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We study light propagation in nanoscale periodic structures composed of dielectric and metal in the vis-
ible range. We demonstrate that diffraction curves of nonuniform waveguide arrays can be tailored by
varying the geometric and dielectric features of the waveguides. The results obtained from a proper for-
mulation of coupled mode theory for nonuniform arrays are validated through numerical solution of
Maxwell equations in frequency domain.
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1. Introduction

The miniaturization of photonic devices for confining and guid-
ing electromagnetic energy down to nanometer scale is one of the
biggest challenges for the information technology industries [1]. In
the last years, photonic crystals technology allowed to gain one or-
der of magnitude in the miniaturization of components such as
waveguides and couplers with respect to conventional (i.e. based
on total internal reflection) optics. However when the size of a con-
ventional optical circuit is reduced to the nanoscale, the propaga-
tion of light is limited by diffraction. One way to overcome this
limit is through surface plasmon polaritons [2], which are evanes-
cent waves trapped at the interface between a medium with posi-
tive real part of dielectric constant and one with negative real part
of dielectric constant, such as metals in the visible range. Even
though this phenomenon has been known for a long time, in the
last years there is a renewed interest in this field, mainly motivated
by the wide range of potential applications that sweep from the
realization of biologic nanosensors [3], to sub-wavelength imaging
[4], to the merging of electronic circuits to photonic devices [5].

On the other hand, control of light propagation by means of
periodic photonic structures is a fundamental issue that is attract-
ing a lot of interest in the scientific community. In particular, ar-
rays of evanescently coupled waveguides are unique structures
that exhibit the peculiar properties of discrete systems. Indeed,
light propagation in waveguide arrays is characterized by strong
confinement of the field into the individual waveguides and the
observable exotic phenomena are due to the weak coupling
ll rights reserved.
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between the waveguides. As a result, modes of the whole structure
can be approximated by a superposition of a discrete set of local-
ized modes, thus light propagation can be considered truly discret-
ized [6,7]. Recently there is a great research effort in the field of
discrete effects in plasmonic structures, and some peculiar out-
come of discreteness were reported for metal–dielectric waveguide
arrays, for example Bloch oscillations [8–10], negative refraction
[11] diffraction management [12] and subwavelength focusing
[13,14].

Nonuniform waveguide arrays have received increasing atten-
tion, since a more complex engineering of the periodic structure
can provide further degrees of freedom. In this context, the first re-
ported example concerns the usage of zigzag waveguide arrays
(i.e., the cascade of arrays characterized by alternating tilt angles)
in order to obtain diffraction management. Binary arrays com-
posed of waveguides with alternating widths have been thor-
oughly studied [15,16] since they exhibit interesting features,
such as double refraction, due to their intrinsic two-band nature.

In the present work we study the behavior of nonuniform
metal–dielectric waveguide arrays composed of waveguides with
different dielectric cores, that determine strong variations of the
coupling coefficients. Coupled mode theory (CMT) is extended in
order to deal with plasmonic modes and varying coupling coeffi-
cients, and further improvements are proposed in order to take
into account the different widths of the two array bands. Moreover,
we demonstrate that the ability to control the magnitude of the
coupling between the waveguides opens the way to the design of
binary waveguide arrays with unusual properties, such as almost
flat diffraction curves, that are required, for example, to achieve
self collimation [17]. Finite element solution of Maxwell equations
in nonuniform plasmonic waveguide arrays are reported in order
to assess the validity of the analytical treatment.
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The paper is organized as follows. After this Introduction, in
Section 2 we introduce the nonuniform arrays and report some re-
sults of the standard CMT. In Section 3 we develop an extension of
coupled mode theory for nonuniform waveguide arrays that ex-
ploits the unsymmetric coupler as the fundamental cell; this
extension is motivated by the unacceptable low accuracy of the
standard CMT for nonuniform plasmonic waveguide arrays. In Sec-
tion 4, we analyze the peculiar field shape in binary plasmonic ar-
rays and its consequences related to the calculation of coupling
coefficients. In Section 5 we exploit the theoretical results of previ-
ous sections to engineer diffraction in nonuniform waveguide ar-
rays, reporting as a relevant example the design of arrays
characterized by a flat diffraction curve. We end with the conclu-
sion in Section 6.
2. Nonuniform plasmonic arrays

