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a b s t r a c t

In the presence of a linear potential with an arbitrary time-dependence, Hirota method is developed care-
fully for applying into the effective mean-field model of quasi-one-dimensional Bose–Einstein condensa-
tion with repulsive interaction. We obtain the exact nonautonomous soliton solution (NSS) analytically.
These solutions show that the time-dependent potential can affect the velocity of NSS. In some special
cases the velocity has the character of both increase and oscillation with time. A detail analysis for the
asymptotic behaviour of solutions shows that the collision of two NSSs is elastic.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

The concept of soliton was introduced firstly by Zabusky and
Kruskal [1] to characterize nonlinear solitary waves that do not
disperse and completely preserve their localized form and speeds
during propagation and after a collision. This intrinsic favorable
property of soliton has motived a great attention on the nonlinear
systems in many fields of physics, especially in high-rate telecom-
munications with optical fibers and condensate physics. Hasegawa
and Tappert [2] derived the nonlinear Schrödinger (NLS) equation
model in fiber and firstly predicted optical soliton, and then exper-
imental verification has successfully been carried out by Mol-
lenauer et al. [3]. Since then, optical solitons have been the
objects of extensive theoretical and experimental studies in the
past three decades for their potential applications in long distance
communication and all-optical ultrafast switching devices. Re-
cently, the controllable soliton solutions [4–7] are of interest in
the field of nonlinear optics and condensate physics, and then
the term of nonautonomous solitons [6] introduced firstly. In fact,
different aspects of dynamics in nonautonomous models [8,9] in
linear potentials have been investigated theoretically. Strictly
ll rights reserved.
speaking, the obtained nonautonomous solutions could not be con-
sidered as canonical solitons. Fortunately, the realization of the
Bose–Einstein condensation (BEC) [10,11] offered a good examples
of the nonautonomous systems in condensate physics.

With the realization of BECs the exploration of the nonlinear
properties of matter waves has been paid particular extension.
One of them is macroscopically excited BECs, such as vortices
[12] and solitons [13–19]. At zero temperature the dynamics of
BEC is well described by the time-dependent Gross-Pitaevskii (G-
P) equation, and the nonlinearity results from the interatomic
interactions. Depending on the attractive or repulsive nature of
the interatomic interactions, G-P equation has either bright or dark
soliton solutions, respectively. A bright soliton [20–22] in BEC is
expected for the balance between the dispersion and the attractive
mean-field energy. However, large condensates are necessarily
associated with repulsive interaction, for which bright soliton
might seem impossible because the nonlinearity cannot compen-
sate for the kinetic energy part in the atomic dynamics. So it is
interesting to explore the property for dark soliton of BEC. A dark
soliton [23,24] in BEC is a macroscopic excitation characterized
by a local density minimum and a phase gradient of the wave func-
tion at the position of the minimum. Under the different conditions
many soliton solutions [15–19,25,26] have been obtained, as well
as the dynamics of the excitation of the condensate was discussed.
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When the longitudinal dimension of BEC is much longer than its
transverse dimension which is the order of its healing length, the
G-P equation can be reduced to the quasi-one-dimensional (qua-
si-1D) regime. This trapped quasi-one-dimensional [27] conden-
sate has offered an useful tool to investigate the nonlinear
excitations such as solitons and vortices, which are more stable
than in 3D, where the solitons suffer from the transverse instability
and the vortices can bend. So the studies of both theory and exper-
iment are very important for the soliton excitation in quasi-one-
dimensional BEC.

The effective mean-field model of a quasi-1D BEC in a linear po-
tential with an arbitrary time-dependence is given by

i�h
@

@T
W ¼ � �h2

2m
@2

@X2 Wþ Xf ðTÞWþ gjWj2W; ð1Þ

where
R
jWj2dX ¼ N is the number of atoms in the condensate. The

interacting constant of two-atom is g ¼ 2�h2a=ml2
0 [28], where m is

the mass of the atom, a is the s-wave scattering length (a < 0 for
attractive interaction; while a > 0 for repulsive interaction), and
l0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h=mx0

p
is the characteristic extension length of the ground

state wave function of harmonic oscillator. For pithiness, we intro-
duce x = X/l0, t ¼ T=ml2

