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Abstract: 
Phase-only spatial light modulators (SLM) have been a staple in laser beam shaping research and applications due to 

their efficiency and programmability. An SLM’s capability to shape three-dimensional distributions of light has 

interesting applications in optical micromanipulation and microscopy. Since these SLMs operate by modifying the 

phase of incident light, it is common to model their operation using scalar diffraction theory or Fourier optics. In this 

work, we show how utilizing a ray tracing or geometric optics analysis can produce both interesting and practical 

results. We have previously shown how to generate laterally shaped beams that do not have the characteristic noise 

or discontinuities typical of the output generated with iteratively or numerically derived phase distributions. In this 

work, we extend the geometric approach to three dimensions to form interesting distributions that behave like non-

diffracting beams, light sheets and beams that follow spiraling or diagonal paths as they propagate. The analytically 

derived input phase functions for these beams can be calculated in a straightforward manner. Hence, they are easily 

encoded and re-configured for SLM applications. Experiments demonstrate these 3D light distributions on a typical 

2f holographic configuration, verifying its applicability on existing holographic setups. 

Keywords: Laser beam shaping; Digital holography; Fourier optics; Phase-only modulation; Spatial light 

modulators 

1. Introduction 
The ability to sculpt light’s propagation in three-dimensional space, made possible with programmable 

spatial light modulators, has many interesting applications. For example, in optical trapping and 

manipulation, the path traced by the light distribution can be used to direct the trajectory of micro-

particles. Airy beams have been used to propel micro-particles along a curved trajectory  [1]. Similarly 

Bessel beams  [2,3], known for their extended depth of field have been used to direct particles along a 

similarly extended path. Vortex beams, known for carrying orbital angular momentum, have been used to 

revolve particles on a circular path [4], while Helico-Conical beams  [5,6] have been used to propel 

particles along a spiral. Besides such beams that have known analytically formulated input phase 

functions, or simple custom illumination profiles, there has also been an interest in generating more 

arbitrary three-dimensional paths with numerically derived phase functions  [7]. Beyond spherical 

particles, custom fabricated micro-particles designed to interact with light differently can lead to even 

more interesting dynamics [8]. For example, wave-guiding microstructures that bend the direction of light 

have been shown to follow through optically constructed light rails that are in a direction transverse to the 

light propagation  [9]. A wealth of new applications would therefore be possible if the structural 

complexities achievable by contemporary microfabrication can be matched by equally complex 3D 

structures of light. 

Besides the ability to spatially control optical force trajectories, 3D sculpted light has also been 

successfully used for imaging applications. The extended propagation of Bessel  [10] or Airy  [11] beams 

has been utilized in microscopy experiments to similarly extend the imaging depth of field. Light sheet 

*Manuscript
Click here to view linked References



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

distributions have been used to selectively illuminate planes of a 3D sample  [12,13]. Currently, light 

sheets are commonly implemented using cylindrical lenses  [12], or rapidly scanning a beam  [14]. Hence, 

it can be advantageous if such light sheets can be generated dynamically with a programmable spatial 

light modulator that can simultaneously bring in other new dynamic functionalities into a microscopy 

experiment, such as optical manipulation, spatially selective stimulation or excitation [15], or aberration 

correction [16]. 

1.1. Three dimensional light sculpting using phase-only techniques  

In this work, we sculpt light in 3D using an alternative geometric analysis that takes advantage of the 

rapid re-configurability of phase-only spatial light modulators. We extend the geometric analysis we have 

used to derive simplified phase functions for extended two-dimensional shapes  [17]. The manuscript 

mainly discusses the light sculpting methodology, while anticipated applications on optical 

micromanipulation and microscopy would be done on future investigations. 

Given the applications of 3D sculpted light, it is inevitable that similar work has been done before. The 

task at hand is to transform a typical input illumination into the output 3D distributions, preferably 

through efficient phase-only methods. Although there is a great amount of analytical studies already 

available  [18], it is typical that the final expression for the phase distribution depends on other 

calculations along the derivations. Occasionally, these previous derivation steps would require integration 

or solving differential equations, which also implies further numerical steps when translating into a 

computer implementation. One analytic approach uses the theory of structurally stable coherent and 

monochromatic beams [19,20] to form continuous distributions such as optical knots or spiral beam paths. 