We consider a one dimensional (1D) array formed by the alter-
nation of two dielectric layers (cores) divided by a metallic one
(cladding), as sketched in Fig. 1. In a CMT approach we can con-
Fig. 1. The plasmonic array studied in this paper. Two cores with dielectric constant e1 an
whose dielectric constant is em . Width of cores is 2b, width of metal layers is 2a. The fun
cells of the array, that according to the CMT developed in this paper are plasmonic cou

Fig. 2. In the upper and in the center figure two single plasmonic guides are shown. The
by metal with dielectric constant em . In the lower figure there is the coupler used as b
constant e1 and e2, and divided by a metal layer (width 2a, dielectric constant em), are s
sider, as basic cell, the single isolated waveguide formed by a
dielectric layer surrounded by metal (Fig. 2). Let us call e1; e2 and
em the relative dielectric constants of dielectrics and metal in the
array, and 2a and 2b the widths of metallic and dielectric layers,
respectively. Metal dielectric constant em is calculated by means
of Drude model, i.e. em ¼ 1�x2

p=ðx2 � icxÞ, where xp and c are
the plasma and collision frequency of the metal, respectively. Sup-
posing that e2 > e1 (from here and for the rest of the article), we
work at frequencies such that x < xp=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2
p

. Under this condi-
tion, the fundamental mode of the single waveguides is TM-even
and can be expressed as a sum of decaying exponentials both in
dielectric and metal; if 2b is sufficiently small the guides are mono-
modal, that is the necessary condition to obtain a bimodal array.
Indeed the array supports two different modes since the alternated
guides have different propagation constants b1 and b2. According
to CMT model, diffraction functions of the two array modes are
[15]:

kzð1;2ÞðkÞ ¼
b1 þ b2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1 � b2

2

� �2

þ 4C2 cos
k
2

� �s
; ð1Þ
d e2 (white and black respectively) are alternated and divided by a metal layer (grey)
damental period K is 4aþ 4b. Dashed rectangles surround three consecutive basic

plers.

cores (width 2b) have dielectric constant e1 and e2 respectively, and are surrounded
asic cell in the CMT developed in this paper. Two cores (width 2b) with dielectric
urrounded by metal.
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where k is the tilt angle normalized with respect to the period of the
array ð�p < k < pÞ and C is the coupling coefficient between modes
of adjacent waveguides, whose value is [18]:

C ¼ xe0

Z þ1

�1
earrðxÞ � eg1ðxÞ
� �

Ex1ðxÞE�x2ðxÞdx

þxe0

Z þ1

�1

eg2ðxÞ earrðxÞ � eg1ðxÞ
� �

earrðxÞ
Ez1ðxÞE�z2ðxÞdx: ð2Þ

In Eq. (2) e0 is the dielectric constant of vacuum, Ex1; Ex2; Ez1 and
Ez2 are the modal electric fields of the two isolated waveguides,
eg1ðxÞ and eg2ðxÞ are the dielectric profiles of the two unperturbed
waveguides and earrðxÞ is the dielectric profile of the whole array.

Looking at Eq. (1) we see that by controlling Db ¼ ðb1 � b2Þ=2
and C we can obtain diffraction curves with very different ampli-
tudes, where for amplitude we mean kzð1;2ÞðpÞ � kzð1;2Þð0Þ. For
example when Db� C, diffraction curves become nearly flat. The
propagation constant b of a single guide with relative dielectric
constant e and width 2b at pulsations x that satisfy the inequality
e=jemðxÞj < 0:5 is well approximated by Eq. (3) (see Appendix):

b �
ffiffiffi
e
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w
c0

� �2

þ wp

jemjc0b

� �s
; ð3Þ

where c0 is light speed in vacuum. It’s easy to note that b is very
sensitive to e, so that a sensible difference Db arises b2=b1 ¼ðffiffiffiffiffiffiffiffiffiffiffiffi

e2=e1

p
Þ by coupling waveguides with cores with different dielectric

constant e1 and e2. In contrast, the dependence of b on the width b is
usually weaker than the dependence on e. For example, if we use
silver (neglecting losses: wp ¼ 13:6884e15 rad=s;c ¼ 0 rad=s), at
any pulsation smaller than xp=

ffiffiffiffiffiffiffiffiffiffiffi
1þ e
p

; b is almost independent
on b, for b > 40 nm : so Db will be quite small when coupling wave-
guides with the same dielectric but different width.

