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a b s t r a c t

Single-photon transport along a one-dimension waveguide interacting with a quantum system (e.g., two-level
atom) is a very useful and meaningful simplified model of the waveguide-based optical quantum devices.
Thus, how to modulate the transport of the photons in the waveguide structures by adjusting certain external
parameters should be particularly important. In this paper, we discuss how such a modulation could be
implemented by periodically driving the energy splitting of the interacting atom and the atom–photon coupling
strength. By generalizing the well developed time-independent full quantum mechanical theory in real space
to the time-dependent one, we show that various sideband-transmission phenomena could be observed. This
means that, with these modulations the photon has certain probabilities to transmit through the scattering atom
in the other energy sidebands. Inversely, by controlling the sideband transmission the periodic modulations of
the single photon waveguide devices could be designed for the future optical quantum information processing
applications.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Single-photon propagation is one of the basic and important sub-
jects in quantum optics. It is related to the designs and fabrications
of various optical quantum devices for optical quantum information
processings [1–3]. Recently, many theoretical and experimental works
have been demonstrated to investigate the single-photon transport along
a one-dimension waveguide with aside one- and multi- atoms as the
scatters [4–9]. These investigations are directly related to various single-
photon quantum device applications to implement, e.g., the single-
photon routers, switches, and detectors, etc., [10–16], as well as quan-
tum communications and quantum information applications [17–21].
Note that, almost all these works are based on a time-independent
quantum theory, i.e., the Hamiltonians of the considered systems are
time independent, and thus can only describe the elastic scatterings of
the photons in the waveguide by the aside atom(s).

However, manipulatable single-photon devices are usually nec-
essary for many practical applications, such as the quantum Zeno
switches [22]. Therefore, the investigation of how to modulate the
transport of the photons along the waveguide-atom structures by con-
trolling certain external parameters should be meaningful. Physically,
these modulations can be applied to either the energy splitting(s) of the
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scattering atom(s) or the photon–atom interaction, or both of them. For
example, in a recent experiment [23] the famous dynamical Casimir
effect was verified by probing the sideband photons, generated by
the microwave propagating along a coplanar waveguide terminated
by a superconducting quantum interference device with fast changing
magnetic flux.

It is noted that the time-dependent transport problem is usually
encountered for the electron transport along the electronic waveguide in
mesoscopic physics, and the relevant theory [24–28], including the so-
called Floquet theory for periodic modulation [26–30], has been devel-
oped well by directly solving the time-dependent Schrödinger equation.
A typical deduction for this theory is, due to the inelastic scatterings
the electrons could be transmitted/reflected into the various energy
sidebands (with the zero-sideband describing the elastic scattering of
the electrons). As a consequence, the electronic transport could be
modulated, in principle, from one sideband to the others.

Similar to the time-dependent electronic waveguide transport the-
ory, in this paper we will develop a time-dependent single-photon
transport theory to describe the photons propagating in the optical
waveguides with certain time-modulations. Certainly, due to the present
inelastic scatterings, the photons can also be propagated in various
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Fig. 1. A single photon transporting along a one-dimension waveguide is scattered by
a two-level atom (at 𝑥0) with the energy splitting between |𝑔⟩ and |𝑒⟩ being periodically
modulated.

energy sidebands, and thus the total transmitted/reflected probability of
the photon should be the sum of the ones in all the possible sidebands.
Physically, the desired modulations could be achieved by adjusting the
atomic level-splittings or the atom–photon coupling strength. As a con-
sequence, the transport of the photons along the designed waveguides
can be controlled at a single-photon level.

The paper is organized as follows. In Section 2, we present our model
by considering a single waveguide photon scattered by a two-level atom
with the periodic modulating energy splitting. With such a modulation
we show that the photons could transmit through the atom in certain
energy sidebands. In Section 3, keeping the transition frequency of the
atom unchanged, we investigate how to control the transport of the
photon by using the periodically modulated photon–atom interaction.
In this case, we find that the transmission of the photon is mainly
along the 𝑛 ≠ 0 sideband (due to the inelastic scattering), and the
transmission in the zero-sideband (related to the elastic scattering) is
negligible. Finally, in Section 4 we summarize our work and discuss
the potential applications of the time-dependent single photon transport
theory developed here.

