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We obtain dark and antidark soliton solutions in binary waveguide arrays with focusing and/or

defocusing Kerr nonlinearity and with alternating positive and negative linear couplings between

adjacent waveguides. For both stationary and moving solitons, we analyze the properties of these

solutions in the presence of uniform and nonuniform nonlinearity along the array.
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1. Introduction

In the last years, discrete optical systems and waveguide
arrays have been a very active research area in optics [1]. Binary
waveguide arrays in particular have been studied because their
intrinsic two bands structure can be very helpful in order to
control wave propagation in the linear and nonlinear regimes
[2–4]. More recently, the interplay between plasmonic waveguid-
ing and periodicity has been also considered, inasmuch as
plasmonic confinement offers an extra degree of freedom to be
usefully exploited in all optical devices [5–8].

In this framework solitons represent an important class of
solutions, as their particle like behavior can be very useful for
switching applications and their peculiar features often represent
an invaluable tool to understand the overall dynamics of the
system in the nonlinear regime. This certainly explains the huge
effort that the scientific community has put in finding soliton
solutions in these systems [4,9–14].

It is well known that in nonlinear discrete systems as those
describing light propagation in waveguide arrays, bright localized
modes may exist in the form of gap solitons when a gap opens in the
linear dispersion relation [13,15]. On the other hand, without the
band gap in the linear dispersion relation, a forbidden frequency
region can still exist for a nonuniform nonlinear response and
solitons sitting on a pedestal can be found [14,16,17]. Among the
situations where the nonuniform nonlinearity can be exploited it is
ll rights reserved.
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certainly worth quoting the case of the linear–nonlinear interlaced
waveguide arrays [18].

In previous papers we have used a continuous approximation to
exploit bright solitary wave solutions of this system [13] and we
have then used a fully discrete model to explore the existence and
stability of solitons sitting on a nonzero background [14]. In this
paper we extend the continuous approximation to the case of a
nonzero background and we demonstrate that this continuous
approximation can capture many features of the discrete system;
remarkably we also show that the continuum approximation gives a
reasonable description of discrete states even when they are con-
fined to a very small number of sites.
2. Physical settings and theoretical analysis

According to the coupled mode theory and taking into account
third-order nonlinearities in the form of a pure Kerr effect, the
field amplitude propagation in a binary waveguide array can be
described by the following equations [10,13]:

iE0nzþbnE0nþCn�1E0n�1þCnþ1E0nþ1þwn9E
0
n9

2
E0n ¼ 0

where E0n is the amplitude of the modal field of the n-th
waveguide, bn is the propagation constant of each waveguide,
wn is the site-dependent nonlinear coefficient, and Cn71 is the
coupling coefficient of the n-th waveguide with the ðn71Þ-th
waveguides. In our case Cn�1 ¼ C1 and Cnþ1 ¼ C2 when n is even,
whereas Cn�1 ¼ C2 and Cnþ1 ¼ C1 when n is odd. Then, performing
the transformation E0n ¼ En expðibzÞ, we can separately consider
the mode amplitudes in the even and odd waveguides. In this way
the field amplitude propagation can be described by the following
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Fig. 1. Comparison between approximated soliton states obtained from the

continuum limit (blue crosses and dashed line) and exact numerical results

obtained using the Newton conjugate-gradient method (red open circles). With

reference to Eq. (1) here we set g1 ¼ 1, g2 ¼ 0, C1 ¼�1, C2 ¼ 1, Db¼ 0 and

limn-719An9¼
ffiffiffi
2
p

. (a) Even sites. (b) Odd sites. (For interpretation of the

references to color in this figure caption, the reader is referred to the web version

of this article.)
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Fig. 2. s¼2, d¼0, P¼1, v¼0. (a) Bifurcation diagram of the Hamiltonian system:

continuous lines for stable centers and dashed lines for unstable saddle points.