3. Coupled mode theory for plasmonic arrays

It’s well known that CMT gives good results when the modes of
two coupled waveguides are, with good approximation, a linear
combination of the modes of the single unperturbed waveguides.
From Eq. (1) we derive that the second array mode has a diffraction
curve kz2ðkÞ whose values can be smaller than x

ffiffiffiffiffi
e2
p

=c0, implying
that field becomes sinusoidal in the cores of the waveguides with
dielectric e2 (for large enough values of C).

In these conditions a linear combination of single waveguides
modes (that are combination of exponentials in the cores) cannot
well approximate the real array mode, making the value of kz2ðkÞ
calculated from Eq. (1) unreliable. To overcome this problem we
consider a refined CMT model where the single cell of the array
consists of two adjacent waveguides (i.e. a waveguide coupler)
with dielectrics e1 and e2, respectively (Fig. 2). We expect this alter-
native formulation of CMT to work better, because it takes into ac-
count the effective fundamental basic cell of the nonuniform array
(that is the coupler). We will consider linear combination of the
coupler modes, that can be sinusoidal in waveguides with dielec-
tric e2, approximating better the second array mode. Let us con-
sider bimodal couplers (any coupler has at least two TM-modes),
and let us use a CMT model in which array modes are linear com-
binations of the two modes of all the couplers in the array, so that
the total transverse electric field Exðx; zÞ can be written as:

Exðx; zÞ ¼
X

n

An;aðzÞExðn;aÞðxÞ þ An;bðzÞExðn;bÞðxÞ þ EresðxÞ; ð4Þ

where Exðn;aÞðxÞ and Exðn;bÞðxÞ are the two modes (denoted with a and
b) of the nth coupler in the array, An;aðzÞ and An;bðzÞ are their related
coefficients in the linear combination and EresðxÞ is the residual field.
Supposing that the residual field is negligible and following the
treatment reported in [18], we obtain the relations below:

A0n;a þ Ra1;a2A0nþ1;a þ Ra1;a0A0n�1;a þ Ra1;b2A0nþ1;b þ Ra1;b0A0n�1;b

¼ iðba þ ka1;a1ÞAn;a þ iCa1;b1An;b þ iCa1;a2Anþ1;a þ iCa1;a0An�1;a

þ iCa1;b2Anþ1;b þ iCa1;b0An�1;b; ð5Þ

A0n;b þ Rb1;b2A0nþ1;b þ Rb1;b0A0n�1;b þ Rb1;a2A0nþ1;a þ Rb1;a0A0n�1;a

¼ iðbb þ kb1;b1ÞAn;b þ iCb1;a1An;a þ iCb1;b2Anþ1;b þ iCb1;b0An�1;b

þ iCb1;a2Anþ1;a þ iCb1;a0An�1;a: ð6Þ

In Eqs. (5) and (6) A0n;iði ¼ a; bÞ is the derivative respect to z of
An;i. Any term Ri1;jl is the correlation between mode i in the coupler
n and mode j in coupler m ¼ nþ l� 1 (l ¼ 0 with reference to the
coupler at the left of the coupler n and l ¼ 1 with reference to
the coupler n and l ¼ 2 with reference to the coupler at its right,
see Fig. 1), that is:

Ri1;jl ¼
Z þ1

�1
Exðn;iÞðxÞH�yðm;jÞðxÞdx: ð7Þ

Under the normalization condition Ri1;i1 ¼ 1, while
Ri1;j1 ¼ 0ði – jÞ because different modes in the same coupler are
orthogonal. ba and bb are the propagation constants of modes a
and b in any basic unperturbed coupler, while any term Ci1;jl is
the coupling coefficient between mode i in the coupler n and mode
j in coupler m ¼ nþ l� 1. This coefficient can be written as:

Ci1;jl ¼ biRi1;jl þ ki1;jl; ; ð8Þ

where the term ki1;jl is:

ki1;jl ¼ xe0

Z þ1

�1
earrðxÞ � ecnðxÞ½ �Exðn;iÞðxÞE�xðm;jÞðxÞ

n
þ ecmðxÞ earrðxÞ � ecnðxÞ½ �

earrðxÞ
Ezðn;iÞðxÞE�zðm;jÞðxÞ

�
dx; ð9Þ

where ecnðxÞ and ecmðxÞ are the transverse dielectric profiles of adja-
cent and unperturbed couplers n and m, while earrðxÞ is the trans-
verse profile of the whole array.