0=�h, and w ¼ W=
ffiffiffiffiffiffiffi
Nl0

p
, and then Eq. (1) re-

duces to the dimensionless form

i
@

@t
wþ 1

2
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@x2 wþ xf ðtÞw� ljwj2w ¼ 0; ð2Þ

where l = 2Nl0a, and f ðtÞ ¼ �ml30
�h2 f T

�h=ml20

� �
. As in Ref. [6], Eq. (2) was

called nonautonomous NLS model in linear potential. When
f(t) = constant and a < 0, the Lax pair and NSSs in inhomogeneous
plasma has been constructed by the inverse scattering method
[8]. F-expansion method [29] and Hirota method [30] were also
developed to construct the bright NSSs in quasi-1D BECs. However,
the dynamic property of NSS of Eq. (2) has not well explored, and
Hirota method developed for Eq. (2) with the repulsive interaction
is also very interesting.

In the present paper we consider mainly the dynamics of dark
nonautonomous soliton which can be affected by adjusting the
external linear time-dependent potential. In the following section
we demonstrate how to construct the exact dark NSSs of Eq. (2),
and the corresponding properties of such solutions are studied in
detail.

2. Developed Hirota method and one Nonautonomous soliton
solution

Hirota method [31] is an effective straightforward technique to
solve the nonlinear equations. In order to clear the derivation of
solution we introduce the main idea of Hirota method briefly.
Firstly, it apply a direct transformation to the nonlinear equation.
Then, by means of some skillful bilinear operators the nonlinear
equation can be decoupled into a series of equations. With some
reasonable assumptions the exact solutions can be constructed
effectively. However, in the presence of the time-dependent poten-
tial the application of Hirota method should be more careful to get
NSSs of Eq. (2) in the case of the repulsive interaction.

Performing the normal procedure, we consider the complex
function G(x,t) and the real function F(x,t) forming the
transformation

w ¼ Gðx; tÞ
Fðx; tÞ : ð3Þ

Substituting Eq. (3) into Eq. (2) we have

F iDt þ
D2

x

2

 !
G � F þ GF2xf ðtÞ � G

D2
x

2
F � F þ lGG

 !
¼ 0; ð4Þ
where the overbar denotes the complex conjugate, Dt and D2
x are

called Hirota bilinear operators defined by
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Gðx; tÞFðx0; t0Þ
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x¼x0 ;t¼t0
:

ð5Þ

In the absence of the time-dependent potential, i.e., xf(t) = 0, Eq. (4)
can be decoupled easily into two equations. In order to get exact
dark NSSs of Eq. (2), a real parameter k to be determined should
be added to Hirota bilinear operators in the presence of the time-
dependent potential, and then many attempts show that Eq. (4)
can be decoupled into

Â1G � F ¼ 0; Â2F � F ¼ �lGG; ð6Þ

where the overbar denotes the complex conjugate, and Hirota bilin-
ear operators Â1 and Â2 are given by

Â1 ¼ iDt þ 1
2 D2

x þ xf ðtÞ � k;

Â2 ¼ 1
2 D2

x � k:

The derivation of Eq. (6) has made Eq. (2) into the normal procedure
of Hirota method. The spatial and time-dependence term xf(t) will
play an important role for getting the exact NSSs as shown later.

If the expressions of G(x,t) and F(x,t) are obtained from Eq. (6),
the exact dark NSSs can be expressed analytically. For this purpose
we assume that

G ¼ G0ð1þ vG1Þ; F ¼ ð1þ vF1Þ; ð7Þ

where v is an arbitrary auxiliary parameter which will be absorbed
in the expression of NSSs. Substituting Eq. (7) into Eq. (6), and col-
lecting the coefficients with same power of v, we have
(1) for the coefficient of v0

Â1ðG0 � 1Þ ¼ 0; ð8Þ
Â2ð1 � 1Þ ¼ �lG0G0; ð9Þ

(2) for the coefficient of v1

Â1ðG0G1 � 1þ G0 � F1Þ ¼ 0; ð10Þ
Â2ðF1 � 1þ 1 � F1Þ ¼ �lG0G0ðG1 þ G1Þ; ð11Þ

(3) for the coefficient of v2

Â1ðG0G1 � F1Þ ¼ 0; ð12Þ
Â2ðF1 � F1Þ ¼ �lG0G0G1G1: ð13Þ

Using the definition of Hirota bilinear operator (5) the above equa-
tions can be expressed in detail. Considering the presence of the
term xf(t) in Eq. (8) we assume G0 has the form

