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We show that the periodic array of left-handed cylinders possesses a rich spectrum of guided modes
when the negative permeability of cylinders equals exactly to minus value of permeability of embedding
media. These resonances strongly influence propagation of electromagnetic waves through photonic
structures made from left-handed materials. A series of Fano resonances excited by incident wave de-
stroys the band frequency spectrum of square array of left-handed cylinders and increases considerably
the absorption of transmitted waves.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Left-handed (LH) materials which possess, in certain frequency
interval, simultaneously negative electric permittivity 0ε < and
magnetic permeability 0μ < exhibit interesting physical and op-
tical properties, not observed in standard dielectrics or metals [1–
3]. Although LH materials are not commonly available in nature,
they may be prepared in laboratories and used for construction of
devices with prescribed optical properties.

Physical and optical properties of LH materials have been stu-
died during last 15 years from two different points of view. The
first, microscopic, approach concentrates on the analysis of the
design of individual “atoms” from which periodic macroscopic LH
structure is constructed. The aim of this research is to optimize the
structure of individual “atom” with respect to its resonant re-
sponse which guarantee required properties of resulting macro-
scopic material [4–7]. The second, macroscopic, approach con-
siders homogeneous LH medium with negative ε and μ and in-
vestigates its physical properties as well as possible application of
LH material in various photonic devices. Typical example of these
studies is detailed theoretical and numerical investigations of one
dimensional layered structures composed from alternating LH and
dielectric layers [8–11].

Recently it has been shown that components made from LH
materials may strongly influence optical properties of 2D photonic
structures and lead to unexpected phenomena, not observable in
conventional photonic structures made from dielectric materials.
For instance, the square periodic array of cylinders made from LH
material can possess a non-standard band frequency spectrum
which contains the so-called folded bands [12,13]. Such results
motivate further investigation how the application of LH materials
influences the functionality of optical composites.

In this paper we discuss another unusual property of LH pho-
tonic structures. We consider periodic arrangements of LH cylin-
ders shown in Fig. 1 and calculate numerically the frequency de-
pendence of the transmission coefficient of incident electro-
magnetic (EM) wave. Instead of regular transmission bands and
gaps, typical for spectra of spatially periodic dielectric structures
[14,15], we observe, for small frequencies, a series of irregular
maxims and minims in the frequency dependence of transmission
coefficient. An example of such irregular frequency dependence is
shown in Fig. 2(b). We show that physical origin of these irregu-
larities lies in the excitation of high number of leaky eigenmodes
of the structure and consequent interference of excited field with
incident electromagnetic field [16–18]. Similar resonances were
observed previously in dielectric photonic structures [19] and their
influence on the optical response has been analyzed in Refs. [20–
22]. We found that the spectrum of excited resonances strongly
depends on actual values of negative permittivity and perme-
ability and is extremely rich if one of these parameters coincides
with the minus value of the corresponding parameter of embed-
ding media.

The paper is organized as follows. In Section 2, we calculate
transmission coefficient of perpendicularly incident EM wave
propagating across the linear array of cylinders and through slab
constructed from finite number of parallel arrays. We identify a
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Fig. 1. (a) Periodic linear chain of homogeneous cylinders. Cylinders are parallel to
the z-axis, their radius is R, permittivity 12ε = − and permeability 1μ = − . The
entire structure is periodic in the x directionwith spatial period awhich is used as a
length unit throughout this paper. (b) N parallel chains of cylinders located in
planes y¼na, n N0 1≤ ≤ − . The embedding medium is vacuum with permittivity