Using as solutions An;a ¼ Aeiknþikzz and An;b ¼ Beiknþikzz ð�p < k <
pÞ we can rewrite Eq. (5) and Eq. (6) in matrix form:

R
A

B

� 	
kz ¼ C

A

B

� 	
; ð10Þ

where:

R ¼
P11 P12

P21 P22

� 	
; C ¼

Q11 Q 12

Q21 Q 22

� 	
ð11Þ

with

Q 11 ¼ ba þ ka1;a1 þ Ca1;a2eik þ Ca1;a0e�ik;

Q 12 ¼ Ca1;b1 þ Ca1;b2eik þ Ca1;b0e�ik;

Q 21 ¼ Cb1;a1 þ Cb1;a2eik þ Cb1;a0e�ik;

Q 22 ¼ bb þ kb1;b1 þ Cb1;b2eik þ Cb1;b0e�ik;

P11 ¼ 1þ Ra1;a2eik þ Ra1;a0e�ik;

P12 ¼ Ra1;b2eik þ Ra1;b0e�ik;

P21 ¼ Rb1;a2eik þ Rb1;a0e�ik;

P22 ¼ 1þ Rb1;b2eik þ Rb1;b0e�ik:

Diffraction curves kzðkÞ are the eigenvalues of R�1C; being coef-
ficients Rix;jy � 1 in Eq. (11), we can well approximate R�1 �
ð2I � RÞ. In the product ð2I � RÞC we can neglect all terms different
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from Ci1;jl; ba; bb; baRi1;jl and bbRi1;jl because they are much smaller.
In this way, matrix ð2I � RÞC becomes:

ð2I � RÞC ¼
M11 M12

M21 M22

� 	
; ð12Þ

where

M11 ¼ ba þ ka1;a1 þ ka1;a2eik þ ka1;a0e�ik;

M12 ¼ ka1;b1 þ ðka1;b2 þ 2DbRa1;b2Þeik þ ðka1;b0 þ 2DbRa1;b0Þe�ik

M21 ¼ kb1;a1 þ ðkb1;a2 � 2DbRb1;a2Þeik þ ðkb1;a0 � 2DbRb1;a0Þe�ik

M22 ¼ bb þ kb1;b1 þ kb1;b2eik þ kb1;b0e�ik

and Db ¼ ðba � bbÞ=2.
If we neglect the residual field EresðxÞ, the system conserves the

energy, implying that R�1C must be hermitian. This property im-
poses the following equalities:

ka1;a2 ¼ ka1;a0 ¼ Ca;

kb1;b2 ¼ kb1;b0 ¼ Cb;

ka1;b2 þ 2DbRa1;b2 ¼ kb1;a0 � 2DbRb1;a0 ¼ Cab;

ka1;b0 þ 2DbRa1;b0 ¼ kb1;a2 � 2DbRb1;a2 ¼ Cba;

ka1;b1 ¼ kb1;a1 ¼ C:

Moreover, calling ba þ ka1;a1 ¼ �ba and bb þ kb1;b1 ¼ �bb, we can re-
write (12) in this way:

ð2I � RÞC ¼
�ba þ 2Ca cosðkÞ C þ Cabeik þ Cbae�ik

C þ Cbaeik þ Cabe�ik �bb þ 2Cb cosðkÞ

" #
: ð13Þ

Diffraction curves are the eigenvalues of (13):

kzð1;2Þ ¼
�ba þ �bb

2
þ ðCa þ CbÞ cosðkÞ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ba � �bb

2
þ ðCa � CbÞ cosðkÞ

� 	2

þ jC þ Cabeik þ Cbae�ikj2
s

:

ð14Þ

Even when difference ðe2 � e1Þ is small, the two modes of any
coupler concentrate energy in a different way: the first confine
the most part of energy in the core with dielectric constant e2,
while the second in the core with dielectric e1, so that the term
ð�ba � �bbÞ increases and coefficients C;Cab and Cba becomes negligi-
ble respect to ½ð�ba � �bbÞ=2þ ðCa � CbÞ cosðkÞ�2, implying:

kz1 ¼ �ba þ 2Ca cosðkÞ;
kz2 ¼ �bb þ 2Cb cosðkÞ: ð15Þ

That is a very simple solution where the two diffraction curves
depend only on the coupling between same modes in two adjacent
couplers. Their amplitudes are respectively 4Ca and 4Cb, and they
can take very different values, in contrast to what results from
Eq. (1). We must emphasize that the procedure reported in this pa-
per can be applied to the study of any type of binary array (i.e. it
works equally well for both dielectric and plasmonic arrays); on
the contrary, as already explained above, the standard procedure
used in the analysis of binary dielectric waveguide arrays [19]
would not work for our plasmonic binary array.
−300 −200 −100 0 100 200 300
x[nm]