2. A single waveguide photon scattered by a two-level atom with
periodic modulated transition frequency

At the first, let us consider a simplest model, i.e., a single-photon
with the fixed frequency transporting along a one-dimension waveguide
and being scattered by an ideal two-level atom (i.e., without any atomic
decay), whose eigenfrequency is periodically modulated. The system is
sketched in Fig. 1, wherein the energy splitting between the ground state
|𝑔⟩ and the excited state |𝑒⟩ of the atom, locating at 𝑥0, is periodically
modulated. The Hamiltonian of the system can be written as (ℏ = 1) :

𝐻 = ∫ 𝑑𝑥
[

𝑐†𝑅(𝑥)(−𝑖𝑣𝑔
𝜕
𝜕𝑥

)𝑐𝑅(𝑥) + 𝑐
†
𝐿(𝑥)(𝑖𝑣𝑔

𝜕
𝜕𝑥

)𝑐𝐿(𝑥)
]

+∫ 𝑑𝑥𝑉 𝛿(𝑥 − 𝑥0)
[

𝑐𝑅(𝑥)𝜎+ + 𝑐𝐿(𝑥)𝜎+ +𝐻.𝑐.
]

+Ω(𝑡)𝜎+𝜎−. (1)

Here, 𝑐†𝑅(𝑥) (𝑐𝑅(𝑥)) and 𝑐†𝐿(𝑥) (𝑐𝐿(𝑥)) are the bosonic creation (an-
nihilation) operators of the single-photon propagating right and left
directions, respectively. 𝑣𝑔 is the group velocity of the photon, 𝑉 is
the coupling strength between the waveguide photon and the atom,
and 𝜎+(𝜎−) the atomic raising (lowering) ladder operator. The atomic
transition frequency Ω between the ground and excited states is now
periodically modulated, i.e., Ω(𝑡) = Ω[1 + 𝑓 cos(𝜔𝑡)] with 𝑓 ≪ 1 being
the modulated amplitude and 𝜔 the modulated frequency. The atom–
photon coupling strength 𝑉 is kept unchanged and the dissipations of
the system are neglected also for simplicity.

The generic solution to the time-dependent Schrödinger equation
with the Hamiltonian (1) can be expressed as

|Ψ⟩ = ∫ 𝑑𝑥
[

𝜙𝑅(𝑥, 𝑡)𝑐
†
𝑅(𝑥) + 𝜙𝐿(𝑥, 𝑡)𝑐

†
𝐿(𝑥)

]

|∅⟩

+ 𝑒(𝑡)𝜎+|∅⟩, (2)

with |∅⟩ being the vacuum state, i.e., without any photon in the
waveguide and the atom stays at its ground state |𝑔⟩, and 𝜙𝑅∕𝐿(𝑥, 𝑡)
and 𝑒(𝑡) standing for the time-dependent probabilistic amplitudes of the

photon propagating along the 𝑅∕𝐿 direction and the atomic excitation,
respectively. The time-dependent coefficients in the above wave func-
tion are determined by the following equations:

𝑖 𝜕
𝜕𝑡
𝜙𝑅(𝑥, 𝑡) = −𝑖𝑣𝑔

𝜕
𝜕𝑥
𝜙𝑅(𝑥, 𝑡) + 𝑉 𝛿(𝑥)𝑒(𝑡), (3)

𝑖 𝜕
𝜕𝑡
𝜙𝐿(𝑥, 𝑡) = 𝑖𝑣𝑔

𝜕
𝜕𝑥
𝜙𝐿(𝑥, 𝑡) + 𝑉 𝛿(𝑥)𝑒(𝑡) (4)

𝑖 𝜕
𝜕𝑡
𝑒(𝑡) = Ω [1 + 𝑓 cos(𝜔𝑡)] 𝑒(𝑡) + 𝑉

[

𝜙𝑅(0, 𝑡) + 𝜙𝐿(0, 𝑡)
]

. (5)

