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a b s t r a c t

In this work we use the formalism of chord functions (i.e. characteristic functions) to analytically solve
quadratic non-autonomous Hamiltonians coupled to a reservoir composed by an infinity set of
oscillators, with Gaussian initial state. We analytically obtain a solution for the characteristic function
under dissipation, and therefore for the determinant of the covariance matrix and the von Neumann
entropy, where the latter is the physical quantity of interest. We study in details two examples that are
known to show dynamical squeezing and instability effects: the inverted harmonic oscillator and an
oscillator with time dependent frequency. We show that it will appear in both cases a clear competition
between instability and dissipation. If the dissipation is small when compared to the instability, the
squeezing generation is dominant and one can see an increasing in the von Neumann entropy. When the
dissipation is large enough, the dynamical squeezing generation in one of the quadratures is retained,
thence the growth in the von Neumann entropy is contained.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The dynamics of quantum open systems has raised increasing
interest of physicists specially in the last decades [1,2]: it can be
directly connected to the non-observance of quantum phenomena
in the classical world. The same phenomena which led Schroe-
dinger to discredit his own theory is directly connected to the
linear structure of the Hilbert space. Most of them have nowadays
been observed and the usual approach as to why they are not
present in our everyday life is to consider that quantum mechanics
was first conceived for closed systems and effects of the surround-
ing environment, when included, tend to wash out quantum
properties [1].

This problem is however far from being a closed issue and the
classical limit of quantum mechanics is still a matter of enthusiastic
debates [1–4]. In particular, the questions on quantum-to-classical
transition acquire a singular aspect in the case of quantum systems
with nonlinear or chaotic classical counterparts. If dissipation is absent,
it is expected that instabilities yield the fast spreading of the wave
function throughout the phase space for such systems, especially the
macroscopic ones. Thus, an initially well localized wave packet will
soon be fragmented throughout available regions of the phase space,
and coherent superpositions will appear between the fragments,
leading to a rapid breakdown of the correspondence between classical

and quantum descriptions. Some authors [5–9] advocate that the
unavoidable interaction of a macroscopic systemwith its environment
is essential to prevent the appearing of these quantum signatures
yielded by inherent instabilities exhibited by the unitary evolution.
Notwithstanding, other authors [10] sustain that the coupling with an
environment is not necessary because such quantum effects are so
tiny that they are not measurable, especially in the case of macroscopic
objects. This controversy only stresses the importance of the study of
the role played by instabilities in the question of quantum-to-classical
transition.

In the present contribution, we are concerned to the questions:
what happens if the unitary evolution, i.e. the Hamiltonian of the
problem, may lead to instability? What role this instability effects
does play? Examples of application of non-autonomous Hamiltonian
systems can be found in a huge range of areas of physics, in
particular: in quantum optics, where a harmonic oscillator with
time dependent frequency is shown to generate squeezing [11,12],
tunneling [13], exact solutions for mathematical problems and
toy models [14], parametric amplification [15], quantum Brownian
motion [16]. Most of these works employs the model of the
harmonic oscillator with time dependent frequency. It is worth to
mention that this model is largely studied both in classical and
quantum physics and, as a merit, is amenable to analytical treat-
ment. In fact, the time independent Schroedinger equation for the
harmonic oscillator with time dependent frequency assumes the
form of Hill differential equation, which, in turn, is a particular form
of Pinney equation. Examples of Hill or Pinney equation in physics
can be found in studies on synchrotron accelerators [17], anisotropic
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Bose–Einstein condensates [18,19], Paul traps [20], and cosmological
models of particle creation [21]. Further, one of the first approaches
to include dissipation in quantum physics employed a class of time
dependent Hamiltonians, known as Caldirola–Kanai Hamiltonians
[16,22]. Even in cosmology, in the inflationary era, when quantum
effects are supposedly important, studies using non-autonomous
Hamiltonians, leading to instabilities and squeezing effects are found
[23]. One then frequently uses non-autonomous unitary evolutions
of the same type, now modeling transitions between harmonic
oscillators which give rise to particle formation [11]. Quantum chaos
and instabilities also arise in recent experiments and theoretical
models [24], rendering new perspectives to this interesting area in
physics. It is interesting to note that, due the features shared by both
models, some authors propose the Bose–Einstein condensates as a
test bench of some cosmological scenarios [19].

