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We analytically exploit the two-mode Gaussian states nonunitary dynamics. We show that in the

zero temperature limit, entanglement sudden death (ESD) will always occur for symmetric states

(where initial single-mode compression is z0) provided that the two mode squeezing r0 satisfies

0or0 o 1
2 logðcoshð2z0ÞÞ. We also give the analytical expressions for the time of ESD. Finally, we show

the relation between the single modes initial impurities and the initial entanglement, where we exhibit

that the latter is suppressed by the former.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

The concept of entanglement, a typically quantum mechanical
property, is a natural consequence of the superposition principle
for composite systems. It was discussed by Schrödinger who
immediately realized its (at the time) seemingly ‘‘unphysical’’
consequences [1]. Nowadays the growing interest in the subject is
related to quantum information theory and potential technologi-
cal applications [2,3]. Thus a lot of effort has been put both in the
quantification of entanglement and in studying the consequences
of deleterious environmental effects on this property [4]. It is well
known today, both theoretically and experimentally, that in
general such effects tend to destroy quantum properties; in the
case of systems with one degree of freedom this happens only
asymptotically [5–7]. The studies concerning the degradation of
quantum effects are vast in the literature, specially those related
to continuous variables systems subjected to noisy channels,
see [8,9]. Some recent works devote their attention to the
robustness of Gaussian and non-Gaussian states under dissipative
channels [10].

It was recently realized that in bipartite systems that entan-
glement may disappear suddenly, phenomenon called therefore
‘‘entanglement sudden death’’ (ESD) or finite-time disentangle-
ment [11,12]. The phenomenon is strongly related to geometrical
properties of the set of mixed quantum states [13], but from a
physical point of view, the issue is still far from being closed.
ll rights reserved.

Souza).
In the present work we study more specifically the entangle-
ment properties of two mode Gaussian states under a nonunitary
evolution. In Ref. [5–7] the entropy growth of single-mode
Gaussian and non-Gaussian states coupled to a reservoir has been
presented in analytical form. We show that in the two-mode case,
single-mode squeezing plays an important role in entanglement
dynamics, even for fully symmetric channels (phenomenon that
appears also in the case of qu-bits [14]). For the specific case of a
zero temperature reservoir and symmetric states (where initial
single mode squeezing of both modes is z0) we are able to show
that ESD will always occur if 0or0o 1

2 logðcoshð2z0ÞÞ, where r0 is
the two-mode squeezing. We also show that there exists an upper
limit for the degree of mixedness of a state so that it can exhibit
entanglement. This result may turn out useful for experimental
realizations of two-mode entangled Gaussian states. Finally, for
symmetric and pure states evolving in a reservoir at zero
temperature, we analytically present the time of ESD.

The paper is organized as follows: in Section 2 we present
some well known properties concerning Gaussian states; in the
next section we briefly review the analytical dynamics of two-
mode Gaussian states; in Section 4 we present our results. Finally,
some conclusions are drawn.
2. General properties of two-mode Gaussian states

A two-mode Gaussian state with vanishing averages /aiS¼
trðairÞ ¼ 0, i¼1,2, can always be written as

rG ¼ S1ðz1,z2ÞS2ðrÞrðn1,n2ÞS
y

2ðrÞS
y

1ðz1,z2Þ, ð1Þ

www.elsevier.com/locate/optcom
www.elsevier.com/locate/optcom
dx.doi.org/10.1016/j.optcom.2012.07.004
dx.doi.org/10.1016/j.optcom.2012.07.004
dx.doi.org/10.1016/j.optcom.2012.07.004
mailto:leonardoamsouza@ufv.br
dx.doi.org/10.1016/j.optcom.2012.07.004


L.A.M. Souza et al. / Optics Communications 285 (2012) 4453–44564454
where S1ðz1,z2Þ is the single-mode squeezing operator, S2ðrÞ is the
two-mode squeezing operator and rðn1,n2Þ is the two-mode
thermal state. More explicitly we have:

S1ðz1,z2Þ ¼ exp
z1

2
ðay21 �a2

1Þ

h i
exp

z2

2
ðay22 �a2

2Þ

h i
, ð2Þ

S2ðrÞ ¼ exp½rðay1ay2�a1a2Þ�, ð3Þ

rðn1,n2Þ ¼
1

n1þ1

1

n2þ1

X
n

X
m

n1

n1þ1

� �n n2

n2þ1

� �m

9nS/n9

�9mS/m9,

where zi is the single-mode squeezing parameter of the mode i,
aðyÞi is the annihilation (creation) operator of the ith mode, r is the
two-mode squeezing and ni is the ‘‘mixedness’’ of the ith mode
(by ‘‘mixedness’’ we mean the initial number of thermal photons
of the state), related to the thermal two-mode state r. We assume
/aiS¼ 0 in this work, since the entanglement properties are
independent of them, and in our equations of motion the second
momenta evolution decouple from the first momenta. We also
choose, without loss of generality in this case, the squeezing
parameters zi and r to be real.