11ε = and permeability 11μ = . The incident electromagnetic wave propagating
along the y direction with either Ez ( E z∥ ) or Hz (H z∥ ) polarization has the wave-
length λ and dimensionless frequency f a/λ= .
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series of resonances in the frequency dependence of transmission
coefficient. To find their physical interpretation, we analyze the
complete spectrum of guided modes of the linear chain of cylin-
ders and show that maxima and minima of the transmission
coefficient are associated with Fano resonances excited in the
photonic structure by incident EM wave. In Section 3 we study
how the electromagnetic response of the structure depends on
material parameters: radius of cylinders, magnetic permeability
and absorption. Of particular interest is the model with frequency
dependent negative permittivity and permeability which also ex-
hibit a series of resonances in the transmission spectra in the
frequency interval where either permittivity or permeability ap-
proaches the value �1. Since the resonance causes a strong en-
hancement of electromagnetic field inside the structure, we cal-
culate the absorption of transmitted wave. Conclusion is given in
Section 4. Finally, numerical method used for the calculation of the
transmissions coefficient is described in Appendices.
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Fig. 2. Transmission spectra for Ez-polarized electromagnetic wave propagating
through arrays of (a) dielectric and (b) LH cylinders. The spectra were calculated for
N¼1, 3, 6 and 24 rows of cylinders shown in Fig. 1. The cylinder radius R a0.3= . For
dielectric cylinders, the spectrum evolves to transmission bands and gaps when the
number of rows increases [29]. In contrast, for LH cylinders, the typical band
structure arises only for sufficiently high frequencies, a/ 0.2λ > . For smaller fre-
quencies, the transmission spectrum consists from highly irregular series of max-
ims and minims.
2. Linear chain of left-handed cylinders

In this section, we study the response of linear chain of LH
cylinders to incident electromagnetic wave. The structure, shown
in Fig. 1(a), consists from an infinite periodic chain of cylinders
embedded in the vacuum with permittivity 1ε =+ and perme-
ability 1μ =+ . The spatial periodicity of the structure along the x
direction, given by distance a between neighboring cylinders,
defines the length unit. Cylinders are infinite along the z direction
and are made from homogeneous material with relative permit-
tivity 12ε = − and permeability 1μ = − .

Incident plane wave with wavelength λ propagates along the y
direction. We calculate the transmission and reflection coefficient
as a function of dimensionless frequency f a/λ= . The method is
described in Appendix A. Here we only note that electromagnetic
field is expanded in series of cylinder functions [23] given by Eqs.
(A.2) and (A.3). Expansion on coefficients α and β are calculated
from the requirement of continuity of tangential components of
electric and magnetic intensity at the boundary of cylinders.

The frequency dependence of the transmission coefficient of
the Ez-polarized plane EM wave for both dielectric and LH cylin-
ders is shown in top panels of Fig. 2(a, b). For dielectric cylinders,
we identify three deep minima in T which correspond to Fano
resonances excited by incident wave [16,22]. Similar resonances
were found in the LH structure, but their number is much higher
and resonant frequencies are located in the region of small fre-
quencies a/ 0.2λ < . Detailed frequency dependence of the trans-
mission coefficient is given in Fig. 3.
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Fig. 3. (a) The frequency dependence of the transmission coefficient of EM wave
propagating through linear chain of LH cylinders. Note logarithmic scale on hor-
izontal axis which is identical for all panels. We plot in panel (b) also the difference

T1 − which enables us to identify very tiny Fano resonances, not visible in panel
(a). Two bottom panels present resonant frequency dependence of coefficients l2β +

(c) and l2 1β +
− (d) defined by Eq. (A.3). For numerical reasons, we plot a ratio

H R/ 2 /k kβ π λ′ (± ), where Hk′ is a derivative of the first Hankel function. Since incident
field is symmetric with respect to the transformation x x→ − , only spatially
symmetric resonances are excited [22,24]. The intensity of electric field excited
inside cylinders is displayed in Fig. 4.
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Lower panels of Fig. 2(a, b) display the transmission coefficient
for photonic slabs composed from 3, 6 and 24 rows of cylinders.
For dielectric cylinders, Fano resonances develop to narrow Fano
bands discussed in detail in Ref. [22]. In contrast, a high number of
Fano resonances in the LH structure completely destroy the band
structure. Regular transmission band, typical for periodic media, is
observed only for higher frequencies a/ 0.58λ ≈ .

