref. [2, Eq.
(5.3±10)]), that the radiant intensity of the ®eld
generated by the source, in the direction speci®ed
by a unit vector s may be expressed in the form

J�s; m� � k2AeC �0��ks?; m�cos2 h: �1�

In this formula eC �0��f; m� denotes the two-dimen-
sional spatial Fourier transform

eC �0��f; m� � 1

�2p�2
Z

C�0� q0; m
ÿ �

eÿif�q0d2q0 �2�

of the so-called source-averaged correlation func-
tion 1

C�0� q0; m
ÿ � � 1

A

Z
W �0� q

�
ÿ 1

2
q0; q� 1

2
q0
�

d2q �3�

and A denotes the area of the domain occupied by
the source. Further s? in Eq. (1) is the projection,
considered as a two-dimensional vector, of the unit
vector s onto the source plane z � 0, h is the angle
which the vector s makes with the positive z-axis
(see Fig. 1) and k � 2pm=c is the free-space wave
number associated with frequency m.

Since we are considering beams, it is appropri-
ate to use the paraxial approximations sinh � h,
cosh � 1. It then follows from Eq. (1) that the
quantity J�s; m� is proportional to the Fourier
transform of the source-averaged correlation
function C�0��q0; m�. This observation provides a
basis for our subsequent analysis which makes it
possible to formulate a reciprocity relation be-
tween the angular distribution of radiation and a
measure of the spatial coherence of the source
which generates the radiation ®eld.

Formula (2) shows that q0 and f are conjugate
variables. Since in Eq. (1) f � ks? the Fourier
transform relationship suggests that we introduce
a phase-space product, which may be regarded as a
measure of the quality of the beam, namely the
quantity

F � Dks?� � Dq� �; �4�
where �Dks?�2 and �Dq�2 are variances of J 2 and of
C�0�

2

, de®ned by the formulas 2

Fig. 1. Illustrating the notation. P is a point in the far zone, and

s is a unit vector in the direction of OP.

1 The de®nition of the source-averaged correlation function

given in Refs. [2,9] di�ers trivially from that given by our Eq.

(3).
2 As is well-known, the variance of the squared modulus of a

function and the squared modulus of its Fourier transform

satisfy a reciprocity inequality [10, p. 193]. For this reason we

use J 2 and C�0�
�� ��2 rather than J and C�0� as weighting factors in

Eqs. (5), (5a) and (6), (6a).
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�Dks?�2 � 1

N1

Z
�ks?�2 J�s; m�� �2d2�ks?�; �5�

and

Dq� �2 � 1

N2

Z
q2 C�0� q; m� ��� ��2d2q; �6�

where

N1 �
Z

J�s; m�� �2d2�ks?� �5a�

and

N2 �
Z

C�0� q; m� ��� ��2d2q: �6a�

The integrations in Eqs. (5) and (5a) extend over
the domain �ks?�26 k2 and the integrations in Eqs.
(6) and (6a) extend over the source area.

In the special case that the ®eld generated by the
source is a beam which propagates closely to the z-
axis and is also rotationally symmetric, one has, to
a good approximation s2

? � sin2h � h2, so that

�Ds?�2 � �Dh�2 �7�
and, if we now write J�h� rather than J�s; m� and
use the fact that d2s? � dsx dsy � cosh sinhdhd/ �
hdhd/, we obtain from Eq. (5) the formula

�Dh�2 �
R

h3 J�h�� �2dhR
h J�h�� �2dh

: �8�

The phase-space product (4) now becomes

F � k�Dh��Dq�: �9�
This quantity for partially coherent beams is
reminiscent of the well-known beam-quality fac-
tor, usually denoted by M2, introduced by Sieg-
man [1] as a measure of the quality of a fully
coherent beam. 3

3. Example: Gaussian Schell-model beams

We will illustrate the main result which we de-
rived in the previous section with reference to a

class of Schell-model beams. Such beams are
generated by so-called Schell-model sources, i.e.
by sources whose spectral degree of coherence
l�0��q1; q2; m� [2, Section 4.3.2] depends on the po-
sition vectors q1 and q2 only through the di�erence
q2 ÿ q1, in which case we write

l�0� q1; q2; m� � � g�0� q2� ÿ q1; m�: �10�
When both the spectral intensity and the spectral
degree of coherence are Gaussian functions of
position, i.e. when they have the form

I �0� q; m� � � B2�m�eÿq2=2r2
I �m� when jqj < a;

0 when jqj > a;

�
�11�

g�0� q0; m
ÿ � � eÿq02=2r z

g�m�; �12�
we speak of GSM sources. In these formulas B�m�,
rI�m� and rg�m� are positive quantities. We will
assume that the radius a of the sources is much
greater than rI . The cross-spectral density of a
GSM source is given by the expression (cf. Ref. [2,
Eqs. (5.6±62)])

W �0� q1; q2� � �
���������������
I �0� q1� �

q ���������������
I �0� q2� �

q
g�0� q2� ÿ q1�;

�13�
with I �0� and g�0� given by expressions (11) and (12)
respectively. In this formula (and also in the se-
quel) we no longer display the explicit dependence
of various quantities on the frequency m.

The source-averaged correlation function of a
GSM source is obtained on substituting from Eq.
(13) (with I �0� and g�0� given by Eqs. (11) and (12)
respectively) into formula (3). The result is (see
Ref. [2, Section 5.4.2], with rI written in place of
rs)

C�0� q� � � 1

A
2pB2r2

I eÿq2=2d2

; �14�

where

1

d2
� 1

4r2
I
� 1

r2
g

: �15�

Making again use of the assumption that a� rI ,
the two-dimensional Fourier transform eC �0��f� of
expression (14) is readily found to be

3 A generalization of SiegmanÕs beam quality factor to a

class of partially coherent beams, known as Schell-model beams

was not long ago introduced in Ref. [7].
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eC �0��f� � 1

A
�BrId�2eÿf 2d2=2: �16�

It follows from Eqs. (1) and (16) that one has,
within the accuracy of the paraxial approximation,

J�h� � �kBrId�2eÿ�kdh�2=2: �17�
If we now substitute from Eq. (14) into Eqs.