Another interesting problem was raised by Zurek and coworkers
[25] as to the rate of entropy increase when the system of interest is
coupled not to a reservoir but to an unstable, two degrees of freedom
system. In Ref. [14] the authors analytically showed that, in fact,
entropy grows faster, but for that, chaos is not necessary (although
sufficient). Instability alone already reflects this physics. Also, more
realistically, as discussed in [14], the potential modelling Paul–Penning
traps [26] has instability points which can be, to a certain degree,
approximated by an inverted oscillator. What happens to the well
known physics described, if an environment is added to the non-
autonomous unitary dynamics? Can dissipation stop the inevitable
acceleration caused by instabilities?

A word about the formal mathematical approach to the problem is
in order: for autonomous systems, there are several possibilities to
solve a master equation. One of the frequently used and powerful tools
is that of Lie algebras of superoperators. Perhaps that is the reason
why there is not so much work devoted to the question of non-
autonomous systems evolving under nonunitary dynamics. As dis-
cussed above, however, several interesting issues may be cleared, if
one manages to formulate the problem in appropriate language. In the
present case, we will be considering single-mode Gaussian states. For
these states, all we need are the second statistical moments or the
covariance matrix, which can be gotten very simply as derivatives of
the characteristic function (the Fourier transform of the Wigner
function), by taking the derivatives of this function at the origin
[27,28]. Moreover, a very elegant theoretical method for Wigner
functions and nonunitary quadratic evolutions is given in Ref. [28]. It
involves several classical elements, rendering the physics of the
problem very transparent and the inclusion of nonunitary terms is
natural.

In Section 2 we present an analytical solution for the char-
acteristic function, using the most general bilinear Lindbladian (for
dissipative reservoirs). We show our results for the inverted
harmonic oscillator (IHO) and for a non-autonomous harmonic
oscillator (NAHO) with frequency ωðtÞ ¼ω0

ffiffiffiffiffiffiffiffiffiffiffiffi
1þγt

p
in Section 3

and in the last section we make our final remarks.

2. Analytic solution for the Wigner and characteristic function

In this section we review some aspects concerning the evolution
of single-mode Gaussian states under dissipation. The literature
is plenty of references on this subject (theory and applications)
[11,27–36]. To obtain our main result — analytical solutions for non-
autonomous Hamiltonians — this section is, although straight-
forward, useful.

2.1. Unitary dynamics of single mode Gaussian states

We can define a general form of the Hamiltonian part of the
equations of motion for both models studied in this work, namely,

the inverted harmonic oscillator (IHO) and the non-autonomous
harmonic oscillator. The Hamiltonian reads

Ĥðq̂; p̂; tÞ ¼ p̂
2m

þ1
2
mω2ðtÞq̂2

; ð1Þ

where q̂ and p̂ are position and linear momentum operators,
respectively, m is the mass of the oscillator and ωðtÞ is a time-
dependent frequency. If we take ω0 ¼ jωð0Þj, the annihilation and

creation operators for t¼0, â and â†, are given by

â ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mω0=2ℏ

p
ðq̂þ iðp̂=mω0ÞÞ and â† ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mω0=2ℏ

p
ðq̂� iðp̂=mω0ÞÞ.