As the incident single-photon is now scattered by a time-dependent
atom and thus its energy should be no longer conservation. This implies
that the photon could be transmitted/reflected into the different energy
states, i.e., energy sidebands. The above probabilistic amplitudes of the
photon propagating along the 𝑅∕𝐿 direction could be taken generically
as

𝜙𝑅(𝑥, 𝑡) = 𝜃(−𝑥 + 𝑥0)𝑒𝑖(𝑞0𝑥−𝜔0𝑡) + 𝜃(𝑥 − 𝑥0)𝜓𝑅(𝑥, 𝑡), (6)

𝜙𝐿(𝑥, 𝑡) = 𝜃(−𝑥 + 𝑥0)𝜓𝐿(𝑥, 𝑡), (7)

where 𝜓𝑅(𝑥, 𝑡) and 𝜓𝐿(𝑥, 𝑡) stand for the transmitted and reflected parts
of the scattered photon, respectively. Also, 𝜔0 is the frequency of the
incident photon with the wave vector 𝑞0 = 𝜔0∕𝑣𝑔 .

Without loss of the generality, we take 𝑥0 = 0 for simplicity. By
substituting Eqs. (6) and (7) into Eqs. (3) and (4), we have

𝜓𝑅(0, 𝑡) = 𝜓𝐿(0, 𝑡) + 𝑒−𝑖𝜔0𝑡, (8)

𝑉 𝑒(𝑡) = 𝑖𝑣𝑔𝜓𝐿(0, 𝑡). (9)

Furthermore, with Eq. (5) we get

𝜕
𝜕𝑡
𝑒(𝑡) = −𝑖Ω [1 + 𝑓 cos(𝜔𝑡)] 𝑒(𝑡) − 𝑉 2

𝑣𝑔
𝑒(𝑡) − 𝑖𝑉 𝑒−𝑖𝜔0𝑡. (10)

A particular solution to the homogeneous differential equation on 𝑒(𝑡)
reads

𝑒(𝑡) = 𝑒
−𝑖Ω𝑡− 𝑉 2

𝑣𝑔
𝑡
𝑒−𝑖

𝑓Ω
𝜔 sin(𝜔𝑡). (11)

By using the Jacobi–Anger expansion [31]

𝑒𝑖𝑢 sin 𝑥 =
∑

𝑛
𝐽𝑛(𝑢)𝑒𝑖𝑛𝑥, (12)

with 𝐽𝑛(𝑢) being the first kind Bessel function of the 𝑛-order, the generic
solution to the Eq. (10) reads

𝑒(𝑡) =
∑

𝑛,𝑙

𝑉 𝐽𝑙(
𝑓Ω
𝜔 )𝐽𝑛+𝑙(

𝑓Ω
𝜔 )

Δ − 𝑙𝜔 + 𝑖𝛾
𝑒−𝑖𝜔𝑛𝑡, (13)

with Δ = 𝜔0 − Ω, 𝛾 = 𝑉 2∕𝑣𝑔 and 𝜔𝑛 = 𝜔0 + 𝑛𝜔. Here, Δ and 𝛾 are the
detuning and the effective coupling strength between the photon and
the periodically-modulated atom, respectively. As a consequence,

𝜓𝐿(𝑥, 𝑡) =
∑

𝑛
𝑒−𝑖(𝑞𝑛𝑥+𝜔𝑛𝑡)

⎡

⎢

⎢

⎣

∑

𝑙

−𝑖𝛾𝐽𝑙(
𝑓Ω
𝜔 )𝐽𝑛+𝑙(

𝑓Ω
𝜔 )

Δ − 𝑙𝜔 + 𝑖𝛾

⎤

⎥

⎥

⎦

, (14)

𝜓𝑅(𝑥, 𝑡) =
∑

𝑛
𝑒𝑖(𝑞𝑛𝑥−𝜔𝑛𝑡)

⎡

⎢

⎢

⎣

∑

𝑙

−𝑖𝛾𝐽𝑙(
𝑓Ω
𝜔 )𝐽𝑛+𝑙(

𝑓Ω
𝜔 )