Other approaches are conceptually similar to our geometric approach, but instead uses the Eikonal or 

wave equation [21,22] as the mathematical foundation. It is arguable that these formulations are originally 

intended for fabricated “fixed” applications such as lenses or freeform optics, wherein there is a pay-off 

for more involved calculations. 

For the experimental use case of encoding phase functions “on-the-fly” on a dynamic SLM, however, one 

might prefer rapid re-configurability through straightforward calculations, while other figures of merit 

such as the fidelity or minimal artifacts can be of secondary importance. 

In addition to existing mathematical approaches, alternate approaches based on iterative numerical 

calculations have also been done  [23]. Numerical approaches have a minor practical drawback of having 

to implement an algorithm first. Nevertheless, iterative or numerical methods often have the advantage of 

generating more arbitrary output distributions. We anticipate utilizing such techniques to further refine or 

extend our geometric approach. The phase functions derived from such numerical techniques, however, 

come at the expense of losing a more “intuitive” relation between the input phase and output distribution. 

 
Fig. 1. Conceptual illustration of the geometric mapping approach to laser beam shaping. The input is subdivided 

such that localized quadratic functions map into different axial locations at the output. 

Input SLM Fourier Lens Output

zf
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2. Theory 
Figure 1 illustrates the conceptual foundation of our method. Using the prism and lens approach, an 

output focal spot located at (xf, yf, zf) can be generated by Fourier transforming a corresponding analytic 

expression of the phase input (SLM or phase mask) with coordinates (X, Y). 

                 
  

  
                      

   

 
  (1) 

Here λ is the illumination wavelength and f is the effective focal length of the Fourier transforming lens. 

For convenience, we normalize axial positions and lengths as a dimensionless fraction of the focal length. 

In Eqn. 1, the whole input surface is mapped into a single output spot, i.e. (xf, yf, zf) that defines a single 

coordinate point. One way to extend this input phase to output spot mapping is to randomly divide the 

input to distinct regions that are to be assigned a corresponding distinct output spot  [24]. In this work, 

instead of mapping the input plane (X, Y) to only one point or distinct separate points, we use a geometric 

approach that maps local input regions to correspond to a continuous distribution of output coordinates 

(xf, yf). An output shape can thus be defined by a collection of constituent points, (xf, yf). This approach 

has been successful in generating extended 2D shapes wherein continuous adjacent points (xf, yf) 

constitute the output shape [17]. Our geometric mapping thus takes the general form 

        
  

  
                            

       

 
  (2) 

The first two terms in Eqn. 2 that multiply with xf and yf describe the lateral distribution of the output. In 

some of our examples, we used a line profile as the lateral distribution by encoding a zero-width 

rectangular point spread function (PSF)  [17]. Other known input phase functions that have a direct 

mapping to the laterally defined output can also be used. For example, we have used a helical phase ramp 

to map the input light into a ring distribution. 

Continuing the analogy with a single point in 3D, (xf, yf, zf) in Eqn. 1, the principle is further extended to 

the axial dimension by applying a local quadratic or lens function to translate a correspondingly mapped 

output spot to a specified axial location. Hence, just as we define the lateral output shape as a distribution 

of xf and yf that is dependent on the input coordinates, we can similarly define the localized zf of 

subdivisions of the output shape through a similar mapping zf(X, Y). 

The main task in our approach is to identify mapping functions, xf(X, Y), yf(X, Y) and now, zf(X, Y), that 

can be substituted back into Eqn. 2. It is in this part where we analyze the geometry of the intended 

distribution, then use energy conservation rules to derive an applicable mapping. In the following 

sections, we show specific examples of how the geometric mapping principle is utilized to derive 

corresponding input phase functions. 

2.1. Stretched vortex beams 

In this example application, we linearly map azimuthal divisions of the input plane into output axial 

locations between a defined minimum and maximum output zf coordinate. To formulate, for a given 

angle, θ, at the input plane, the mapped zf follows the form:  

           (3) 

Neglecting the SLM’s rectangle boundaries, the input amplitude is assumed to be radially symmetric such 

that each angular sub-division has the same amount of energy. If we normalize the angle, we will have an 

expression that depends on the desired propagation length. For calculation convenience, we also express 

the angle in terms of X and Y (and use the range of the atan2 inverse tangent implementation, –π to π). 