G0 ¼ c0eig0 ; ð14Þ

where

g0 ¼ P0ðtÞxþX0ðtÞ; ð15Þ

with P0(t) and X0(t) is to be determined, respectively. Substituting
G0 into Eq. (8) we have

0 ¼ ½�P0;tðtÞ þ f ðtÞ�x�X0;tðtÞ �
1
2

P2
0ðtÞ � k;

which implies the solution

P0ðtÞ ¼
Z t

0
f ðsÞdsþ n0;

X0ðtÞ ¼ �
1
2

Z t

0
P2

0ðsÞds� kt þ f0; ð16Þ
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where n0 and f0 is an arbitrary real constant, respectively. From the
restriction of Eq. (9) we get jc0j2 = k/l which shows that the exist of
dark NSS demand the parameter k > 0. For convenience c0 can be
chosen as c0 ¼

ffiffiffiffiffiffiffiffiffi
k=l

p
.

Expanding Eqs. (10) and (11) with the definition of Eq. (5) one
can see that G1 and F1 admit the expression

G1 ¼ Z1 exp g1; F1 ¼ exp g1; ð17Þ

where the parameter Z1 to be determined is complex, and the real
parameter g1 is given by

g1 ¼ P1ðtÞxþX1ðtÞ: ð18Þ

Substituting Eqs. (14) and (17) into Eq. (10) we have

0 ¼ iðZ1 � 1ÞðP1;txþX1;t þ P0P1Þ þ
1
2
ðZ1 þ 1ÞP2

1: ð19Þ

In the case of Z1– ± 1(the case of Z1 = ±1 will be discussed in below),
the solution of Eq. (19) is P1,t = 0, i.e., P1 should be independent on t,
and Z1 is given by

Z1 ¼
iP0P1 � 1

2 P2
1 þ iX1;t

iP0P1 þ 1
2 P2

1 þ iX1;t
; ð20Þ

which shows that jZ1j2 = 1. From Eqs. (11)–(13) we get the
restriction

P2
1 ¼ 2k� kðZ1 þ Z1Þ: ð21Þ

Then from Eqs. (20) and (21) we obtain

Z1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k� P2

1

q
þ iP1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4k� P2
1

q
� iP1

;

X1 ¼ �P1

Z t

0
P0ðsÞdsþ

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k� P2

1

q
P1t þ f1; ð22Þ

where f1 is a real constant, P1 is an arbitrary real parameter, and
k P P2

1=4.
With the help of Eqs. (7), (14) and (17), after absorbing v, the

exact dark NSS of Eq. (2) can be derived as

w1 ¼
1
2

ffiffiffiffi
k
l

s
eig0 ð1þ Z1Þ � ð1� Z1Þ tanh

g1

2

h i
; ð23Þ

where the parameters g0, g1, and Z1 have been given in Eqs. (15),
(16), (18) and (22).

If one chose k = 4g2 and P1 = 4a1g2, the solution in Eq. (23) has
the same form as the general solution obtained in the framework
[6]. In the case of f(t) = 0, the solution in Eq. (23) reduces to the
one soliton solution of the normal NLS equation. When f(t) = con-
stant, the solution (23) represents the nonlinear dark wave propa-
gation in linearly inhomogeneous plasma [8] or optical fibre with
the abnormal dispersion. As f(t) = b1 + lcos(xt), the solution (23)
denotes NSS in BEC with considering the coupling of the external
field and the effect of gravity.

From the NSS in Eq. (23) we clear two special case mentioned
before, i.e., Z1 = ±1. When Z1 = 1, the solution (23) reduces to
plane-wave solution w1 ¼

ffiffiffiffiffiffiffiffiffi
k=l

p
eig0 , which corresponds to the uni-

form distribution density of bosons. On the other hand, when
Z1 = �1 the solution (23) becomes w1 ¼ �

ffiffiffiffiffiffiffiffiffi
k=l

p
eig0 tanhðg1=2Þ,

where g1 ¼ 2
ffiffiffi
k
p

x� 2
ffiffiffi
k
p R t

0 P0ðsÞdsþ f1. This solution represents
the black NSS of BEC in a linear potential with an arbitrary time-
dependence which is caused by the coupling of external field and
the effect of gravity.