Δ − 𝑙𝜔 + 𝑖𝛾
+ 𝛿𝑛,0

⎤

⎥

⎥

⎦

, (15)

with 𝑞𝑛 = 𝜔𝑛∕𝑣𝑔 . It is seen that many energy sidebands appear in
the reflected and transmitted coefficients of the scattered photon. With
Eqs. (6) and (7) one can easily see that the quantities defined in
the square brackets in Eqs. (14) and (15) are just the reflected and
transmitted amplitudes in the 𝑛th sideband, i.e.,

𝑟𝑛 =
∑

𝑙

−𝑖𝛾𝐽𝑙(
𝑓Ω
𝜔 )𝐽𝑛+𝑙(

𝑓Ω
𝜔 )

Δ − 𝑙𝜔 + 𝑖𝛾
, (16)

𝑡𝑛 =
∑

𝑙

−𝑖𝛾𝐽𝑙(
𝑓Ω
𝜔 )𝐽𝑛+𝑙(

𝑓Ω
𝜔 )

Δ − 𝑙𝜔 + 𝑖𝛾
+ 𝛿𝑛,0. (17)
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Fig. 2. The transmission probabilities of the incident waveguide photon scattered by a amplitude modulated atom 𝑓Ω∕𝛾 with a fixed modulated frequency 𝜔∕𝛾 = 2. (a) The total
transmitted spectrum of the photon. (b) The transmitted probabilities for various possible photonic sidebands of the incident resonant photon with a fixed frequency: 𝜔0 = Ω.

Fig. 3. The transmitted probability of the photon scattered by the frequency modulated atom with the fixed modulated amplitude 𝑓Ω∕𝛾 = 5. (a) The total transmitted spectrum. (b) The
transmitted probabilities of the resonant incident photon (with Δ = 0) in different photonic sidebands: the zero-sideband and the sidebands with 𝑛 = 1,−1; 2,−2.

Physically, the total transmitted and reflected probabilities of the
waveguide photon scattered by the atom reads

𝑅 = ∫ 𝑑𝑥𝜓∗
𝐿(𝑥, 𝑡)𝜓𝐿(𝑥, 𝑡) =

∑

𝑛
𝑅𝑛, 𝑅𝑛 = |𝑟𝑛|

2, (18)

𝑇 = ∫ 𝑑𝑥𝜓∗
𝑅(𝑥, 𝑡)𝜓𝑅(𝑥, 𝑡) =

∑

𝑛
𝑇𝑛, 𝑇𝑛 = |𝑡𝑛|

2. (19)

With Eqs. (18) and (19), we can check that the usual completeness condi-
tion: 𝑇 +𝑅 = 1, is still satisfied for the present time-dependent quantum
scattering system. Certainly, when 𝑓𝜔 = 0, the above results reduce
to those for the usual time-independent scattering problem [5,32], in
which the resonant incident photon (i.e., 𝜔0 = Ω) is reflected completely
by the atom and any photonic sideband is excited. In what follows
we specifically investigate how the periodic modulation of the atomic
energy splitting excites the energy sidebands of the photon, and then
discuss numerically how the sideband transport of the photon can be
controlled.

i) For a fixed modulated periodic/frequency of atomic energy split-
ting, e.g., 𝜔∕𝛾 = 2 with a relatively-low modulated frequency, Fig.
2(a) shows how the transmission spectrum changes with the modu-
lated amplitude 𝑓 . It is seen that the transmission spectrum of the
photon scattered by the atom with the energy splitting modulation is
obviously different from that scattered by a time-independent atom;
the transmitted probability of the incident photon with the frequency
𝜔0 = Ω is no longer zero but a finite value, which can be approached to
the 1 (i.e., complete transmission) for the sufficiently-strong modulated
amplitude. This is because that the energy splitting of the scattering
atom is adjusted from the resonance to non-resonance with the incident
photon. Interestingly, Fig. 2(b) shows that, even for the weak amplitude
modulation, the incident photon with the fixed frequency (i.e., 𝜔0 =
Ω) could still be transmitted in different photonic sidebands with the
frequency 𝜔𝑛 = 𝜔0 ± 𝑛𝜔, 𝑛 = 1, 2, 3,…. Physically, this phenomenon is
originated from inelastic scattering of the modulated atom. Typically,
the transmitted probability 𝑇0 (blue solid line) contributed from the
zero-sideband (i.e., 𝑛 = 0) is dominant for the sufficiently large
amplitude modulations (e.g., 𝑓Ω∕𝛾 > 4 in Fig. 2(b)). Inversely, the