         
   

  
      

 

 
  (4) 

So far, this only defines the output’s axial distribution. To get results that are easier to observe, we should 

also define how xf and yf is to be mapped. Here, we utilize the so-called vortex or Laguerre-Gaussian 

beam whose phase is defined by lθ, l being the topological charge. The helical phase can also be 
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interpreted as infinitesimal planar ramps that follow the azimuthal angle. By multiplying the associated 

quadratic term to the axial mapping and using the vortex phase directly, we arrive at the following 

expression. 

               
 

 
  

       

  
      

 

 
 
   

 
 (5) 

We note that as θ approaches the degenerate values, -π and π, there is a discontinuity in the mapped zf 

locations, which are the extremes, -Lzf/2 and Lzf/2. This discontinuity is evident in the experiment with the 

usual vortex ring now broken and fading into darkness. A similar beam referred to as a “light sword” has 

been reported before [25], but without the helical phase ramp contribution (l=0). Without the lateral 

mapping associated with the vortex ring profile, the light sword has its energy centered at the optical axis, 

hence, it was proposed for extending the depth of focus in imaging systems. In the next section, we 

propose an alternative beam that might be more suitable for extended depth of focus application, given its 

similarities with Bessel beams that have been commonly used for the said application. 

2.2. Pseudo Bessel beams 

The standard way of implementing Bessel beams is to have a ring-shaped illumination or an axicon lens 

at the input. Additional components and modifications on a typical 2f diffractive focusing setup are thus 

necessary if one wishes to use Bessel beams on a sample. We demonstrate that by continuously stacking 

adjacent foci along the optical axis, we can emulate the desired characteristic of Bessel beams which is its 

extended propagation length where the beam intensity remains localized. 

We assume that the input has a Gaussian illumination with 1/e^2 half beam waist, w0. To derive the input 

phase function, we then assume that the input energy is evenly spread throughout a line segment along zf 

with a length Lzf and some constant energy density ρzf. The following expression then describes the 

conservation relation for such setup. 
    

         (6) 

We assume radial symmetry on the input amplitude such that concentric ring shaped regions at the input 

are mapped into the succeeding zf subdivisions. For brevity, we use R, the radial coordinate at the input, 

as a shorthand for        . If we impose that a radial segment bounded by R has the same energy as a 

linear segment bounded by the correspondingly mapped axial position zf, we arrive at the following 

conservation rule. 

 
   

     
 

  

  
 
 

   
  

     

      

 
(7) 

The above expression results to the following input radius to output axial position mapping. 

              
 

  

  
 
  (8) 

This above form is very similar to what we used to generate a circular PSF  [17], except that the output is 

mapped along a line, and hence the coordinate mapping should be multiplied with a quadratic function. 

Hence, we arrive at the following phase function: 

      
  

  
  

   

 
    

 
  

  
 
  (9) 

Unlike with the stretched vortex beam, xf and yf can be set as zero for this case. 

2.3. Light sheets 

We define two conditions to generate a light sheet. First, the lateral projection of output has to be 

stretched in one direction such as xf or yf. Second, this stretched profile should have a minimal divergence 

as it propagates along zf, just as with the pseudo-Bessel beam. We use a zero-width rectangle to first 
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define a line distribution along a chosen transverse axis. Choosing X or xf as the lateral axis, the following 

phase function forms a line with length Lxf at the Fourier plane. 

        
  

  
         

 

  

     
 

  

   (10) 

Here, A is the length of the input along the X-axis as defined in  [17]. Away the focal plane the xf-line 

beam would normally be diverging along the yf-direction, hence we chose to map input segments along Y 

into successive zf segments at the output. Similar to the pseudo-Bessel beam phase derivation, we start by 

assuming a conservation relation.  

                
              (11) 

The above integral is separable in X and Y and the result is known to involve the error function. Assuming 

that the input’s rectangular boundaries has the width and height, A and B, we obtain the following 

expression: 
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Solving for zf, we obtain the following mapping for to the input Y. 

               
 

  

     
 

  

   (13) 

Combining Eqn. 13 and Eqn. 10 into Eqn. 2, we arrive at the following input phase function for a light 

sheet whose plane lies on the xf-zf axis. 
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It is interesting to note that if we instead choose to map zf along the input X-direction, i.e. in the direction 

of the projected line, we get an output distribution with a peak that traverses a diagonal path as it 

propagates. The expression is similar to that of the light sheet, however, similar to the stretched helical 

beam, bilateral symmetric mapping is no longer assumed with one X-end mapping to a closer zf while the 

opposite X-end maps to the furthest zf. 