Fig. 3. The array is shown together with transverse electric field Ex of modes a of
couplers n� 1 and n (dotted and solid lines, respectively), that are Exðn�1;aÞ and Exðn;aÞ

according to the explanation of Section 4. Regions g1 and g2 of each coupler are
shown (ðg1; n� 1Þ; ðg2; n� 1Þ for coupler n� 1; ðg1; nÞ; ðg2;nÞ for coupler n). In the
region ðg1; n� 1Þ the modes Exðn�1;aÞ and Exðn;aÞ are much smaller than in region
ðg2; n� 1Þ, so that their overlapping in ðg1;n� 1Þ can be neglected in the calculation
of ka1;a0 (Eq. (16)). Large discontinuities of the electric field are due to the big
dielectric constant change between metal and dielectric.
4. Modes and energy concentration in plasmonic arrays

Now we want to show that the coupling coefficients depend
quite exclusively on how field of the unperturbed basic coupler
concentrates at the metal–dielectric interfaces. This fact allow us
to deeply understand the link between nonuniformity of the array
ðe2 – e1Þ and its diffraction curves. Let us call g1; g2 and gm the re-
gions with dielectric e1; e2 and em in the coupler (Fig. 2), and let us
start with observing that the first coupler mode is very similar to
the mode of the single isolated guide with core e2, excluding the
region g1. We can then approximate the first coupler mode in all
regions except g1 with the mode of the single guide with core e2.
An analogous argument holds true for the second coupler mode.
Coupling coefficient Ca ¼ ka1;a0 can be very well approximated con-
sidering only the fields overlapping in region g2 of coupler ðn� 1Þ
(see Fig. 3):
Ca � xe0ðe2 � emÞ
Z

g2;n�1
Exðn;aÞðxÞExðn�1;aÞðxÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

C0a

þxe0ðe2 � emÞ
Z

g2;n�1
Ezðn;aÞðxÞEzðn�1;aÞðxÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

C00a

; ð16Þ
where we distinguish the overlapping between the x and z compo-
nents of electric fields (C0a and C00a , respectively). Subscript ðg2;n� 1Þ
refers to the region g2 of coupler ðn� 1Þ. Let us consider now an ar-
ray with dielectrics e1 and e2, and let us study nonuniformity effects
by varying e2 keeping e1 fixed. In ðg2; n� 1Þ the fields Exðn;aÞðx; e2Þ
and Ezðn;aÞðx; e2Þ behave nearly such as the mode of the single guide
with core e2, that decays in metal with constant Tm (see Appendix).
Being Tm practically independent on e2, also the field Exðn;aÞðx; e2Þ is
quite independent on e2 in ðg2; n� 1Þ except for a constant, so that
we can write Exðn;aÞðx; e2Þ � Exðn;aÞðx; e1ÞMe

xðL;aÞðe2Þ, where Me
xðL;aÞðe2Þ is

the magnitude of the transverse electric field of the coupler mode
a at the external left interface and, by definition, Me

xðL;aÞðe1Þ ¼ 1
(see Fig. 4). For the same fact, Ezðn;aÞðx; e2Þ � Ezðn;aÞðx; e1ÞMe

zðL;aÞðe2Þ,
where Me

zðL;aÞðe2Þ is the value of the longitudinal electric field of cou-
pler mode a at the external left interface.