(b) Phase plane analysis (Q¼1): crosses correspond to the unstable points and the

dot shows the stable center. The thicker lines are the heteroclinic separatrices

connecting the two unstable saddles and correspond to solitons on a nonzero

background.
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two sets of coupled equations with constant coefficients:

iAnzþ
Db
2

AnþC1BnþC2Bnþ1þg19An9
2
An ¼ 0

iBnz�
Db
2

BnþC2An�1þC1Anþg29Bn9
2
Bn ¼ 0 ð1Þ

where An and Bn are respectively the mode amplitudes in the n-th
even and n-th odd waveguides, wn was defined g1 (g2) for n even
(odd), and we chose bn ¼ bþDb=2 for n even, and bn ¼ bn�Db=2
for n odd, so Db represents the difference between the propaga-
tion constants in even and odd waveguides. Finally, without loss
of generality we can set C2 ¼ 1 (see [19]).

In close proximity of the band edge (i.e. around kx¼0 for C1o0
and for kx around p for C140) a very useful equivalent contin-
uous model can be derived by performing a Taylor expansion to
obtain (as a first order approximation)

iuzþ
Db
2

uþwxþEwþg19u9
2
u¼ 0

iwz�
Db
2

w�uxþEuþg29w92
w¼ 0 ð2Þ

where we have also defined C1 ¼ 71þE, with the �(þ) sign that
has to be used for kx¼0 (kx ¼ p). To look for both stationary and
walking self confined solutions of the system defined by Eq. (2),
we use the following trial functions [20]:

uðx,zÞ ¼ 1
2ðK1g1ðxÞþ iK2g2ðxÞÞ expði cosðQ ÞcÞ

wðx,zÞ ¼
1

2i
ðK1g1ðxÞ�iK2g2ðxÞÞ expði cosðQ ÞcÞ

x¼
xþvzffiffiffiffiffiffiffiffiffiffiffiffi
1�v2
p , c¼

vxþzffiffiffiffiffiffiffiffiffiffiffiffi
1�v2
p

K1 ¼
1þv

1�v

� �1=4

, K2 ¼
1�v

1þv

� �1=4

ð3Þ

with g1,2 two arbitrary complex functions, �1ovo1. Although
not necessary, for the sake of clarity, from now on we set Db¼ 0.

Substituting the ansatz (3) into Eq. (2) and following the
procedure as in [13], it is straightforward to obtain an Hamilto-
nian form for the equations, observing that P¼ 9g19

2
�9g29

2
is a

constant of motion for the dynamical system. Indeed, setting
g1,2ðxÞ ¼ f 1,2ðxÞ exp½iy1,2ðxÞ�, Z¼ f 2

2 and m¼ y1�y2, Z and m obey
the following Hamiltonian system:

_Z ¼� @H

@m

_m ¼ @H

@Z
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ðZðK2

1þK2
2ÞþPK2

1Þ sin m ð4Þ

where we also set s¼ g1þg2 and d¼ g1�g2.
It is straightforward to show that this Hamiltonian has the

following symmetry: mapping P and v into �P and �v induces
only a non nonessential shift by a constant into the Hamiltonian’s
value. For this reason, from now on we set PZ0. Note also that
the Hamiltonian system described by Eq. (4) reduces obviously to
the one considered in [13] for P¼0. Moreover in the situation
considered in [13] the condition Ea0 was necessary in the quest
for bright soliton solutions; here, on the contrary, we are inter-
ested in discussing solitons with a nonzero background and their
existence is not related to the presence of a band gap in the linear
spectrum, i.e. they exist even in the case E¼ 0 as we have
discussed in [14]. As a matter of fact, the key properties of these
solutions sitting on a nonzero background do not depend on the
presence of a bandgap in the linear spectrum; for these reasons
from now on we consider the case E¼ 0, corresponding to the
presence of a Dirac point at zero transverse momentum in the
linear spectrum. Soliton solutions of Eq. (2) correspond to separ-
atrix trajectories emanating from and sinking into unstable fixed
points of the dynamical system described by Eq. (4).