3. Limitations of our geometric approach 
The adherence of our approach to analytically tractable formulations is not without disadvantages. As 

pointed out, it lacks the arbitrary control of numerical approaches. Furthermore, there is a limited amount 

of special case output distributions wherein one could derive phase functions that can be directly encoded. 

Some examples are presented in this work. As our approach uses a direct mapping between input regions 

and their corresponding output locations, our approach is inherently limited by the finite area of the input 

(SLM). 

3.1. Limiting to laterally confined light distributions 

We previously demonstrated the shaping of laterally extended light regions  [17]. These shaped beams are 

an example of continuously controlling the lateral location of the constituent output light regions. 

Continuous axial control, however, is best demonstrated for beams that are laterally confined, i.e. beams 

that project spots or line paths at a given lateral plane. In such distributions, it is easier to observe where 

the given line segments are focused. It should be noted that light directed at a 3D location has to come 

from somewhere. Hence, unless the destination is relatively focused, the intensity of light propagating 

before and after that specified location would be at a similar level, decreasing the visibility of the intended 

output. 

3.2. Intended use for light shaping 

In previous works  [17,26], we defined a distinction between light shaping and light distribution, that 

allowed us to break down the overall task into simpler methodologies that can be individually optimized. 
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In light shaping, we transform an individual unit spot into another shape or beam, typically contiguous in 

both phase and amplitude. Light distribution, on the other hand, typically distributes multiple copies of 

these individually shaped beams, utilizing convolution on top of another phase function intended for 

arranging the focal spots, or the respective point spread functions, into a collection of distinct output 

positions. The geometric approach here is best categorized as a light shaping technique, whose output is 

intended to be multiplexed. Our experiments in the next section only show a single beam and utilize a 

blazed or planar grating distributing phase to displace the shaped beam away from the zero order. 

4. Experiments 
4.1. Axially sampled beam propagation 

We performed the experiments using a typical 2f Fourier transforming SLM setup, but with a long focal 

length lens to directly project the output to a CCD camera with a sufficient magnification. The 

holographic setup uses the same components as the one used in  [17] with slight modifications to allow 

systematic collection of snapshots at different axial planes. An 800×600 SLM with a 20µm pitch 

(Hamamatsu Photonics) is illuminated with a 635nm wavelength laser with a 1/e^2 beam diameter of 

about 6mm. The Fourier transforming lens has a 350mm focal length while the camera used has a 4.45µm 

pixel pitch (Point Grey with Sony sensor). The encoded phases are shown on Fig. 2. A blazed grating 

phase is also superposed on these phase patterns to shift the output away from the zero order, but is 

excluded from the figure to avoid visually obscuring the directly calculated phase distributions. The zero 

order is utilized as a convenient visual reference of how much a typical focal spot would be diverging at a 

given axial plane. Snapshots of different beams are taken at approximately 2cm intervals before and after 

the focal plane as shown in Fig. 3. All snapshots are aligned using the center of the zero order (which has 

been cropped out except for the case of the pseudo-Bessel beam). With the exception of the regular vortex 

and line focus beams used for reference, we chose a confined axial propagation length that is 0.2 times the 

focal length (~7cm). 

 
Fig. 2. Phase patterns used for the experimental demonstrations. These are encoded as 800×600px

2
 (cropped to 

600×600 px
2
) on the 16x12mm

2
 SLM surface. The phase distributions correspond to the regular (a) and stretched (b) 

vortex, the pseudo-Bessel beam (c), the line focus (d), the light sheet (e) and the diagonal beam path (f). These plots 

are rotated for consistency with the experiment’s camera orientation. 
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Fig. 3. Snapshots of the different beams taken at different zf planes, ~2cm apart. The scale bar is 1mm at the CCD. 

The un-diffracted zero order is shown alongside the pseudo-Bessel beam serving as a reference. 

4.1.1. Stretched vortex beam 

We used a helical phase with l = 16 to define the beam’s lateral ring distribution. For comparison, a non-

stretched “regular” vortex beam with the same topological charge was also captured. With the axial 

stretching phase applied, there is an observed increase in the vortex’s apparent radius. But this could be 

due to the focus offset of the ring’s segments, and the associated beam divergence as the segments are 

further from the focal plane. Another observation is the existence of a “bump” along the broken ring 

profile, associated with the ring segment that is in focus at a given camera position. 