We also find the effect of term xf(t) from the NSS in Eq. (23). As
shown in the expression of g0, the term xf(t) can only contribute a
phase to the background. The width of nonautonomous soliton,
defined by 1/P1, is not affected by the time-dependent external
potential. From Eqs. (18) and (22) we get the velocity

V1 ¼ �
@

@t
X1

P1
¼
Z t

0
f ðsÞdsþ n0 �

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k� P2

1

q
;

which shows that the time-dependent potential play an important
role for the velocity of dark NSS. When f(t) = b1 + lcos(xt), the veloc-

ity becomes V1 ¼ b1t þ l=x sinðxtÞ þ n0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k� ðP1=2Þ2

q
, which in-

creases and oscillates with time. These results shows that under
the effect of gravity, the BEC slides down where the dark nonauton-
omous soliton slides down and oscillates in time. It can be realized
by controlling the external field.

3. Collision of two dark nonautonomous solitons

In this section we will give the analytical expression of two dark
NSSs of Eq. (2). In this case G(x,t) and F(x,t) of Eq. (3) are assumed as

G ¼ G0ð1þ vG1 þ v2G2Þ; F ¼ 1þ vF1 þ v2F2: ð24Þ

where G0 has been obtained in Eq. (14). Employing the similar pro-
cedure of the above section we obtain the following set of equations
from Eq. (6)

(1) for the coefficient of v
£1ðG1 � 1þ 1 � F1Þ ¼ 0; ð25Þ
Â2ð1 � F1 þ F1 � 1Þ ¼ �kðG1 þ G1Þ; ð26Þ
(2) for the coefficient of v2
£1ð1 � F2 þ G1 � F1 þ G2 � 1Þ ¼ 0; ð27Þ
Â2ð1 � F2 þ F1 � F1 þ F2 � 1Þ ¼ �kðG2 þ G1G1 þ G2Þ; ð28Þ
(3) for the coefficient of v3
£1ðG1 � F2 þ G2 � F1Þ ¼ 0; ð29Þ
Â2ðF1 � F2 þ F2 � F1Þ ¼ �kðG2G1 þ G1G2Þ; ð30Þ
(4) for the coefficient of v4
£1G2 � F2 ¼ 0; ð31Þ
Â2F2 � F2 ¼ �kG2G2; ð32Þ
where £1 ¼ iDt þ 1
2 D2

x þ P0ðtÞDx; and Â2 is given before.

It is obvious that one can solve the equations (25) to (32) in turn
with the reasonable expressions of G1 and F1. A detail analysis
shows that G1 and F1 admit the forms

G1 ¼ Z1 exp g1 þ Z2 exp g2; F1 ¼ exp g1 þ exp g2; ð33Þ

where Zj is complex and gj has the form

gj ¼ PjðtÞxþXjðtÞ; j ¼ 1;2; ð34Þ

with the parameter Pj(t) and Xj(t) is to be determined, respectively.
Substituting Eq. (33) into Eq. (25) we have

0 ¼ eg1 ðZ1 � 1ÞðiP1;txþ iP0P1 þ iX1;tÞ þ
Z1 þ 1

2
P2

1

� 	

þ eg2 ðZ2 � 1ÞðiP2;txþ iP0P2 þ iX2;tÞ þ
Z2 þ 1

2
P2

2

� 	
:

In the case of Z1 – ± 1 and Z2 – ± 1, the above equation implies that
Pj,t(t) = 0, j = 1,2, i.e., Pj is independent on t, and Zj is given by

Zj ¼
iP0Pj � 1

2 P2
j þ iXj;t

iP0Pj þ 1
2 P2

j þ iXj;t

; ð35Þ
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which shows that jZjj2 = 1, j = 1,2. From Eq. (26) we have the
restriction

P2
j ¼ 2k� kðZj þ ZjÞ; j ¼ 1;2: ð36Þ

From Eqs. (35) and (36) we have

Zj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k� P2

j

q
þ iPjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4k� P2
j

q
� iPj

;