Following Ref. [22] we expect that the strong irregularities in
transmission spectra of linear chain of cylinders are caused by
excitation of resonances in the structure. To verify this conjecture,
we calculate how coefficients β, which measure the amplitude of
excited resonances (Eq. (A.3)), depend on the frequency of incident
wave. We found, in agreement with Fig. 3(a), a series of strong
resonances, associated with sharp narrow maxims in β (Fig. 3(c,
d)). Resonant frequencies coincide with positions of minims in
transmission coefficient. Note that owing to even symmetry of
perpendicularly incident plane EM wave, only resonances sym-
metric with respect to transformation x x→ − were excited [24].
Resonant frequencies lie very close to each other (note logarithmic
scale of horizontal axis). Comparison of panels (a, b) with (b, c)
confirms that each observed transmission minimum corresponds
to Fano resonant frequencies.

Data shown in Fig. 3 enable us to identify exponential decrease
of resonant frequency fk when k increases:

f f e 1k
ck

0= ( )−

with constant c 0.58≈ .
Fig. 4 displays spatial distribution of electric field ez inside LH
cylinders for nine resonant frequencies k2 10≤ ≤ identified in
Fig. 3. The field concentrated close to the boundary of cylinders.
The spatial distribution of field along the boundary reminds us the
circular standing waves with the wavelength

k
R

2
. 2Λ π= ( )

Similar inhomogeneous spatial distribution of EM field has been
found also in other photonic systems which contains LH cylinders
[27].

2.1. Eigenmodes

Resonances observed in the transmission spectra are given by
excitations of eigenmodes of the photonic structures [16]. We
calculate the dispersion f f q= ( ) of guided modes propagating
along the linear chain of LH cylinders with wave vector q and
frequency f a/λ= . To find the dispersion curves f(q), we start with
two systems of linear equations for coefficients βþ and β� , (A.13)
and (A.14) with zero right-hand side. Instead of solving these
homogeneous systems of equations, we calculate the determinant
as a function of frequency [25]. With the use of the Gauss–Jordan
elimination method [26] we transform the matrices in the l.h.s. of
Eqs. (A.13) and (A.14) into diagonal form and plot the frequency
dependence of inverse of obtained diagonal matrix elements. This
enables us not only to find the eigenfrequency and lifetime of a
given of guided mode but also to identify its order k. Note that
method enables us to calculate both guided modes with f q< and
leaky modes ( f q> ) with finite lifetime [25].

Fig. 5 presents the dispersion curves f f q= ( ) of guided modes.
For comparison, the spectrum of guided modes of an array of di-
electric cylinders is shown in the inset. As expected, the spectrum
for left-handed cylinders is more complicated. In contrast to di-
electric cylinders [22], the number of guided modes is much
higher. The number of modes depends on the model parameters
and increases when absolute value of the refractive index in-
creases (data not shown). In agreement with Eq. (1), their eigen-
frequencies decrease when the mode index k increases.

Another unexpected property of spectra of guided modes is the
existence of “critical value” of the wave vector qc (q a/2c π≈ in our
model) for which no guided mode exists (Fig. 5). Analysis of an-
other left-handed structures with 1μ = − (data not shown) in-
dicates that qc depends neither on (negative) permittivity nor on
the radius of cylinder.
3. Parameters of the model

In this section we investigate how the spectrum of resonant
modes depends on the parameters of the model.

3.1. Radius of cylinder

Very narrow resonances in the transmission coefficient for the
frequency a/ 0.08λ < as well as broad minimum of the transmis-
sion at a/ 0.28λ ∼ shown in Fig. 6(a) indicate that Fano resonances
can be observed already in the linear chain of very tiny (R a0.1= )
LH cylinders. The transmission coefficient of photonic slab exhibits
a broad gap for small frequencies with a few narrow resonances at
small frequencies a/ 0.09λ ≤ . Broad transmission band, typical for
periodic structures, started at a/ 0.65λ ≈ .