transmission in the sideband (e.g., 𝑛 = 1∕ − 1 marked as the red
dashed line in Fig. 2(b)) is significantly strong for the relatively-low
amplitude modulations (e.g., 𝑓Ω∕𝛾 < 2 in the figure). For example,
the transmission in the sidebands with 𝑛 = 1,−1 can be larger than
that of the zero-sideband (i.e., 𝑛 = 0 corresponding to the elastic
scattering of the photon) for certain modulated parameters, although
the transmissions in the higher sidebands 𝑇𝑛, 𝑇−𝑛 (with |𝑛| ≥ 2, black
dotted line in the figure) are still negligible.

ii) For a fixed modulated amplitude, e.g., 𝑓Ω∕𝛾 = 5, we numerically
show the transmitted spectrum of the incident photon in Fig. 3(a).
One can see that, under the relatively-high frequency modulations
(e.g., 𝜔∕𝛾 > 6) the incident resonant photon (with the frequency 𝜔0 = Ω)
approaches to the complete reflection, except certain relatively-weak
sideband transmissions. However, for the relatively-low frequency mod-
ulation the total transmission of the photon is significantly enhanced.
Again, this is because the detuning between the atom and the incident
photon has been effectively modulated, and the completely-reflected
effect of the resonant photon is suppressed robustly. Specifically, Fig.
3(b) shows again that, due to the scattering of the periodic modu-
lated atom, the resonant incident photon could transmit along various
photonic sidebands. Compared with the transmitted probability of the
zero-sideband 𝑇0 (blue solid line), the transmitted probabilities of the
sidebands 𝑛 = 1,−1, i.e., 𝑇1,−1 (red dashed line), cannot be neglected
for certain frequency modulations. Again, the transmissions along the
higher frequency sidebands (black dotted line) are still unimportant for
the present parameter conditions.

3. Single-photon transport with the periodic modulated atom–
photon interaction

We now consider another mechanism to modulate the photon
transport by the periodically-driven atom–photon interaction generated
by, e.g., the photonic wavepacket across the atom, and the oscillating
distance between the waveguide and the aside atom. The configuration
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Fig. 4. Single-photon transport with the periodic modulated atom–photon interaction
𝑉 (𝑡) at the location 𝑥1 = 0.

considered here can be schematized in Fig. 4, with the Hamiltonian

𝐻 = ∫ 𝑑𝑥
[

𝑐†𝑅(𝑥)(−𝑖𝑣𝑔
𝜕
𝜕𝑥

)𝑐𝑅(𝑥) + 𝑐
†
𝐿(𝑥)(𝑖𝑣𝑔

𝜕
𝜕𝑥

)𝑐𝐿(𝑥)
]

+∫ 𝑑𝑥𝑉 (𝑡)𝛿(𝑥 − 𝑥1)
[

𝑐𝑅(𝑥)𝜎+ + 𝑐𝐿(𝑥)𝜎+ +𝐻.𝑐.
]

+Ω𝜎+𝜎−, (20)

where 𝑉 (𝑡) = 𝑉
[

1 + 𝜆 cos(𝜔𝑠𝑡)
]

is the periodic modulated atom–
photon interaction (with 𝜆 being the modulated amplitude and 𝜔𝑠
the frequency). The generic wave function and also the probabilistic
amplitudes for the photon propagating along the 𝑅∕𝐿 direction take
the same forms in Eqs. (2), (6) and (7), respectively. But, the relevant
bound conditions are now replaced as

𝜓𝑅(0, 𝑡) = 𝜓𝐿(0, 𝑡) + 𝑒−𝑖𝜔0𝑡, (21)

𝜓𝐿(0, 𝑡) =
−𝑖𝑉
𝑣𝑔

[

1 + 𝜆 cos(𝜔𝑠𝑡)
]

𝑒(𝑡), (22)