The Hamiltonian above can be written as [35,36]

Ĥðâ; â†
; tÞ ¼ ℏ f 1ðtÞ â† âþ1

2

� �
þ f 2ðtÞðâ†2þ â2Þ

h i
; ð2Þ

where f 1ðtÞ ¼ω0=2½ðωðtÞ=ω0Þ2þ1� and f 2ðtÞ ¼ω0=4½ðωðtÞ=ω0Þ2�1�.
In order to establish the notation, we will first present single-

mode Gaussian states and its parameters, well known in the
literature by several methods. The initial state is

ρ̂ð0Þ ¼ D̂ðαð0ÞÞŜðrð0Þ;ϕð0ÞÞρ̂ðνð0ÞÞŜ†ðrð0Þ;ϕð0ÞÞD̂†ðαð0ÞÞ; ð3Þ
where all the parameters are given by the first and second
moments:

α¼ 〈â〉

αn ¼ 〈â†
〉

eiϕ ¼
ffiffiffiffiffiffiffiffiffiffiffi
sâ â

sâ† â†

r

ν¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sâ† â �

1
2

� �2

�sâ† â†sâ â

s
�1
2

r¼ 1
4
ln

sâ † â �
1
2
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffisâ † â †sâ â
p

sâ† â �
1
2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffis

â† â†sâ â
p

0
B@

1
CA: ð4Þ

In the equations above sâ† â† ¼ 〈ðâ†Þ2〉�〈â†
〉2, sâ â ¼ 〈ðâÞ2〉� 〈â〉2,

sâ† â ¼ 〈â†â〉� 〈â†
〉〈â†

〉þ1. Those parameters are related to displa-
cement (α), squeezing (r, ϕ) and “impurity” (ν) of the state. In our
study the initial state will always be in this general single-mode
Gaussian form and, since the dynamics is quadratic, the state will
evolve as a single-mode Gaussian state [28].

One can study the state by analyzing the evolution of the
parameters above, or the covariance matrix (CM):

s¼
〈q̂2〉� 〈q̂〉2

1
2
〈 q̂p̂þ p̂q̂〉� 〈q̂〉〈p̂〉

1
2
〈q̂p̂þ p̂q̂〉� 〈q̂〉〈p̂〉 〈p̂2〉�〈p̂〉2

0
BB@

1
CCA: ð5Þ

2.2. Wigner and characteristic functions — dissipationless case

The Wigner function is defined as [32]

Wð x!Þ¼ 1
2πℏ

Z
dq0 qþq0

2

� ����ρ̂ q�q0

2

����
	
exp � i

pq0

ℏ

� �
; ð6Þ

where x!¼ ðp; qÞ. It propagates “classically” for up to quadratic
dynamics [28]:

∂
∂t
Wtð x!Þ¼ Hð x!Þ;Wtð x!Þ

n o
; ð7Þ

where ff ; gg ¼ ð∂f =∂qÞ ð∂g=∂pÞ�ð∂f =∂pÞ ð∂g=∂qÞ is the classical Pois-
son bracket, and Hð x!Þ¼ x!� Ĥ x!.

One can write the propagated Wigner functions as [37]

Wtð x!Þ¼W0ðR� t x
!Þ; ð8Þ

where

Rt ¼ expð2ΩĤtÞ; ð9Þ
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and Ω is the symplectic form:

Ω¼ 0 1
�1 0

� �
: ð10Þ

Note that (9) reflects the evolution of a classical Hamiltonian
for points in phase space, i.e., given Hð x!Þ, the time evolution of the
variables is x!t ¼ Rt x

!, or, explicitly

pt
qt

 !
¼

_vt _ut

vt ut

 !
p

q

 !
: ð11Þ

This “classical” feature will become clear in the two models we
studied in this work. The quantum behavior, for instance the
dynamical squeezing generation due to the non-autonomous
Hamiltonian, will be sustained by the non-unitary dynamics in
some conditions, since the “classicality” will prevail through the
“quantumness” for these cases.