This state is entirely described by the parameters given above.
However, in order to handle entanglement properties, it is most
convenient to write these parameters in terms of the correspond-
ing covariance matrix (CM):

Vr ¼

n1þ
1
2 m1 ms mc

mn

1 n1þ
1
2 mn

c mn
s

mn
s mc n2þ

1
2 m2

mn
c ms mn

2 n2þ
1
2

0
BBBBB@

1
CCCCCA, ð4Þ

where ni ¼/ayi aiS, mi ¼�/a2
i S, ms ¼�/a1ay2S, mc ¼/a1a2S, and

/xS denotes the quantum expectation value trðxrÞ of an obser-
vable x. The CM can also be written as

Vr ¼
V1 C

Cy V2

 !
, ð5Þ

where Vi is a 2�2 matrix related to the mode i, and C is a 2�2
matrix that gives the correlations (both quantum and classical)
between the modes. For later use, we define some invariants of
the covariance matrix as [7,15]:

IV ¼ det Vr,

I1;2 ¼ det V1;2,

I3 ¼ det C,

I4 ¼ tr½V1ZCZV2ZCyZ�: ð6Þ

These quantities are invariants under local unitary operations and
Z ¼ diagf1,�1g. Next we give the explicit connection between the
parameters of the Gaussian state and the matrix elements of the
covariance matrix:

zi ¼
1

2
arctanh

mi

niþ
1

2

2
64

3
75 ð7Þ

n1 ¼
1
2ðdet V1�det V2Þ

þ1
2

ffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

p
ðdet V1þdet V2Þ�

1
2, ð8Þ

n2 ¼
1
2ðdet V2�det V1Þ

þ1
2

ffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

p
ðdet V1þdet V2Þ�

1
2, ð9Þ

r¼ 1
2 arctanh½x�, ð10Þ
where we have defined

x¼
2ms

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det V1

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det V2

p
Þsinhðz1þz2Þ

: ð11Þ

Once the evolution of the covariance matrix is obtained, the
evolution of the parameters of the state can be inferred.

Since we are working with Gaussian states, there are necessary

and sufficient criterion to determine whether the state is
entangled [16–18]. Simon [16] has shown that for any two-mode
Gaussian state, if the following inequality is observed:

SðV r̂ Þ ¼ I1I2þð1=4�9I39Þ
2
�I4�1=4ðI1þ I2ÞZ0, ð12Þ

the state is separable. For the purposes of this work, Simon’s
criterion is enough to study the entanglement dynamics.
3. Nonunitary dynamics and its analytical solution

The degradation of the quantum information content of
Gaussian states is a subject of interest, both for the technological
and/or experimental applications as well as for fundamental
quantum mechanics in what concerns the classical limit.

The usual approach to non-unitary dynamics is by means of
master equations, which has found several successful applications
in other areas of physics. Our master equation reads

_r ¼Lr, ð13Þ

where L is a superoperator given by:

L¼
X

i ¼ 1;2

giðn
B
i þ1Þð2ai�a

y

i�ayi ai���a
y

i aiÞþgin
B
i ð2ayi �ai�aia

y

i ���aia
y

i Þ

� �
:

ð14Þ

In the equation above, gi is the dissipation constant of the
reservoir related to the mode i, nB

i is related to the temperature
of the thermal bath of the mode i, and ayi ðaiÞ is the creation
(annihilation) operator of the respective mode.

Eq. (14) models a linear coupling between the state (the two-
mode Gaussian state in our case) with a thermal bath of quantum
harmonic oscillators. The evolution of each term of the covariance
matrix, evolving under the dynamics described above, is given by

ni ¼ e�2tgi ðð�1þe2tgi ÞnB
i þcoshð2z0

i Þðn
0
i cosh2 r0

þð1þn0
kÞsinh2 r0Þþsinh2 z0

i Þ, ð15Þ

mi ¼�e�2tgi ðn0
i �n

0
kþð1þn

0
i þn

0
kÞcoshð2r0ÞÞcosh z0

i sinh z0
i , ð16Þ

mc ¼
1
2e�tðg1þg2Þð1þn0

1þn
0
2Þcoshðz0

1þz0
2Þsinhð2r0Þ, ð17Þ

ms ¼�
1
2e�tðg1þg2Þð1þn0

1þn
0
2Þsinhð2r0Þsinhðz0

1þz0
2Þ: ð18Þ

In the equations above, i¼1 or 2 (mode 1 or mode 2) and ka i.
The parameters are such that z0

i is the initial single mode squeez-

ing, gi is the dissipation constant, n0
i is related to the initial

mixedness and ni
B is the reservoir temperature, where all the

quantities refer to the ith mode, as denoted by the subscript i.
Also, we have that r0 is the initial two-mode squeezing.
4. Results