Fig. 6(b) shows that the frequency dependence of the trans-
mission coefficient is more dramatic when the radius of cylinders
increases. For the Ez polarized wave, the frequency dependence of
T is highly irregular, indicating the high number of resonances in



Fig. 4. The spatial distribution of electric intensity ez inside cylinders arranged in a linear chain for resonances k2 10≤ ≤ . Resonant dimensionless frequencies a/λ , identified
in Fig. 3, are given in legends. Index k determines the period of the wave around the cylinder surface in agreement with Eq. (1). The incident ez polarized electromagnetic
wave propagates from left to the right (Fig. 1).

0 0,1 0,2 0,3 0,4 0,5
aq / 2 π

0

0,1

0,2

0,3

a 
/ λ

2
3
4
5
6
7

0 0,25 0,5

0

0,25

0,5 0
1

lig
ht 

con
e

lig
ht 

co
ne

LH
RH

Fig. 5. Spectrum of guided modes f a f q/λ= = ( ) calculated for linear chain of LH
cylinders (Eq. (A.13)). Open and full symbols correspond to spatially even and odd
modes, respectively. Note that modes change their spatial symmetry when q
crosses critical value q a/2c π≈ . For comparison with dielectric structures, the inset
shows the spectrum for linear chain of dielectric cylinders with permittivity 12ε =+
and permeability 1μ =+ .
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the structure. Only for higher frequency, regular transmission band
is observed.

Note that in contrast to the Ez waves, the transmission
coefficient for the Hz wave typical frequency dependence typical
for dielectric photonic crystals independently on the cylinder ra-
dius. As we will see later, the absence of Fano resonances is due to
big difference in absolute values of the permittivity 12ε = − in-
side cylinders and permittivity 11ε =+ of the embedding medium.
3.2. Permeability

Photonic structures discussed up to now possess LH compo-
nents with effective permeability 1μ = − equal exactly to minus
value of the permeability μ1 of the embedding media. This coin-
cidence might be responsible for strong resonances of electro-
magnetic field observed in previous sections. We note that spatial
distribution of the EM field with high values of the intensity close
to cylinder boundary (Fig. 4) is similar to surface plasmons excited
at the planar interface of vacuum and LH media [29] and that the
dispersion relation of the Ez polarized surface plasmon wave (with
electric field parallel to the interface) is singular when the per-
meability μ equals to minus value of permeability of embedding
media [29,30]. Of course, the analogy is not exact since, in contrast
to our resonant states, surface plasmon cannot be excited by in-
cident EM wave.

Fig. 7 shows the transmission coefficients and spectra of coef-
ficients β for linear chain of LH cylinders with permeability slightly
below and above the critical value 1μ = − . The positions of re-
sonances in frequency spectra are very sensitive to the actual value
of μ: for smaller (in absolute value) μ, resonances shift to fre-
quencies f 0.1> , while for larger values of permeability they
disappear.
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Fig. 6. Transmission coefficient of plane electromagnetic wave propagating across
the linear array of LH cylinders (bold red line) and through periodic structure
constructed from 24 rows of cylinders (thin black line). The radius of cylinders is
R a0.1= (a) and R a0.2= (b). Polarization of EM wave is given in panel legends. (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)
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Fig. 7. (a) Transmission coefficient T for linear array of LH cylinders with radius
R a0.3= , 12ε = − and various values of magnetic permeability μ (given in le-
gends). (b) Frequency dependence of coefficients β for linear array of cylinders.
Note the strong sensitivity of resonant frequencies to small changes of perme-
ability. Cylinders are embedded in vacuum with permeability 11μ = .
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3.3. Dispersive LH materials

Since realistic LH materials are dispersive [1], it is important to
generalize our analysis to structures made from dispersive LH
materials. We consider LH cylinders with frequency dependent
permittivity

f
f

1
1

32
ε ( ) = −

( )

and permeability

f
f

f f
f1 0.4 0.4 .

4

2

2
0
2 0μ ( ) = −

−
( = )

( )

Transmission coefficient for arrays of such cylinders is shown in
Fig. 8 both for the Ez and Hz polarized EM waves.