For the Hamiltonian given by Eq. (1), both functions ut and vt
obey the following equation [11]:

€ϕtþω2ðtÞϕt ¼ 0: ð12Þ
Here ϕt represents both ut or vt. Two initial value problems are
defined with the above equation, provided the initial conditions
uð0Þ ¼ 1, _uð0Þ ¼ 0 or vð0Þ ¼ 0, _vð0Þ ¼ 1. From Eq. (11) one can see
that

Rt ¼
_vt _ut

vt ut

 !
: ð13Þ

The characteristic function is the Fourier transform of the
Wigner function (6) and it is given by

χð ξ
!

Þ¼ 1
2ℏπ

Z
d x! exp � i

ℏ
ξ
!

4 x!
� �

Wð x!Þ: ð14Þ

The “wedge” product in the above equation is defined by
ξ
!

4 x!¼ ξpq�ξqp. Since we will be working with single-mode
Gaussian states, it is easy to compute its initial (t¼0) Wigner
function as

W0ðVÞ ¼
exp �1

2
Vs�1VT

� �
π
ffiffiffiffiffiffiffiffiffiffiffiffi
det s

p ; ð15Þ

where V ¼ ðq; pÞ and s is the covariance matrix. Thus, the char-
acteristic function for the initial state is

χ0ð ξ
!Þ¼ 1

2π

Z
dV exp½� iðξpq�ξqpÞ�W0ðVÞ: ð16Þ

Evolving the Wigner function with Eq. (8), one can find the general
solution of the characteristic function for the dissipationless case.
Note the classical ingredient introduced by Rt and Eq. (11) in the
solution.

2.3. Wigner and characteristic functions — dissipative case

In this section we introduce nonunitary terms to the non-
autonomous dynamics considered above. In order to do this, we
suppose the system of interest coupled to a thermal bath at
temperature T. The nonunitary contribution is given by

_̂ρ ¼Lρ̂; ð17Þ
with

L � ¼ � i½ĤðtÞ; ��þkðnBþ1Þð2â � â†� â† â � � � â† âÞ
þknBð2â† � â� ââ† � � � ââ†Þ: ð18Þ

Here, ĤðtÞ is the non-autonomous Hamiltonian presented in Eq.
(1), k is a dissipation constant and nB is the average number of
thermal excitations of the bath.

It is relatively simple, using the approach presented in this
section, plus Gaussian states and quadratic Hamiltonians, to obtain
the characteristic function [28]:

χtð ξ
!

Þ¼ χ0ð ξ
!

� tÞexp �1
2 ξ
!

�MðtÞ ξ
!� �

; ð19Þ

where

MðtÞ ¼∑
j

Z t

0
dt0e2kðt

0 � tÞRT
t0 � tðl0jl0Tj þl″j l

″T
j ÞRt0 � t ; ð20Þ

with j¼1,2. The variables ξ
!

evolve in time as

ξ
!

t ¼ ektRt ξ
!

: ð21Þ
For the specific case of Eq. (18) we have found

l01 ¼
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kðnBþ1Þ
p !

; l″1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðnBþ1Þ

p
0

 !
;

l02 ¼
0ffiffiffiffiffiffiffiffi
knB

p !
; l″2 ¼

�
ffiffiffiffiffiffiffiffi
knB

p
0

 !
;

so that, in matrix (20): l01l
0T
1 þ l″1l

″T
1 ¼ kðnBþ1Þ1 e l02l

0T
2 þ l″2l

″T
2 ¼ knB1.

Notice that the apparent form of the characteristic function is
very similar to the free case. The influence of the nonunitary
dynamics is contained in the matrix MðtÞ (20) and in the evolution
of the variable ξ

!
(21). The term Rt contain the classical evolution.

In order to obtain dissipative effects, we have computed analyti-
cally MðtÞ for both studied cases.