Similar arguments hold true for fields Exðn�1;aÞðx; e2Þ and
Ezðn�1;aÞðx; e2Þ: in ðg2;n� 1Þ they are sum of evanescent waves
decaying with constant Td (see Appendix) that does not vary too
much as function of e2 (when the array is bimodal); so using
Exðn�1;aÞðx; e2Þ � Exðn�1;aÞðx; e1ÞMi

xðR;aÞðe2Þ and Ezðn�1;aÞðx; e2Þ � Ezðn�1;aÞ
ðx; e1ÞMi

zðR;aÞðe2Þ we approximate very well Eq. (16), being
Mi

xðR;aÞðe2Þ and Mi
zðR;aÞðe2Þ the values of the transverse and longitudi-

nal electric field of the coupler mode a at the internal right
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the interfaces of a coupler used in Eqs. (17) and (18). They are respectively
Me

xðL;aÞ;M
i
xðL;aÞ;M

i
xðR;aÞ;M

e
xðR;aÞ .
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interface. On the basis of the arguments reported above, we can
easily deduct the following relations:

C0aðe2Þ
C0aðe1Þ

� em � e2

em � e1
Me

xðL;aÞðe2ÞMi
xðR;aÞðe2Þ;

C00aðe2Þ
C00aðe1Þ

� em � e2

em � e1
Me

zðL;aÞðe2ÞMi
zðR;aÞðe2Þ: ð17Þ

Reasoning in the same way for Cb ¼ kðb1;b2Þ we can write:

C0bðe2Þ
C0bðe1Þ

� Mi
xðL;bÞðe2ÞMe

xðR;bÞðe2Þ;

C00bðe2Þ
C00bðe1Þ

� Mi
zðL;bÞðe2ÞMe

zðR;bÞðe2Þ: ð18Þ

Eqs. (17) and (18) show how variations of couplings as function
of nonuniformity are related only on fields concentration at the
interfaces of the unperturbed basic coupler. We note that C0aðe2Þ
and C00aðe2Þ are always decreasing function of e2, while C0bðe2Þ and
C00bðe2Þ exhibit a minimum when the condition kz2ðkÞ � x

ffiffiffiffiffi
e2
p

=c0

is satisfied, corresponding to the threshold between a decaying
or oscillating field in the core of the waveguide g2. This fact is
not intuitive, because we could expect that the more the difference
ðe2 � e1Þ is increased the more the modes of adjacent couplers are
decoupled.
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Fig. 5. Amplitude W of the diffraction curves as function of e2, when e1 ¼ 1:0. S
5. Design of a flat-diffraction array in the visible band

In this section we design a nonuniform plasmonic array in order
to have flat diffraction curves in all the visible range (450–750 nm)
and in order to test all predictions done in the previous sections.
Thanks to a flat diffraction curve, is possible to prevent either the
beam divergence or diffraction broadening, enabling flexible de-
sign of light path in plasmon integrated optics [17].

Dielectric and metal layers of the array are 120 nm and 40 nm
wide respectively; e1 ¼ 1:0 (air) and metal layers are silver
(xp ¼ 13:61e15 and c ¼ 0, because we can neglect losses for
propagation distances that we consider). In Fig. 5 the amplitudes
of the two diffraction curves related to the two modes of the array
at 450 nm and 750 nm are shown as function of e2. We consider
only values of e2 that allow the array to be bimodal. Difference
ðkz1ðpÞ � kz1ð0ÞÞ is the amplitude of the first diffraction curve (band
1), ðkz2ðpÞ � kz2ð0ÞÞ is the amplitude of the second (band 2).

Values of kz1ð0Þ; kz1ðpÞ; kz2ð0Þ and kz2ðpÞ are calculated by means
of Eq. (15), where �ba; �bb;Ca and Cb depend on coefficients ba; bb;

ka1;a1; kb1;b1; ka1;a2 and kb1;b2. The first two are the propagation con-
stants of the basic coupler modes and are calculated by means of
a mode solver; last four coefficients are calculated using Eq. (9),
with Ex and Ez as obtained by the mode solver.

As predicted, the amplitude of the first curve always decreases
as function of e2, while the second exhibits a minimum of its abso-
lute value. A good choice to obtain a flat second curve in all the vis-
ible range is to set e2 ¼ 1:5, for which we have nearly the lowest
amplitude of band 2 in all the range considered.

In Fig. 6 we show the comparison between the amplitude of dif-
fraction curves in the case of a uniform array (e1 ¼ 1:0; e2 ¼ 1:0 or
e1 ¼ 1:5; e2 ¼ 1:5) and a nonuniform array ðe1 ¼ 1:0; e2 ¼ 1:5Þ as
function of wavelength: the amplitude is significantly reduced in
case of nonuniformity, about 5 times for band 1 and 2–3 times
for band 2.