Obviously the validity of the continuum approximation becomes
more questionable as the degree of localization of the solitons
increases; in order to get a feeling of how far one can push the use
of the continuum model while still having a reasonable description
of the discrete system, we performed a thorough comparison
between the approximated soliton solutions obtained in the con-
tinuum limit and exact soliton states obtained numerically using the
Newton conjugate-gradient method [21].

To summarize our findings we report in Fig. 1 the comparison
between the modulus of the approximated soliton states obtained
from the continuum limit (blue crosses and dashed line) and exact
numerical results obtained using the Newton conjugate-gradient
method (red open circles). Note that despite the very strong degree
of localization (the soliton structure is basically confined to five sites
only), the continuum approximation still shows an excellent agree-
ment with the exact solution and this holds true both for the
modulus (reported in Fig. 1) and the phase (not shown here). It is
worth highlight that in the transition from discrete system to
the continuum limit we lost some features. In fact, if we further
increase the degree of confinement, we gradually loose the validity of
the continuum approximation and for soliton states confined to
three sites only the continuum approximation is not able to capture
closely the features of the discrete solutions. For such an high level of
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confinement one has to go back to the discrete model and find their
solutions as was recently done by using asymptotic expansions in
[14]. It is remarkable to note that by using these two different
approximations (asymptotic expansion and continuum model) one
can describe in a simple and accurate fashion the entire spectrum of
the dark–antidark soliton states of this system.

The derived Hamiltonian system thus represents a valuable tool
in describing and in understanding the features of the solutions of
the problem; the goal of the rest of the paper is to prove that thanks
to this hamiltonian system we are able to introduce new soliton
solutions for the problem at hand. Solutions obtained from our
continuum model will be used as initial conditions to the discrete
model to test their validity and robustness. The above goals will be
pursued in next sections using some representative examples; we
thus focus our attention on three different binary arrays: the first
case we discuss is the case of uniform nonlinearity in the array; the
second case we face is that of the linear–nonlinear interlaced binary
array and the third one is the case of nonlinearities with different
signs along the array, i.e. the focusing–defocusing interlaced binary
waveguide array.
Fig. 4. s¼2, d¼2, P¼0.6, v¼0. (a) Bifurcation diagram of the Hamiltonian system:

continuous lines for stable centers and dashed lines for unstable saddle points.

(b) Phase plane analysis (Q¼0.6): the cross corresponds to the unstable point and

the dot shows the stable center. The thicker line is the homoclinic separatrix

corresponding to solitons on a nonzero background.

Fig. 5. Field evolution along the array: the initial condition corresponds to the

separatrix enlightened in Fig. 4b.
3. Examples

In this section we present some results derived from the analysis
of the Hamiltonian system (Eq. (4)). We thus first look for unstable
fixed points of the dynamical system and then obtain the separa-
trices corresponding to solitary wave solutions. To assess the validity
of our approach we then propagate the obtained waveforms in the
truly discrete system described by Eq. (1). If we were looking for
bright solitons, as we did in [13], we would pick P¼0 and this in
turn would simplify considerably the algebra required in the
analysis of the dynamical system described by Eq. (4); here, instead,
we focus on the general case Pa0. As a first example, we consider
an array with uniform nonlinearity (i.e. d¼0). In Fig. 2a we report
the bifurcation diagram of the amplitude Z of the fixed points as a
function of Q; unstable fixed points and thus dark solitons do exist
only for Q oarccosðsPð3þk2

1Þ=16Þ; note that the unstable fixed
points here correspond to two different branches with different
generalized phase ðm¼ 7p=2Þ. In Fig. 2b we report the phase plane
analysis of the system and we see two saddle points at m¼ 7p=2
and Z¼ ð16 cosðQ Þ�sPðK4