The physics about the system is contained in the elements of
the covariance matrix (CM), since the CM completely define any
Gaussian state. Dissipative effects are related to the determinant of
the covariance matrix, DðtÞ ¼ det s, which can be analytically
calculated from the derivatives of the characteristic function. The
von Neumann entropy for single-mode Gaussian states is com-
pletely defined by [30,31]

SðtÞ ¼
ffiffiffiffiffiffiffiffiffi
DðtÞ

p
þ1
2

� �
ln

ffiffiffiffiffiffiffiffiffi
DðtÞ

p
þ1
2

� �
�

ffiffiffiffiffiffiffiffiffi
DðtÞ

p
�1
2

� �
ln

ffiffiffiffiffiffiffiffiffi
DðtÞ

p
�1
2

� �
:

ð22Þ
In the following section, we will obtain analytical results for the
von Neumann entropy of two important examples, showing that is
a clear competition between dissipative and instability effects.

3. Results

We are working with quadratic Hamiltonians (1), and as
discussed in the introduction, the time dependence in the oscil-
lator frequency can generate squeezing [11,12]. Dissipative effects
will be fully reflected by the von Neumann entropy or indirectly by
D(t): if the state is isolated, its entropy will be constant; if the state
is coupled to a thermal reservoir, the von Neumann entropy will
change in time [38]. In this section we show that a competition
between the dissipation constant and the non-autonomous fre-
quency appear, and the dissipation can sustain a possible increas-
ing in the von Neumann entropy due to instability effects (as
dynamical squeezing generation). The general Hamiltonian (uni-
tary part of the dynamics) in this section is in the form given by
(1): Ĥðq̂; p̂; tÞ ¼ ðp̂=2 mÞþ1

2mω
2ðtÞq̂2.

3.1. The inverted harmonic oscillator (IHO)

Let us consider first the toy model of the inverted harmonic
oscillator [25,39] whereωðtÞ ¼ iω0, withω0 a real constant. For the
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IHO, the matrix Rt is (where we have set ω0 ¼ 1Þ:

Rt ¼
cosh t sinh t

sinh t cosh t

� �
: ð23Þ

The matrix MðtÞ is

MðtÞ ¼ 2k nBþ
1
2

� �Z 0

� t
dxe2kx cosh 2x

1 0
0 1

� �
þsinh 2x

0 1
1 0

� �
 �
:

ð24Þ

In Fig. 1 we show the determinant D(t) for three values of the
dissipative constant k. Note that when k is large enough, compared
with the frequency ω0, the determinant goes to a constant value,
larger than the initial one. The same behavior is reflected in Fig. 2,
where we show the von Neumann entropy for this case.

In Ref. [14], the authors showed that the coupling between a
Gaussian state in a harmonic oscillator ðjψA〉Þ with another
Gaussian state in an IHO ðjψB〉Þ will produce, in the reduced state
ρA ¼ trBjψAψB〉〈ψAψBj, a linear increasing in the time evolution of
von Neumann entropy. The authors argued that the instability
(and therefore the squeezing generation) of the IHO will generate
this effect. Here we can see that, if k=ω041 the dissipation will
sustain the entropy growing, to a limit where S(t) becomes
constant. Otherwise, if the dissipation is lesser than the “intensity”
of the instability (measured by ω0), the entropy will increase
monotonically, clearly tending to a linear increasing (as in [14]).
We argue here that the dissipation will suppress the squeezing
generated by the IHO.

One can make a simple classical analogy in this case: suppose a
simple rod which can spin up and down, by one of its end. If the
rod is close to the bottom, it will ideally oscillates as a harmonic

oscillator; but if the rod is in the top, and is released in a not so
viscous fluid (as the air), it will oscillates and tend to a configura-
tion totally different to the initial one (the rod in the top). But if
the rod is released from the top in a viscous fluid (in the water or
in a more exceeded example in a tar pit), the viscosity will retain
the rod rotation. This classical behavior in the quantum IHO is
pictured in the formalism given in Section 2, specially in the
quantities Rt and Mt .