For small frequency f f0< the permittivity is negative and
permeability is positive. The transmission coefficient exhibits the
frequency dependence typical for an array of metallic cylinders
[28] with low frequency transmission gap for the Ez polarized
wave and regular transmission band for the Hz polarized wave.
Irregular frequency dependence for f slightly above f0¼0.4 is due
to the large value of the effective index LH material. More inter-
esting is the transmission coefficient for the Ez polarized wave in
the frequency region around fe¼0.447 defined by relation
f 1eμ ( ) = − which exhibits irregular frequency dependence similar
to that discussed in Section 2. Similar resonant behavior is ob-
served for the Hz-polarized wave in the vicinity of frequency
fm¼0.7, where the permittivity of LH material approaches minus
unity.

3.4. Absorption

As discussed in [22], high intensity of EM field inside cylinders
may cause strong enhancement of the absorption of transmitted
EM wave for frequencies close to resonant Fano frequency. Fig. 9
demonstrates an increase of the absorption in photonic structures
with LH cylinders. Absorption is close to unity already for very
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Fig. 8. Transmission coefficient of plane electromagnetic wave propagating
through square array of cylinders made from left-handed dispersive medium. The
cylinder permittivity and permeability is given by Eqs. (3) and (4), respectively. The
permittivity is negative in the whole frequency interval f0 1< < , and permeability
is negative when f f f / 0.6 0.5160 0< < = . (a) Ez polarization (intensity of electric
field is parallel to the cylinder axis). The transmission coefficient exhibits irregular
frequency dependence in the vicinity of frequency f a/ 0.447e eλ= = where

f 1eμ ( ) ≈ − . For the Hz polarized wave (panel (b)), similar irregularities are ob-
served around the frequency f a/ 0.7m mλ= ≈ , where f 1mε ( ) ≈ − .
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small values of imaginary part of permittivity and permeability,
Imag , 10 3ε μ ∼ − . Since Fano resonances lie close to each other, we
obtained broad absorption band with absorption coefficient close
to unity.
4. Conclusion

We have shown that transmission spectra of photonic struc-
tures with LH components might be strongly influenced by Fano
resonances excited by incident electromagnetic wave. Fano re-
sonances play an important role especially when the permittivity
and/or permeability of the LH material is close to �1. As such
values exist in any realistic dispersive LH medium, we expect that
irregular resonant behavior, discussed in this paper, might be ob-
served experimentally. However, non-zero imaginary part of per-
mittivity and permeability strongly enhanced absorption losses
due to large amplitudes of electromagnetic waves inside cylinders.
Therefore, instead of irregular resonant transmission, found nu-
merically in loss-less materials, we expect that a broad absorption
band in the resonant frequency region will be measured.

We also found that the spatial distribution of the electro-
magnetic field inside the cylinders is highly inhomogeneous with
strong field enhancement in the narrow region in the vicinity of
the boundary of cylinder.
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Appendix A. Numerical methods

In this section we describe the numerical method used for the
calculation of the transmission of electromagnetic wave with
wavelength λ propagating across linear chain of cylinders shown
in Fig. 1(a). Owing to the cylinder symmetry, we express electric
and magnetic fields in cylindrical coordinates. Consider the

Ez-polarized electromagnetic wave, E e0, 0, z
→

= ( ) (the Hz polarized
wave can be treated in the same way). Two non-zero components
of the magnetic field, the angular, hφ, and the radial, hr, ones can be
found with the use of Maxwell equations [31]

i h r
e
r

i h r
r

e
, , ,

1
.

A.1
z

r
zωμ φ ωμ φ

φ
( ) = − ∂

∂
( ) = ∂

∂ ( )φ

For cylinder centered in x y, 0, 0( ) = ( ) we express the electric in-
tensity ez as a sum of cylinder functions [23]. Inside the cylinder
(r R≤ ) we have

e r J v J v k

i J v k

, 2 cos

2 sin ,
A.2

z
k

k k

k k

in
0 0

1

1

∑

∑

φ α α φ

α φ

( ) = ( ) + ( ) ( )

+ ( ) ( )
( )

+

=

+

=

−

where Jk is Bessel function of integer order, v rn2 /π λ= , and
n εμ= is the index of refraction. Coefficients αþ and α� de-
termine amplitudes of even ( kcos φ∝ ) and odd ( ksin φ∝ ) cylindrical
waves, respectively. In Eq. (A.2), as well in all expressions below,
the summation over k is restricted to NB lowest order cylinder
functions (k NB≤ ).