In Fig. 7, in the case of e1 ¼ 1:0; e2 ¼ 1:5, we report a compari-
son between the numerically calculated amplitudes and those pre-
dicted by CMT using Eq. (15). Numerical values of
kz1ð0Þ; kz1ðpÞ; kz2ð0Þ and kz2ðpÞ are calculated with a mode solver.

Relative errors are very small, less then 3% in the worst case. In
the case of band 2, numerical and predicted curves are undistin-
guishable. As expected the amplitudes of both the diffraction
curves reduces in modulus by increasing the wavelength. In fact
the modulus of the dielectric constant of metal increase with
wavelength, enabling a stronger confinement into the waveguides.

In Fig. 8 we report the good agreement between coupling coef-
ficients Ca and Cb calculated with Eq. (9) and those approximated
by Eq. (16). In this last case C0aðe1Þ;C0bðe1Þ;C00aðe1Þ and C00bðe1Þ are first
calculated with Eq. (16), then C0aðe2Þ;C0bðe2Þ;C00aðe2Þ and C00bðe2Þ are
1 1.2 1.4 1.6 1.8
−8

−6

−4

−2

0

2

4

6 x 105

ε2

W
 [m

−1
]

b)

olid lines for band 1, dotted lines for band 2. (a) 750 nm; and (b) 450 nm.
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Fig. 7. Amplitudes W of the diffraction curves as function of wavelength when e1 ¼ 1:0; e2 ¼ 1:5. Solid line for numerically calculated values; dotted lines for predicted ones
(by CMT). (a) Band 1; and (b) band 2.
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Fig. 8. Coupling coefficients Ca and Cb as function of e2, when e1 ¼ 1:0. Solid lines represent values calculated with classic CMT model (Eq. (8)); dotted lines represent values
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Wavelength is 750 nm. (a) Ca; and (b) Cb .
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given by Eqs. (17) and (18), for which fields Ex and Ez need to be
calculated by means of a mode solver in order to obtain their mag-
nitudes at the interfaces. Ca is approximated by ðC0aðe2Þþ C00aðe2ÞÞ
and Cb by ðC0bðe2Þ þ C00bðe2ÞÞ.

It is worth noting that the second band coupling constant Cb has
a non-monotonic behavior, exhibiting a minimum of the absolute
value at around e2 ¼ 2, in accordance with Fig. 5.
In Fig. 9 we show numerically calculated diffraction curves at
450 nm and 750 nm, and those predicted by CMT in Eq. (15): also
in this case, the agreement is very good. Interestingly enough the
curvature changes slightly from 450 nm to 750 nm case, indicating
the broadband feature of the diffraction engineering.

In Figs. 10 and 11 we show the solution of Maxwell equation in
uniform and nonuniform arrays, obtained by a finite-element



Fig. 10. Propagation in the array with 2a ¼ 40 nm;2b ¼ 120 nm. Single guide
excitation. Wavelength k is 750 nm. (a) e1 ¼ 1:0; e2 ¼ 1:0; (b) e1 ¼ 1:0; e2 ¼ 1:5, core
e2 excited; and (c) e1 ¼ 1:0; e2 ¼ 1:5, core e1 excited.

Fig. 11. Same as in Fig. 10, but wavelength k is 450 nm.
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Fig. 9. Diffraction curves kzðkxÞ of the nonuniform array with 2a ¼ 40 nm; 2b ¼ 120 nm; e1 ¼ 1:0; e2 ¼ 1:5. kx is normalized with respect to the period K of the array. Solid
line for numerically calculated values; dotted lines for CMT. (a) 750 nm; and (b) 450 nm.
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Fig. 12. Diffraction curves of a plasmonic array with different widths of adjacent
cores. Widths are alternately 2b ¼ 120 nm and 2c that sweeps from 120 nm to
180 nm. Dielectric constants of the cores: e1 ¼ e2 ¼ 1:0. Wavelength k ¼ 450 nm.
Solid lines for 2c ¼ 120 nm; dashed line for 2c ¼ 150 nm; dotted lines for
2c ¼ 180 nm.
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frequency-domain code [20]. In order to test the previous approx-
imations we inject into the arrays a narrow beam, corresponding to
a broad spatial spectrum. If the array bands are flat, any plane wave
component at the array input should be refracted and diffracted
very little, entailing propagation without spatial broadening of
the input beam.