4.1. Entanglement dynamics and single-mode squeezing

In order to get a clear picture and to gain physical insight into
the rich and multifaceted aspects of the non-unitary dynamics
of general two-mode Gaussian states, we consider firstly the
simplest case, i.e. the two-mode squeezed vacuum in dissipative
channel.



Fig. 3. Simon criterion for values of the initial parameter z0
1 and time t, where we

have used z0
1 ¼ z0

2. For the shaded area the Simon criterion S is negative (entangled

state), in the white area S is positive. Note that there is a limit for z1 in which

the state will have ESD. In this case: z1 C1:4. Parameters: r0 ¼ 1,n0
1 ¼

n0
2 ¼ 0,nB

1 ¼ nB
2 ¼ 0,g1 ¼ g2 ¼ 0:1. Graphs (a) and (b) are the same function, in a

different time scale.
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Let us consider the case of a two-mode vacuum state without
single-mode squeezing (i.e. z1 ¼ z2 ¼ 0). As shown in Fig. 1, for
symmetric and asymmetric channels, with temperatures nB

1 and nB
2

different from zero, there will always be a finite time when
entanglement vanishes. This can be understood using a geome-
trical picture of entanglement decay [13]. In fact, in this case, the
long-time state is a separable mixed state, well within the set of
separable states. Thus, if an initial state is entangled, it necessarily
crosses the border of separable states in finite time. For zero-
temperature baths, i.e. if nB

1 ¼ nB
2 ¼ 0, even if one uses different

dissipation constants g1 and g2, the entanglement only disappears
asymptotically.

Next we introduce single-mode squeezing, i.e. z0
1a0 and/or

z0
2a0. We note in Fig. 2 that, even for the zero temperature case,

one observes entanglement sudden death (ESD). We note that
there is a dynamical entropy increase in the squeezed mode,
caused by the reservoir, which acts in such a way that, for a
relatively short time interval, this mode’s entropy grows and then
decays to the vacuum. We have observed that this dynamical
entropy growth [5,6] causes the entanglement disappearance in
finite time.

Since single-mode squeezing turns out to play a significant
role on ESD. In Fig. 3 we show Simon’s criterion evolution for
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Fig. 1. Simon criterion for several cases of initial parameters. The common

parameters are: z0
1 ¼ z0

2 ¼ n0
1 ¼ n0

2 ¼ 0,r0 ¼ 1. In each curve: gray: g1 ¼ 0:1,

g2 ¼ 0:5,n1 ¼ 0:2,n2 ¼ 0:2; blue: g1 ¼ 0:1,g2 ¼ 0:1,n1 ¼ 0:2,n2 ¼ 0:2; green:

g1 ¼ 0:5,g2 ¼ 0:5,n1 ¼ 0:0,n2 ¼ 0:0; red: g1 ¼ 0:1,g2 ¼ 0:1,n1 ¼ 1:0,n2 ¼ 0:0; black:

g1 ¼ 0:1,g2 ¼ 0:1,n1 ¼ 0:0,n2 ¼ 0:0; pink: g1 ¼ 0:1,g2 ¼ 0:5,n1 ¼ 0:0,n2 ¼ 0:0. (For

interpretation of the references to color in this figure caption, the reader is

referred to the web version of this article.)
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Fig. 2. Simon criterion for two set of initial parameters, say: n0
1 ¼ n0

2 ¼ 0,r0 ¼ 1.

Blue: g1 ¼ g2 ¼ 0:1,nB
1 ¼ nB

2 ¼ 0,z0
1 ¼ z0

2 ¼ 0; Red: g1 ¼ g2 ¼ 0:1,nB
1 ¼ nB

2 ¼ 0,z0
1 ¼

2,z0
2 ¼ 0. (For interpretation of the references to color in this figure caption, the

reader is referred to the web version of this article.)
states with compression in only one of the modes, for reservoirs
at null temperature. The vertical axis corresponds to the initial
parameter z0

1 and the plot shows, for each instant of time,
whether the evolved state is entangled (shaded area) or not
(blank area). For instance, if the initial state has z0

1 ¼ 2, Simon’s
criterion will change from negative to positive in finite time; if
one have z0

1 ¼ 1:0, the entanglement will vanish asymptotically.
We will show an analytical relation between single-mode squeez-
ing and ESD hereafter.