𝑖 𝜕
𝜕𝑡
𝑒(𝑡) = Ω𝑒(𝑡) + 𝑉

[

1 + 𝜆 cos(𝜔𝑠𝑡)
] [

𝜓𝐿(0, 𝑡) + 𝑒−𝑖𝜔0𝑡
]

. (23)

Again, by using the expansion formula [31]:

𝑒𝑥 sin 𝜃 =
∑

𝑛
𝑖−𝑛𝐼𝑛(𝑥)𝑒𝑖𝑛𝜃 , (24)

with 𝐼𝑛(𝑥) being the modified Bessel function of order 𝑛. Specially, under
the practical condition: 𝛾𝜆2 ≪ 4𝜔𝑠 for the fast convergence of the
expanded Bessel functions, we have 𝐼𝑙(

𝛾𝜆2

4𝜔𝑠
) ≈ 𝛿𝑙,0 and 𝐼𝑗 (

𝛾𝜆2

4𝜔𝑠
) ≈ 𝛿𝑗,0.

Furthermore, we let 𝐼𝑘(
2𝛾𝜆
𝜔𝑠

) = 𝐼𝑘 for simplicity. The reflected and
transmitted amplitudes can be reduced to

𝑡𝑛 = 𝑟𝑛 + 𝛿𝑛0, (25)

𝑟𝑛 =
∑

𝑘

−𝑖−𝑛−2𝑘+1𝐼𝑘
[

𝐼𝑛+𝑘 +
𝑖𝜆
2 𝐼𝑛+𝑘−1 +

𝑖−1𝜆
2 𝐼𝑛+𝑘+1

]

Δ
𝛾 − 𝑘𝜔𝑠𝛾 + 𝑖(1 + 𝜆2

2 )

+
∑

𝑘

−𝑖−𝑛−2𝑘+1 𝜆2 𝐼𝑘
[

𝑖−1𝐼𝑛+𝑘+1 +
𝜆
2 𝐼𝑛+𝑘 +

𝑖−2𝜆
2 𝐼𝑛+𝑘+2

]

Δ
𝛾 − (𝑘 + 1)𝜔𝑠𝛾 + 𝑖(1 + 𝜆2

2 )

+
∑

𝑘

−𝑖−𝑛−2𝑘+1 𝜆2 𝐼𝑘
[

𝑖𝐼𝑛+𝑘−1 +
𝑖2𝜆
2 𝐼𝑛+𝑘−2 +

𝜆
2 𝐼𝑛+𝑘

]

Δ
𝛾 − (𝑘 − 1)𝜔𝑠𝛾 + 𝑖(1 + 𝜆2

2 )
. (26)

Substituting these coefficients into the Eqs. (18) and (19), the total
reflected and transmitted probabilities of the waveguide photon in the
present configuration are obtained.

In order to show how the periodically-modulated photon–atom in-
teraction influences the photon transport, we investigate the transmitted
spectra of the photon for two typical cases. (i) 𝜆𝜔𝑠 = 0, i.e., the
atom–photon coupling strength is not time modulation for the below
comparisons, the transmitted spectra schematized in Fig. 5 shows that
the resonant incident photon is always reflected completely and the
stronger coupling strength corresponds the wider dip of the transmitted
spectrum. (ii) 𝜆, 𝜔𝑠 ≠ 0, i.e., the atom–photon coupling strength is
periodically modulated. Without loss of the generality, we set 𝛾𝜆2 ≪ 4𝜔𝑠
for simplicity.

Firstly, we investigate the influence from the frequency modulation
for the fixed modulation amplitude 𝜆 = 0.1. Fig. 6(a) shows clearly that

Fig. 5. The transmitted spectra of the photon for different atom–photon interaction
strengths with 𝜆𝜔𝑠 = 0.

the resonant incident photon can be transmitted with certain probabili-
ties (i.e., the total transmitted probability marked as the blue solid line),
which increase with the modulation frequency 𝜔𝑠. Specifically, one can
see that such a transmission is mainly originated from the transmissions
in the 𝑛 = 1 or 𝑛 = −1 sideband (the red dashed line), and the
contributions from the 𝑛 = 0 sideband (the green dot-dashed line) and
|𝑛| ≥ 2 sidebands (the black dotted line) are negligible. Furthermore, we
shows how the transmissions in these sidebands depend on the detuning
parameter Δ = 𝜔0 − Ω in Fig. 6(b), which indicates that the resonant
incident photon is maximally transmitted into the sidebands and the
transmission in the 𝑛 = 0 sideband is negligible. Also, the transmitted
probabilities are symmetrically distributed around the detuning Δ =
0 and the maximized transmission reaches 0.005 for the modulated
frequency 𝜔𝑠∕𝛾 ≥ 10.