Xj ¼ �Pj

Z t

0
P0ðsÞdsþ

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k� P2

j

q
Pjt þ fj; ð37Þ

where fj is a real constant, Pj is an arbitrary real parameter, and
k P P2

j =4, j = 1,2.
Substituting Eq. (33) into Eqs. (27) and (28), after a tedious and

expatiatory calculation we obtain the expressions of G2 and F2 as

G2 ¼ A12Z1Z2 expðg1 þ g2Þ; F2 ¼ A12 expðg1 þ g2Þ; ð38Þ

where the real parameter A12 is given by

A12 ¼
4k� P1P2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k� P2

1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k� P2

2

q
4kþ P1P2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k� P2

1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k� P2

2

q :

Now we have obtained the expression of G0,G1,G2,F1 and F2 in Eq.
(24). With the help of Eqs. (33)–(38) one can find the Eqs. (29)–
(32) are satisfied to the moment.

With Eqs. (3), (14), (33), and (38), while absorbing the parame-
ter v, we obtain the dark two NSS of Eq. (2) as

w2 ¼
ffiffiffiffi
k
l

s
eig0

1þ Z1eg1 þ Z2eg2 þ A12Z1Z2eg1þg2

1þ eg1 þ eg2 þ A12eg1þg2
: ð39Þ

When f(t) = 0, the solution (39) denotes dark two solitons interac-
tion of the normal NLS equation. When f(t) = constant, the solution
(39) represents the dynamics of two nonautonomous nonlinear
waves in linearly inhomogeneous plasma or optical fibre with the
abnormal dispersion. As shown before, the expressions (23) and
(39) imply that Hirota method has more advantage for getting such
solutions as well.

The solution in Eq. (39) describes a general scattering process of
two dark NSSs with different center velocity V1 and V2, respec-
tively. From Eqs. (34) and (37) we get each velocity as

Vj ¼
Z t

0
f ðsÞdsþ n0 �

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k� P2

j

q
; j ¼ 1;2:

Under the proper parameters two NSSs can move toward each
other, one with the velocity V1, while the other with V2. In order
to understand the nature of two NSSs interaction, we analyze the
asymptotic behave of the solution in Eq. (39). Asymptotically, the
solution in Eq. (39) can be written as a combination of two NSSs
in Eq. (23). The asymptotic form of two NSSs in limits t ? �1
and t ?1 is similar to that of the one NSS in Eq. (23).

(i) Before collision (limit t ? �1)
(a) Nonautonomous soliton 1 (g1 � 0, g2 ? �1)ffiffiffiffis
w2 !
1
2

k
l

eig0 ð1þ Z1Þ � ð1� Z1Þ tanh
g1

2

h i
; ð40Þ
(b) Nonautonomous soliton 2 (g2 � 0, g1 ?1)ffiffiffiffis

w2 !

1
2

k
l

Z1eig0 ð1þ Z2Þ � ð1� Z2Þ tanh
1
2
ðg2 þ d0Þ

� 	
:

ð41Þ
(ii) After collision (limit t ?1)
(a) Nonautonomous soliton 1 (g1 � 0, g2 ?1)ffiffiffiffis
w2 !
1
2

k
l

Z2eig0 ð1þ Z1Þ � ð1� Z1Þ tanh
1
2
ðg1 þ d0Þ

� 	
;

ð42Þ
(b) Nonautonomous soliton 2 (g2 � 0, g1 ? �1)ffiffiffiffis

w2 !

1
2

k
l

eig0 ð1þ Z2Þ � ð1� Z2Þ tanh
g1

2

h i
; ð43Þ
where the center shift is given by d0 = lnA12. By analyzing the
asymptotic behave in detail we know that there is no change of
the amplitude for each NSS during collision, while one should
notice that the factor jZjj = 1, j = 1,2, again. However, from Eqs.
(40)–(43) we find a phase exchange d0 for soliton 1 and soliton 2
during collision. These results show that the collision of two NSSs
is elastic.

4. Conclusion

In this paper, we report the exact dark NSSs of quasi-one-
dimensional BEC in a linear potential with an arbitrary time-
dependence, and Hirota method is also developed. With the skillful
assumption the exact dark NSSs are constructed effectively. From
these results we find the time-dependent potential can affect the
velocity of NSS. In some special cases the velocity of NSS in qua-
si-one-dimensional BEC increases and oscillations in time, the
BEC slides down under the effect of gravity. We also investigate
the asymptotic behave of two NSSs which denotes the elastic
collision.
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