The electric field outside the cylinder consists from three
contributions: the first one is the field scattered on the cylinder
itself [23]

e r H u H u k

i H u k u r

, 2 cos

2 sin 2 /
A.3

z
k

k k

k
k k

0
0 0

1

1

∑

∑

φ β β φ

β φ π λ

( ) = ( ) + ( ) ( )

+ ( ) ( ) ( = )
( )

+

=

+

=

−

( r R≥ ). Here, H z J z iY zk k k( ) = ( ) + ( ) is the first Hankel function
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[23,32].
The second contribution to the external fields consists from

fields scattered on other cylinders present in the structure. In
particular, the contribution of the mth cylinder
(m N1, 2, , s= ± ± … ) expressed as a function of coordinates as-
sociated with its center (Fig. A1) reads

e H w H w k

i H w k w

, 2 cos

2 sin 2 / .
A.4

z
m

m m m m
k

mk k m m

k
mk k m m m m

0 0
0

0

∑

∑

ξ θ β β θ

β θ πξ λ

( ) = ( ) + ( ) ( )

+ ( ) ( ) ( = )
( )

+

>

+

>

−

Note that coefficients βmk differs from βk defined in Eq. (A.3).
However, thanks to the periodicity of the structure along the x-
axis, we can use Bloch's theorem and express mkβ± of the mth cy-
linder in terms of coefficients kβ ± as

e A.5mk
iqma

kβ β= ( )± ±

where q is the x-component of the wave vector of EM field.
Finally, the third contribution is given by incident electro-

magnetic wave. For instance, the plane wave incident perpendi-
cularly to the cylinder chain (Fig. 1(b)) can be expressed as a sum
of Bessel function [32]

A.6
e r J u J u k i J u k, 2 cos 2 2 sin 2 1 .z

i

k
k

k
k0

1
2

1
2 1∑ ∑

( )
φ φ φ( ) = ( ) + ( ) ( ) + ( ) [( − ) ]

= =
−

Unknown coefficients α and β defined in Eqs. (A.2)–(A.4) are
calculated from the requirement of the continuity of tangential
components of electric and magnetic fields at the boundary of
each cylinder. Thanks to Eq. (A.5), it is sufficient to formulate the
continuity conditions only for the cylinder located at the center of
coordinates. Since ez is parallel to cylinder surface, the require-
ment of the continuity of electric field is easy to formulate,

e R e R e R e R e, , , , .
A.7

z z z
i

z
n

z
n

n n
in out 0

0

∑φ φ φ ξ θ( ) = ( ) = ( ) + ( ) + ( )
( )

− + + +

≠

The continuity condition for the magnetic field is expressed in
more complicated form
u

wv
χα

Fig. A2. Parameters used in Gegenbauer's relation, Eqs. (A.9) and (A.10).
h R h h R h R

h h w

, ,

, cos , sin
A.8

i

n

n
n n n r

n
n n n

in
tang
out 0

0
n n∑

φ φ

ξ θ α θ α

( ) = = ( ) + ( )

+ [ ( ) − ( ) ]
( )

φ φ φ

θ

− + +

≠

where the angle n nα θ φ= − .
Before solving this system of equations, we express all fields in

Eq. (A.4) in terms of variables r and φ associated with the cylinder
located at the point x¼0, y¼0. This can be done with the use of
the Gegenbauer formula for cylindrical functions (Fig. A2)

H w e H u J v e
A.9

m
im

k
m k k

ik∑( ) = ( ) ( )
( )

χ α±

=−∞

+∞

+
±

and their derivative H wm′ ( ):

H w e H u J v e
A.10

m
im

k
m k k

ik∑′ ( ) = ′ ( ) ( )
( )

χ α±

=−∞

+∞

+
±

[32] . Inserting (A.10) into Eq. (A.4) we express, after some algebra,
the fields at the outer boundary of the cylinder in the form

e R k kB C, cos sin
A.11

z
k m

km m
k m

km m
out

, 0 , 1

∑ ∑φ β φ β φ( ) = +
( )

+

=

+

=

−

and

h R k kB C, cos sin .
A.12

t
k m

km m
k m

km m
out

, 0 , 1

∑ ∑φ β φ β φ( ) = ′ + ′
( )

+

=

+

=

−

Explicit expressions for matrices B, B′, C and C′ are given in Ap-
pendix B.