3.2. Simple model for dynamical squeezing generation

We consider now the following dynamics: two harmonic
oscillators Hamiltonians (autonomous evolution) with different
natural frequency ωi, separated each other by a non-autonomous
Hamiltonian with modulated frequency ωðtÞ. We will be con-
cerned with the part of the time dependence which leads from the
first to the second oscillators regime (Fig. 3).

In this model, when the state evolves trough the first to the
second harmonic oscillator, one can dynamically produce single-
mode squeezing, and therefore 〈â†â〉a0. We have used the
following time dependence for the modulated frequency (as
proposed in [11]):

ωðtÞ ¼ω0

ffiffiffiffiffiffiffiffiffiffiffiffi
1þγt

p
: ð25Þ

For this time dependence, one can calculate the matrix Rt (13),
where the functions u and v satisfy ðu; v-ϕτÞ
€ϕτþω2

0ð1þγτÞϕτ ¼ 0; ð26Þ
for the following initial conditions: uð0Þ ¼ 1, _uð0Þ ¼ 0, vð0Þ ¼ 0 and
_vð0Þ ¼ 1. The solution is given by (where we have set ω0 ¼ 1Þ

ϕτ ¼ Ai � 1þγτ
ð�γÞ2=3

" #
C1þBi � 1þγτ

ð�γÞ2=3

" #
C2; ð27Þ

where C1 and C2 are constants, Ai and Bi are the Airy functions and

τ¼ω0t: ð28Þ
Since we have the functions u and v, we can write the matrix Rt

and compute MðtÞ:

MðtÞ ¼ 2k nBþ
1
2

� �Z 0

� t
dxe2kxRT

xRx: ð29Þ

Now we are able to study the physical quantity of interest, the von
Neumann entropy.

For this model, we obtain the results given in Figs. 4 and 5,
respectively the von Neumann entropy for a Gaussian state
evolving through a unitary dynamics with frequency ωðtÞ ¼
ω0

ffiffiffiffiffiffiffiffiffiffiffiffi
1þγt

p
for a initially pure state ðν0 ¼ 0Þ and for a thermal state

0.0 0.2 0.4 0.6 0.8 1.0
t

0.2

0.4

0.6

0.8

1.0
D t

Fig. 1. Determinant of the covariance matrix D(t) as a function of time for the IHO.
Parameters: ω0 ¼ 1, r0 ¼ 1, ν0 ¼ 0, nB ¼ 0. The dissipation constants are k¼0.5
(dashed), k¼1 (solid) and k¼1.5 (dotted).

0 1 2 3 4 5
t

0.5

1.0

1.5

2.0

2.5

3.0
S t

Fig. 2. Von Neumann entropy as a function of time for the IHO. Parameters: ω0 ¼ 1,
r0 ¼ 1, ν0 ¼ 0, nB ¼ 0. The dissipation constants are k¼0.5 (dashed), k¼1 (solid) and
k¼1.5 (dotted).

t

1

2

Region of interest

(t)2

Fig. 3. A pictorial image of the non-autonomous harmonic oscillator model. Our
interest is to study the important region between the two harmonic oscillators, due
to squeezing generation and instability effects.

L.A.M. Souza et al. / Optics Communications 331 (2014) 148–153 151



ðν0 ¼ 3Þ, both coupled to a reservoir at zero temperature. We have
used those values of ν based on [38], since in this work the authors

showed that there is a maximum value of ν for which the state
present visible squeezing. Note the competition between unitary
and nonunitary effects: the latter will reduce the former always.
The amount of the squeezing suppression is governed by k=ω0.

This example can be used for various purposes, from Paul traps
[20] to cosmological models concerning the initial Universe [23].
Since the dynamical squeezing generation is suppressed by the
dissipation, one can conjecture, for example, that the increasing in
the average number of particles (also generated dynamically:
〈â†â〉a0) will be contained by the dissipation. This application is
direct implications for inflation models in cosmology related to
particle and anti-particle generation.

4. Conclusion

In the present contribution, we have shown that the Wigner
formalism as constructed in Ref. [28] is most adequate for hand-
ling non-autonomous dissipative systems. This calculation facility
comes mainly from working with the characteristic function and
Gaussian states.