Secondly, we discuss how the modulated amplitude 𝜆 influence
on the sideband transmissions for the modulated frequency 𝜔𝑠∕𝛾 =
10. The transmissions of the resonant incident photon varies with
the 𝜆-parameter is shown in Fig. 7(a), wherein the total transmitted
probability is marked as the blue solid line, and the transmissions in
𝑛 = 0, 𝑛 = 1,−1 and 𝑛 = 2,−2 sidebands are represented by the green
dot-dashed, red dashed, and black dotted lines, respectively. Note that
the sideband transmissions (mainly in the 𝑛 = −1, 1 sidebands) increase
monotonously with the modulation amplitude 𝜆. One can see from Fig.
7(b) that the total transmitted probability in the 𝑛 = 1,−1 sidebands is
𝑇1+𝑇−1 = 0.005 for the typical experimental parameters; Δ = 0, 𝜆 = 0.1.

4. Summary and conclusions

A time-dependent counterpart of the usual quantum theory of the
time-independent photon transport in real-space is developed to de-
scribe the photon propagations modulated periodically by the atomic
level splitting and the atom–photon interaction. We showed that, due
to the existence of the inelastic scatterings, the photon can be trans-
mitted/reflected into its sidebands. This leads certain novel transport
phenomena of the photon in the waveguides. For example, in the frame-
work of the time-independent quantum theory, the resonant incident
photon (i.e., its frequency is equivalent to the transition frequency of
the scattering atom) is reflected completely. However, if the atomic
transition frequency or the atom–photon interaction is time-dependent
modulation, the resonant incident photon could transmit across the
atom in various energy sidebands. Thus, the complete reflection does
not appear. Specifically, we numerically found that, under certain
conditions, i.e., requiring the expanded Bessel functions to be fast con-
vergence, the contributions of transmission in lower energy sidebands,
e.g., the 𝑛 = 0,±1,±2 are relatively-important.
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Fig. 6. The transmitted probabilities of the photon versus the modulated frequency 𝜔𝑠∕𝛾 of the atom–photon interaction with the fixed modulated amplitude 𝜆 = 0.1. (a) The total
transmitted probabilities of the resonant incident photon. (b) The spectrum 𝑇1 + 𝑇−1 of the photon transmitted into 𝑛 = 1 and 𝑛 = −1 sidebands.

Fig. 7. The transmitted probabilities of the photon changes with the modulated atom–photon interaction amplitude 𝜆 with the fixed modulated frequency 𝜔𝑠∕𝛾 = 10. (a) The transmitted
probabilities of the resonant incident photon in different sidebands. (b) The total transmitted probability 𝑇1 + 𝑇−1 of the photon in the 𝑛 = 1,−1 sidebands controlled by the modulated
amplitude and detuning between the photon and atom.

In principle, the time-modulation of photon transport could be
applied to various realistic physical problems, typically, e.g., the con-
trollable single-photon quantum devices. For example, with the time-
dependent Jaynes–Cummings interaction [33] photon transport through
a cavity could be controlled by manipulating the time-dependent in-
teraction between the cavity and the containing atom. As a conse-
quence, single-photon transport devices such as photonic switch could
be realized at a single atom level. More Interestingly, the recent ex-
periment [23] demonstrated successfully the dynamical Casimir effect
by observing the microwave photon propagating along a coplanar
waveguide terminated by a flux-modulating superconducting quantum
interference device, which might be regarded as an artificial atom with
time-modulating energy splittings. The generated and observed photon,
i.e., the sideband photon, is identical to the one calculated in the
dynamical Casimir effect for a single oscillating mirrors [34].
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