In the next step, we eliminate coefficients α from Eqs. (A.11)
and (A.12) and obtain two separate systems of linear equations for
coefficients βþ and β�:

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ e hB B ,

A.13m
km

k

k
km m k

k

k
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′ ( )
+ + +

k m N, 0, 1, , B= … , and

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ e hC C ,

A.14m
km

k

k
km m k

k

k
k∑ ζ β ζ−

′
′ = −

′ ( )
− − −

k m N, 1, , B= … . Here, J nR2 /k k π λ= ( ) and

Real 0
A.15

ζ μ
ε

ζ= ( > )
( )

is the impedance of cylinders. In numerical analysis, we consider
the number of cylinders N 20 000s ≤ and number of modes
N 12B ≤ .

Transmission coefficient can be calculated as the ratio of the y-
component of the Poynting vector S yx p( ), calculated for any y rp >
to the incident Poynting vector, Syi

T
S y

S A.16

x p

x
i

=
( )

( )

where

S y xe x y h x yd , ,
A.17x p

a

a

z p x p
/2

/2
∫( ) = ( ) ( )

( )−

+
⁎

and

S xe x y h x yd , , .
A.18x

i

a

a

z
i

p x
i

p
/2

/2
∫= ( )( ( ))

( )−

+
⁎

Similarly, reflection coefficient R is given by

R
S y

S A.19

x p

x
i

=
( )

( )
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where

S y x e e h hd
A.20x p

a

a

z z
i

x x
i

/2

/2
∫( ) = ( − )( − )

( )−

+
⁎

calculated for y rp < − .
Appendix B. Matrices B and C

With notation J J uk k≡ ( ) and H uk k= ( ), u R2 /π λ= we express
the explicit form of the N N1 1B B( + ) × ( + ) matrix B

B qH un J

B H un J e e

B H un J e e

B e e H un

H un J

2 cos

1

2 1

2 1

1 B.1

n

N

m
n

N

m
m iqan iqan

k
n

N

k k
iqan k iqan

km k km
n

N
iqan m k iqan

m k

k
m k k

00 0
1

0 0

0
1

0

0
1

1

s

s

s

s

∑

∑

∑

∑δ

= + ( )

= ( ) × [( − ) + ]

= ( ) × [ + ( − ) ]

= + [ ( − ) + ][ ( )

+ ( − ) ( )] ( )

=

=

−

=

−

=

− −
−

+

(k m N, 1, 2, , B= … ). The N NB B× matrix C has a form

C e e H un

H un J

2 1

1 B.2

km k km
n

N
iqan m k iqan

m k

k
m k k

1

s

∑δ= + [ ( − ) + ] × [ ( )

− ( − ) ( )] ( )

=

− −
−

+

Matrices B′ and C′ could be obtained from B and C, respectively, by
substitutions

J J , . B.3k k k k→ ′ → ′ ( )

Appendix C. System with N rows of cylinders

If the system consists of N rows of cylinders (the nth row lies in
plane y n a z1 ,= ( − ) ), then we have to define N sets of parameters

ykβ± , each for the nth cylinder along the y direction. The method of
calculation remains the same as for the linear chain with N¼1, but
resulting linear relations between coefficients nkβ± are more com-
plicated. In particular, it is not possible to separate coefficients βþ
and β� . Resulting system of linear equations for coefficients nkβ± is
of the size N N2 1B× ( + ). For NB¼12 (typically used in numerical
simulations) and N¼24 the problem reduces to the solution of 600
linear equations.
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