(6a), (6b) and from Eq. (17) into Eq. (8) and recall
Eq. (7) we readily obtain (see Appendix A) the
following expressions for the ``e�ective coherence
r.m.s. width'' Dq of a GSM source and the r.m.s.
angular width Dh of the GSM beam which the
source generates:

�Dh�GSM �
1

kd
; �18�

�Dq�GSM � d: �19�
The dependence of the angular spread �Dh�GSM on
the parameters krI and krg is shown in Fig. 2.

It follows from a well-known theorem on
Fourier transform pairs [14] that the product

F � k�Dh��Dq�P 1: �20�
The minimum value (unity) is attained when the
functions are Gaussian. In the present case this
will be so when the source-averaged cross-spectral
density and, consequently, also the radiant inten-
sity, have Gaussian forms. In particular, this will
be so for GSM sources. Indeed, as we can see from
Eqs. (18) and (19) the phase-space product F then
has the minimum value unity, irrespective of the

values of the source parameters B, rI and rg.
However, the GSM sources are not the only ones
which minimize the phase-space product F. For
example, Gaussian correlated quasi-homogeneous
sources minimize it also. Quasi-homogeneous
sources are Schell-model type sources for which
the intensity I �0��q� varies much more slowly with
q, than the spectral degree of coherence g�0��q0�
varies with q0. The cross-spectral density of such a
source can evidently be approximated by the ex-
pression [2, Section 5.3.2]

W �0� q1; q2� � � I �0� 1
2

q1�
� � q2�

�
g�0� q2� ÿ q1�: �21�

On substituting from Eq. (21) into expression (3)
for the source-averaged cross-spectral density, we
obtain the formula

C�0� q0
ÿ � � g�0� q0

ÿ � Z
I �0� q� �d2q: �22�

Since the integral on the right-hand side of Eq.
(22) is independent of q0, it follows that for quasi-
homogeneous sources with a Gaussian spectral
degree of coherence the source-averaged cross-
spectral density is Gaussian, irrespective of the
form of the intensity function. We conclude that
for such sources ± just as for GSM sources ± the
phase-space product F attains a minimum.

Let us consider the limiting case of a spatially
fully coherent source of the GSM class. In this
case rg !1, and Eq. (12) shows that g�0��q02ÿ
q01� ! 1, with the intensity across the source still
being given by Eq. (11). The intensity distribution
across the source is then the same as that of the
completely coherent lowest-order Gaussian Her-
mite laser mode, with spot size w0 � 2rI , and Eq.
(15) then gives d � 2rI and the r.m.s. widths (18)
and (19) become

�DhGSM�coh �
1

2krI
; �23�

DqGSM� �coh � 2rI : �24�
Formula (23) is the usual expression for the an-
gular spread of the lowest-order Gaussian Hermite
laser beam, in spite of somewhat di�erent de®ni-
tions used in the two cases.

Fig. 2. The angular spread �Dh�GSM of a GSM beam as a

function of the dimensionless parameters krI and krg.

4 T.D. Visser et al. / Optics Communications 187 (2001) 1±6



4. Conclusions

By identifying an appropriate Fourier transform
relationship, a new measure for characterizing
partially coherent beams has been introduced. This
measure, which, just as for coherent beams, takes
on the form of a phase-space product, relates
the radiant intensity of the ®eld to the so-called
source-averaged cross-spectral density function. In
contrast to the usual phase-space measure, this
quantity takes explicitly into account the coherence
property of the source, rather than its intensity
distribution. For the important class of quasi-
homogeneous sources the source-averaged corre-
lation function is proportional to the spectral
degree of coherence. A phase-space inequality (re-
ciprocity inequality) which we derive becomes an
equality for the entire class of GSM beams and for
beams generated by quasi-homogeneous sources
with a Gaussian spectral degree of coherence.
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Appendix A. The variances �Dq�2 and �Dh�2 for

Gaussian Schell-model beams

In this appendix we derive Eqs. (18) and (19).
On substituting from Eq. (17) into Eq. (8) we ob-
tain the formulas

�Dh�2GSM �
1

N3

Z p=2

0

h3eÿ�kdh�2 dh; �A:1�

where

N3 �
Z p=2

0

heÿ�kdh�2 dh: �A:2�

Since the radiant intensity is sharply peaked at
h � 0 (i.e. kd� 1), we may extend the range of

integration in Eqs. (A.1) and (A.2) from p=2 to
in®nity without introducing an appreciable error.
Then both expressions become standard integrals
and we ®nd

�Dh�2GSM �
1

k2d2
; �A:3�

from which Eq. (18) immediately follows.
The r.m.s. width of a GSM source is found by

substituting from Eq. (14) into Eq. (6). This gives

�Dq�2GSM �
1

N4

Z �1

ÿ1

Z �1

ÿ1
�x2 � y2�eÿ�x2�y2�=d2

dxdy;

�A:4�
where

N4 �
Z �1

ÿ1

Z �1

ÿ1
eÿ�x

2�y2�=d2

dxdy: �A:5�

Expressions (A.4) and (A.5) are both standard
integrals. The result for the r.m.s. source width is

�Dq�2GSM �
pd4

pd2
� d2; �A:6�

from which Eq. (19) follows immediately.
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