We have been able to show that squeezing generation as
observed by time dependent frequencies of the harmonic oscillator
may be limited by the process of decoherence. As to instabilities here
simulated simple by two examples (ω¼ iω0 and ωðtÞ ¼ω0

ffiffiffiffiffiffiffiffiffiffiffiffi
1þγt

p
)

a clear competition between instability and dissipation appears.
Interestingly enough, for large dissipation (in comparison with the

natural frequency ω0), the time evolution of the quadratic variances,
or the entropy, reaches an asymptotic limit.

Acknowledgments

L.A.M.S. thanks the Brazilian agencies Fundação Arthur Ber-
nardes (FUNARBE – FUNARPEX III-2013), Fundação de Amparo à
Pesquisa de Minas Gerais (FAPEMIG) and Conselho Nacional de
Desenvolvimento Científico e Tecnológico (CNPq – 470131/2013-6)
for financial support. J.G.P.F. acknowledges the support from CNPq
(Grants 486920/2012-7 and 306871/2012-2) and from CEFET/MG
(PROPESQ program – Grant 10122_2012). MCN and JGPF were
partially supported by Institulo Nacional de Ciência e Tecnologia
em Computação Quântica (INCT-IQ). J.G.P.F. and L.A.M.S. would like
to dedicate this work in memory of M. C. Nemes.

References

[1] W. Zurek, Nature (London) 412 (2001) 712;
W. Zurek, Rev. Mod. Phys. 75 (2003) 715.

[2] M. Schlosshauer, Rev. Mod. Phys. 76 (2005) 1267.
[3] L.G. Yaffe, Rev. Mod. Phys. 54 (1982) 407.
[4] S. Haroche, Rev. Mod. Phys. 85 (2013) 1083.
[5] W.H. Zurek, J.P. Paz, Phys. Rev. Lett. 72 (1995) 2508.
[6] K. Shiokawa, B.L. Hu, Phys. Rev. E 52 (1995) 2492.
[7] W.H. Zurek, Phys. Scr. T76 (1998) 186.
[8] S. Habib, K. Shizume, W.H. Zurek, Phys. Rev. Lett. 80 (1998) 4361.
[9] G.G. Carlo, G. Benenti, U. Shepelyansky, Phys. Rev. Lett. 95 (2005) 164101.
[10] N. Wiebe, L.E. Ballentine, Phys. Rev. A 72 (2005) 022109.
[11] G.S. Agarwal, S. Arun Kumar, Phys. Rev. Lett. 67 (1991) 3665.
[12] S.K. Singh, S. Mandal, Opt. Commun. 283 (2010) 4685.
[13] Guang-Jie Guo, Zhong-Zhou Ren, Guo-Xing Ju, Xiao-Yong Guo, J. Phys. A: Math.

Theor. 44 (2011) 185301.
[14] K.M. Fonseca Romero, J.E. Parreira, L.A.M. Souza, M.C. Nemes, W. Wreszinski, J.

Phys. A: Math. Theor. 41 (2008) 115303.
[15] G.S. Agarwal, Phys. Rev. Lett. 97 (2006) 023601.
[16] A.V. Dodonov, S.S. Mizrahi, V.V. Dodonov, Phys. Rev. E 75 (2007) 011132.
[17] E. Courant, H. Snyder, Ann. Phys. 3 (1958) 1.
[18] F. Haas, Phys. Rev. A 65 (2002) 033603.
[19] J. Lidsey, Class. Quantum Gravim. 21 (2004) 777;

G. Herring, et al., Phys. Lett. A 367 (2007) 140.
[20] W. Paul, Rev. Mod. Phys. 62 (1990) 531;

L.S. Brown, Phys. Rev. Lett. 66 (1991) 527;
R. Glauber, Quantum Optics, in: G.S. Agarwal, R. Inguva (Eds.), Plenum, New
York, 1991;
M. Drewsen, A. Brøner, Phys. Rev. A 62 (2000) 045401.