It is interesting to note that the resulting stretched vortex beam has proven useful for assessing when the 

camera is closest to the focal plane. The beam associates a prominent lateral feature, the intensity bump, 

to axial position. The beam profile is most symmetric when at the focal plane. The bump along the broken 

ring then changes its angular position as the camera moves axially. Compared to typically quantifying the 

spread or brightness of the beam, which need to be compared to measurements from adjacent zf-planes, 

looking for the position of this intense “bump” can be done with only one captured image. With 

calibration, the angular location of the bump would also be useful for identifying zf locations other than 

the focal plane. We anticipate this beam to have practical measurement or calibration uses. 
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4.1.2. Pseudo Bessel beam, light sheet and diagonal beam 

The beams whose SLM phase are described in equations (9) and (14) not only show their non-diffracting 

behavior, but also, similar to Bessel beams, that they utilize off-focused light from previous planes to 

form the peak at a given plane. Hence, the peak intensity is lower than that of a diffraction limited focal 

spot. Furthermore, despite diverging slowly, the beam width is broader. To qualitatively assess the light 

sheet’s diffraction, a line focus, formed by using a rectangular PSF phase  [17] with a zero width, is also 

captured. Analogous to the comparative behavior of the focal spot and pseudo-Bessel beam, the light 

sheet is also broader at the focal plane, but diverges less compared to the line focus. We also tested the 

generation of a diagonally traversing beam. The peak’s relative vertical location with respect to the zero 

order can be seen going up as the camera moves further from the focusing lens.  

4.2. Side view visualization 

In order to get more intuitive visualization of the 3D propagation, side view images of select beam 

profiles are observed. Fluorescent dye from a marker pen is dissolved in water and loaded into a cuvette 

with a 250µm channel height (Hellma Analytics). A setup similar to our Biophotonics Workstation  [27] 

is used. This uses long working distance objectives to form the laser path through the fluorescent sample. 

The long working distance permits enough space to place another objective lens through the side of the 

sample from which we collected the side view images. A 532nm wavelength laser, also with a ~6mm 

beam diameter, illuminates an 800×600 SLM with a 20µm pitch (Hamamatsu Photonics). The SLM plane 

is relayed with a 1/3 magnification to the back aperture of an objective lens that has a 9mm focal length 

(NA 0.45). 

The captured side view fluorescent images are shown in Fig. 4. The un-diffracted zero order can be seen 

at the left of the encoded beams, and conveniently serves as a reference. A simple displaced first-order 

spot (a) is also shown, exhibiting the typical waist where the beam is most focused. Compared to the 

displaced first order beam (a), it can be seen that the pseudo-Bessel beam forms a straighter line, but has a 

lower brightness and more background peripheral light. The phase pattern of the light sheet beam is 

encoded at two orientations to provide a perpendicular (c) and parallel (d) view to the plane of the light 

sheet. Viewed through its narrower side, the light sheet looks nearly identical to the pseudo-Bessel beam. 

 

Fig. 4. Side view images of a diffraction-limited, displaced first-order spot (a), pseudo-Bessel beam (b) and 

perpendicular light sheets (c) and (d), going through a fluorescent sample. The un-diffracted zero order can be seen 

on the left of each beam, serving as a reference. 

5. Conclusions 
This work presents a new approach of shaping 3D laser distributions in focusing systems. Compared to 

what has been done before, this approach utilizes geometric optics as the underlying theory while utilizing 

deterministic phase distributions used in diffractive optics to implement the geometric mapping. Despite 

the approximate nature, the derived phase functions have the advantage of being “stand alone”, hence 

being straightforward to implement and tune in live experiments. From this principle, we were able to 

derive phase functions for beams that can be used for axial calibration and beams that exhibit the 

extended depth of field of Bessel beams and light sheets. From a practical standpoint, this means that we 
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can approximate the qualities of Bessel beams and light sheets without the need of an axicon or 

cylindrical lens elements, provided an SLM is available. These phase distributions thus extend the 

functionality of existing setups for computer-generated holography. Future work shall study the 

individual beam cases in detail as this work mainly focused on the general methodology for generating 

this class of beams. It would also be interesting to investigate numerical techniques that might supplement 

the analytic approach presented here. 
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