In Fig. 10 the input wavelength is set to 750 nm, the propaga-
tion length is 5 lm along z direction, and three different cases
are compared. On the left propagation in a uniform array with
e1 ¼ e2 ¼ 1:0 is simulated, and we notice that diffraction effects
are much more accentuated than in the central and right figure,
where nonuniform case ðe1 ¼ 1:0; e2 ¼ 1:5Þ is considered. In these
two last cases, array bands are very flat and for a propagation dis-
tance of 5 lm they allow the field to propagate without distortion.
In the central figure the core with dielectric e1 is excited whereas in
the right one the core with dielectric e2 is excited. In the first case
power is quite totally coupled on band 2, while in second case is
quite totally coupled on band 1, so we could notice difference in
propagation because the two bands have different amplitudes.
Using a wavelength of 750 nm this difference is negligible for a
propagation of 5 lm, but becomes noticeable when using a wave-
length of 450 nm, as we can see in Fig. 11.

As far as losses are concerned, we verified that the propagation
in the diffraction-engineered devices is not influenced at all by
including a lossy model for the metal [experimental values [21]
gives eð600 nmÞ ¼ �16� 0:44i], being the only effect a reduction
in the transmitted power. Moreover the decay length of the funda-
mental mode of the waveguides with e2 ¼ 1:5 dielectric core is, for
example, LDð600 nmÞ ¼ ½2ImðkzÞ��1 ¼ 11:95 lm, much longer than
the device length, indicating that all the relevant dynamics can
take place without being suppressed by absorption.

We conclude this section reminding that, as said in Section 2,
diffraction curves of the array are not sensitive on nonuniformity
consisting in the different width of adjacent cores: in Fig. 12 an
example is shown in which cores have different widths
2b ¼ 120 nm (fixed) and 2c that sweeps from 120 nm to 180 nm.
On the contrary, dielectric is constant in all cores and is set to
1.0. As we can see, diffraction curves, numerically calculated with
a mode solver, change not too much even when 2b and 2c are very
different.
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6. Conclusions

In this paper we studied nonuniform plasmonic arrays. We have
found that diffraction curves of the array modes are very sensitive
to non uniformity consisting in the alternation of two different
dielectrics e1 and e2 in the cores of the array, while not to nonuni-
formity consisting in the alternation of different widths of cores.

In order to overcome problems arising from the CMT model
whose basic cell is the single waveguide, we proposed a CMT mod-
el where the basic cell is the unperturbed coupler. We noticed that
even for little non uniformity the shape of diffraction curves is
sinusoidal and depends only on the couplings between equal
modes in adjacent couplers; these couplings can assume different
values, entailing different amplitudes for the two diffraction
curves. We have seen that the trend of coupling coefficients as
function of nonuniformity (that is e2 � e1) depends quite exclu-
sively on how modes of unperturbed basic coupler concentrate en-
ergy at its interfaces. In the last section, basing on all results
obtained, we proposed an example of a flat-diffraction array in
the visible band, showing the correctness of all predictions done
in the previous sections.

Appendix

In a single plasmonic guide formed by a dielectric layer 2b wide,
with relative dielectric constant e and surrounded by metal with
relative dielectric constant em, the fundamental mode is TM-even
one. Imposing the continuity of the tangential electric and mag-
netic fields, whose propagation constant is b, we find that:

Tdb
Tmb

¼ e
jemj tanhðTdbÞ ; ð19Þ

where Td and Tm are the decaying constant of the field in dielectric

and metal respectively, with Td ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � ðx=c0Þ2e

q
and Tm ¼

ffiffiffiffiffiffiffiffiffi
b2�

q
ðx=c0Þ2em. Substituting Tdb ¼ x and k2 ¼ ðw=c0Þ2ðjemj þ eÞb we
obtain:
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ k2

p ¼ e
jemj tanhðxÞ : ð20Þ

When e=jemj < 0:5 we can approximate left and right hand side
of Eq. (20) with ð1=kÞx and ðe=jemjÞð1=xÞ respectively, and k with
wpb=c0. In this way we found that x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ek=jemj

p
, then we obtain

approximated solutions for the decaying and propagation
constants:

Td �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ewp

jemjbc0

r
Tm �

wp

c0
;

b �
ffiffiffi
e
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
c0

� �2

þ xp

jemjc0b

� �s
: ð21Þ
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