[21] J. Ray, Phys. Rev. D 20 (1979) 2632.
[22] P. Caldirola, Nuovo Cimento 18 (1941) 393;

E. Kanai, Prog. Theor. Phys. 3 (1948) 440.
[23] C. Kiefer, I. Lohmar, D. Polarski, A.A. Starobinsky, Class. Quantum Gravim. 24

(2007) 1699;
C. Kiefer, I. Lohmar, D. Polarski, A.A. Starobinsky, J. Phys.: Conf. Ser. 67 (2007)
012023;
E. Calzetta, Class. Quantum Gravim. 29 (2012) 143001.

[24] M.V.S. Bonança, Phys. Rev. E 83 (2011) 046214;
G.B. Lemos, Fabricio Toscano, Phys. Rev. E 84 (2011) 016220;
G.B. Lemos, R.M. Gomes, S.P. Walborn, P.H. Souto Ribeiro, F. Toscano, Nat.
Commun. 3 (2012) 1211;
D.S. Tasca, L. Rudnicki, R.M. Gomes, F. Toscano, S.P. Walborn, Phys. Rev. Lett.
110 (2013) 210502;
I. García-Mata, C. Pineda, D. Wisniacki, Phys. Rev. A 86 (2012) 22114.

[25] R. Blume-Kohout, W. Zurek, Phys. Rev. A 68 (2003) 032104.
[26] H.R. Jauslin, O. Sapin, S. Guérin, W.F. Wreszinski, J. Math. Phys. 45 (2004) 4377;

G. Casati, L. Molinari, Prog. Theor. Phys. Suppl. 98 (1989) 287.
[27] O. Brodier, A.M. Ozorio de Almeida, Phys. Lett. A 374 (2010) 2315;

A.M. Ozorio de Almeida, R. Vallejos, M. Saraceno, J. Phys. A: Math. Gen 38
(2005) 1473;
F. Toscano, A.M. Ozorio de Almeida, J. Phys. A 32 (1999) 6321;
N.C. Dias, J.N. Prata, Ann. Phys. 324 (2009) 73;
F. Mintert, E.J. Heller, Europhys. Lett. 86 (2009) 50006.

[28] O. Brodier, A.M. Ozorio de Almeid, Phys. Rev. E 69 (2004) 016204.
[29] V. Sudhir, M.G. Genoni, J. Lee, M.S. Kim, Phys. Rev. A 86 (2012) 012316.
[30] G. Adesso, F. Illuminati, J. Phys. A: Math. Theor. 40 (2007) 7821, and references

therein.
[31] Link to G. Adesso's Thesis. 〈https://www.maths.nottingham.ac.uk/personal/ga/

papers/Adesso_PhD.pdf〉.
[32] W.P. Schleich, Quantum Optics in Phase Space, Wiley-VCH, Weinheim, 2001.
[33] C.F. Lo, Phys. Rev. A 43 (1991) 404;

A.F.R. de Toledo Piza, Phys. Rev. A 51 (1995) 1612;

0.2 0.4 0.6 0.8 1.0
t

0.01

0.02

0.03

0.04

0.05

S t

Fig. 4. Time evolution of the von Neumann entropy for a initially pure Gaussian
state ðν0 ¼ 0Þ evolving in an unitary Hamiltonian with frequency wðtÞ ¼w0
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coupled to a thermal reservoir with nB ¼ 0. Parameters: ω0 ¼ 1, r0 ¼ 0, γ ¼ 1. The
dissipation constants are: k¼0.5 (dashed), k¼1.0 (solid) and k¼1.5 (dotted).
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Fig. 5. Time evolution of the von Neumann entropy for a initially non-pure
Gaussian state (ν0 ¼ 3) evolving in an unitary Hamiltonian with frequency
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(dotted).
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