In the following we want to discuss the instant of time in
which the state becomes separable, or when occurs ESD, in the
case of zero temperature and symmetrical states (z0

i ¼ 0, r040,
n0

i ¼ n0 and gi ¼ g, nB
i ¼ 0, for i¼1,2). In this case the elements of

the covariance matrix, which do not vanish, depend on

n¼ nðtÞ ¼ 1
2e�2gtðð2n0þ1Þcoshð2r0Þ�1Þ ¼ n0e�2gt , ð19Þ

m¼mðtÞ ¼ 1
2e�2gtð2n0þ1Þsinhð2r0Þ ¼m0e�2gt : ð20Þ

In this case Simon S can be factorized as S¼ ðmþnÞ

ðmþnþ1Þðm�nÞðm�n�1Þ. Since the first two factors are clearly
positive, we can see that S is negative if nomonþ1. If this
inequality is satisfied at the initial time, n0om0on0þ1. Now,
multiplying by e�2gt we get nomonþe�2gt onþ1. Thus, if the
state is initially entangled, the evolved state is also entangled
for any finite time. Since Simon S vanishes asymptotically
limt-1 SðtÞ ¼ 0, we see that either the entanglement decay is
asymptotic, or the initial state is already separable. A two-mode
squeezed vacuum, n0 ¼ 0, is always entangled; hence, it separates
asymptotically.

Now we study tESD for states containing single-mode squeez-
ing, i.e. z1 ¼ z2. Here one can find for tESD:

e�2gtESD ¼
2 expðr0Þcosh 2z0 sinh r0�2 sinh2z0

expð2r0Þðcosh 2r0�sinh 2z0Þ
, ð21Þ

where we consider r040, and z0
1 ¼ z0

2 ¼ z0. In terms of the new
variables Z¼ expð2r0Þ and z¼ expð2z0Þ, the disentanglement time

e�2gtESD ¼
Zð1þz2

�2ZzÞ
Z�z�Z2zþz2Z

,

is much easier to analyze. This equation has a valid solution when
the right-hand side varies between 0 and 1, that is, when Z
satisfies the inequality 1rZr 1

2 ðzþ1=zÞ. Going back to the
original variables we conclude that the initial state separates at
a finite time if 0or0o 1

2 logðcoshð2z0ÞÞ. In this case, one can see
clearly that the effect of single-mode squeezing is crucial to
determine when the entangle will vanish.



Fig. 4. Simon criterion for the two-mode Gaussian state, Eq. (1). Note that

impurities values sufficiently high can suppress the effect of entanglement given

by the two-mode squeezing parameter r. Parameter: r0 ¼ 1.
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4.2. Effects of the mixedness in the initial state

Recently [5,6] it has been shown that in the case of single-
mode Gaussian states, there is an upper limit for the degree of
global purity (represented by n0

i ) of the state above which no
quantum properties are visible. We now show that an analogous
result holds for two-mode Gaussian systems also. Following the
steps in Ref. [5,6] we can show that the initial state is entangled if
the following inequality is satisfied:

r04
1

4
cosh�1 ð1þn0

2Þ
2
þ2n0

1ð1þn0
2Þð1þ4n0

2Þþðn0
1Þ

2
ð1þ8n0

2ð1þn0
2ÞÞ

ð1þn0
1þn0

2Þ
2

 !
:

ð22Þ

In Fig. 4 we show the entanglement in the initial state as measured
by S, with r0 ¼ 1. Notice that there is an upper limit on the initial
state impurity above which the state becomes separable.
5. Conclusion

In this paper we review some aspects of two-mode Gaussian
states, showing both the evolution of the state parameters (that
entirely characterize the state) under nonunitary evolution and
how entanglement of the state, characterized by the Simon
criterion (12), depends on the initial state parameters. We show
that, even in completely symmetrical reservoirs and zero tem-

perature, the entanglement can vanish in finite time, depending
on the single-mode squeezing of the state. We give a condition for
ESD relating single-mode squeezing and two-mode squeezing,
that is 0or0o 1

2 logðcoshð2z0ÞÞ. We analytically present the time
when occurs ESD for symmetrical states, evolving in a reservoir
with zero temperature. We also show that entanglement can be
‘‘suppressed’’ by the initial mixedness of the modes, n0

i : the initial
two-mode squeezing has an upper limit as a function n0

i , and for
values above this limit the state is separable. This can be helpful
for experimental procedures, since any state will have some
minimal impurity.
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