1þ3ÞÞ=ðsðK4
1þK4

2þ6ÞÞ; the separatrices
emanating from and sinking into the saddles turn around the center
located at m¼ 0 and Z¼ ð16 cos Q�sPðK4

1þ1ÞÞ=ðsðK4
1þK4

2þ2ÞÞ. The
existence of these saddle points is possible if the following con-
straints on Q and P are satisfied: 0oQ oarccosðsPðK4

1þ3Þ=16Þ and
0oPo16=ðsðK4

1þ3ÞÞ.
Fig. 3. Field evolution along the array for s¼2, d¼0, P¼1: the initial condition is the d

plane of system 4 is reported. (a) Q¼1 and v¼0. (b) Q¼0.7 and v¼0.5.
To test the validity of these results we use the obtained solutions
as the initial condition (i.e. at z¼0) in the numerical integration of
the equations describing propagation in the binary waveguide array
(i.e. Eq. (1)); the results are reported in Fig. 3a where the initial
condition corresponds to the trajectory enlightened with a thicker
line in the inset of the figure.

Note that propagation of this solution into the array reveals only
a small amount of radiation (almost nonvisible) thus proving the
validity of the continuum approximation. Moreover, these solutions
are strong enough to survive for nonzero transverse velocities: in
Fig. 3b we report one example of nonzero transverse velocity and
we observe once again that the continuum system is able to capture
the nature of the discrete one. Also in this case the amount of
emitted radiation is negligible.
ark soliton solution corresponding to the thicker line in the inset where the phase



Fig. 7. Field evolution along the array for s¼2, d¼2.1, Q¼1.7, P¼1 and v¼0. The

initial condition corresponds to the separatrix enlightened in Fig. 6b.
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Fig. 6. s¼2, d¼2.1, P¼1.0, v¼0. (a) Bifurcation diagram of the Hamiltonian

system: continuous lines for stable centers and dashed lines for unstable saddle

points. (b) Phase plane analysis (Q¼1.7): the crosses correspond to the unstable

points and the dots show the stable centers. The thicker line is the heteroclinic

separatrix corresponding to solitons on a nonzero background.
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As a second example we consider the case of an array of
alternating linear–nonlinear waveguides, i.e. s¼d. The situation is
quite different with respect to the d¼0 case: two fixed points (one
center and one saddle) exist for Q op=2 whereas only one stable
center exists for Q 4p=2 (see Fig. 4a). In Fig. 5 we report the beam
propagation along the array using as initial condition the field
profiles obtained from Eq. (3) after having solved for the trajectory
along the separatrix described as a thick line in Fig. 4b. The third
example we consider corresponds to an array of alternating focus-
ing–defocusing nonlinearities, i.e. d4s (s¼2 and d¼2.1 in what
follows). As we can see in Fig. 6a, for Q 4p=2 we find one center and
one saddle. In the corresponding phase plane in Fig. 6b we report the
heteroclinic trajectory emanating from and sinking into the saddle
points at m¼�p=2 and m¼ 2p�p=2. In Fig. 7 we show the field
evolution along the array using as initial condition the field profiles
obtained from Eq. (3) and corresponding to the separatrix enligh-
tened in Fig. 6b. Once again we can observe that propagation of this
solution into the array reveals again a negligible amount of radiation
thus proving the validity of our analytical approach.
4. Conclusions

In this work we have obtained dark and antidark soliton
solutions in a binary waveguide array with alternating positive
and negative linear couplings between adjacent waveguides and in
the presence of focusing and/or defocusing Kerr nonlinearity. These
solutions do exist also in a linear–nonlinear interlaced array and
they even survive in focusing–defocusing interlaced arrays. We have
also numerically verified the soundness of our approach by a
detailed comparison with exact results obtained by numerically
solving the discrete system; remarkably our results, obtained in the
framework of a continuum approximation, retain their validity also
for very strong degrees of localization.
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