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a b s t r a c t

We classified the decoupled stochastic parallel gradient descent (SPGD) optimization model into two
different types: software and hardware decoupling methods. A kind of software decoupling method is
then proposed and a kind of hardware decoupling method is also proposed depending on the Shack–
Hartmann (S–H) sensor. Using the normal sensor to accelerate the convergence of algorithm, the
hardware decoupling method seems a capable realization of decoupled method. Based on the numerical
simulation for correction of phase distortion in atmospheric turbulence, our methods are analyzed and
compared with basic SPGD model and also other decoupling models, on the aspects of different spatial
resolutions, mismatched control channels and noise. The results show that the phase distortion can be
compensated after tens iterations with a strong capacity of noise tolerance in our model.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Many optical systems usually work in the stable environment
to keep the high performance. When the stability is disrupted,
they usually suffer the performance degradation due to the
dynamic perturbation of external environment like the atmo-
spheric turbulence. Thus, the perturbation needs to be removed
to improve the performance with regard to the laser beam
combination [7], optical imaging in telescope, etc. The active
correction methods are usually used to correct the dynamic
distortion. The dominating method is the wave-front conjugation
correction thanks to the accurate measurement by the wave front
sensor (WFS) and the key component deformable mirror (DM) in
most cases as corrector. As higher spatial resolution of the imaging
system is required, the actuators of DM need to be increased
enormously. Estimation shows that the efficiency is lowered as N2

when the control actuators number N increased and the matrix
computation involved in Wave-front Conjugation correction
(WFC) is only efficient for low resolution (No200–300)[4]. The
direct substitution with high resolution device in the primary
system is almost infeasible, while the advanced controlling
method is necessary.
ll rights reserved.
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.

The other type of the active correction method is the model-
free optimization, which is also named image sharpening correc-
tion method and is nearly discarded in the last century due to its
low computation performance and heavy computation burden [9].
Nevertheless, with improvement of the computation capability of
modern computers and the demand of the high resolution control,
it is possible to reactivate this technology which has the advantage
of simple structure without wave-front sensors. Several decades
ago, the typical optimization algorithmwas the climbing mountain
algorithm [6] and currently turns to the stochastic parallel gra-
dient descent (SPGD) optimization algorithm [7,8,11,12,14,16].
They have low convergence velocity since the normal performance
metric referred to the light intensity is coupled into global control
information such as metrics correlated to light intensity [13]. The
convergence velocity of SPGD algorithm is reduced by

ffiffiffiffi
N

p
when the

control channel N increased [10].
A number of researchers have applied the SPGD algorithm

successfully to many aspects like coherent beams combination [7],
laser beam clean-up [25], atmospheric laser communications [26],
etc., where the aberration usually changes slowly. However, very
few people concentrate on the improvement of the algorithm
performance to extend it to the more general condition. Vorontsov
proposed a decoupled SPGD (DSPGD) [13,15] algorithm incorpor-
ating wave-front senor aiming to decouple the performance
metric to accelerate the convergence. However, the wave-front
sensors based on interferometer is not easy to be realized and will
make the system more complex. This may turn the merit of
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unnecessary WFS to the shortcoming. If and only if the radically
enhanced performance can be gained, it is possible to introduce
the WFS in SPGD model. In this paper, a simple decoupled method
is reconsidered based on atmosphere turbulence without sensors,
and also another decoupled method with novel S–H wave-front
sensor as a slope sensor is proposed. These are the main concern
of the improvement of SPGD algorithm in this paper. This may also
be extended to other optimized evolving algorithms, such as
genetic algorithm [28], simulated annealing algorithm [29], etc.

In Section 2, we firstly classified the decoupled method into
two different types, software and hardware decoupling. In soft-
ware decoupling, the normal SPGD algorithm depending on the
control of Zernike basis instead of voltages of corrector is con-
sidered as a decoupling way which is analyzed in a new point of
view. In hardware decoupling, we then develop a new model
which is delineated explicitly based on normal S–H sensor. In
addition, all of the DSPGD control methods are analyzed based on
low orders of Zernike aberration in this part. In Section 3, the
mismatched model between wave-front sensor and corrector
related to the different control channels is analyzed in detail. In
Section 4, the noise tolerance is discussed. In Section 5, on the base
of numerical simulation, the DSPGD method is investigated
through correcting atmospheric turbulence aberration on different
spatial resolution(8�8, 16�16 and 32�32 control channels).
Fig. 1. Soft decoupled SPGD model.
2. Development of decoupled SPGD optimization technique

2.1. Overview of both SPGD algorithm and original decoupled
methods

Firstly, SPGD algorithm will be reviewed below. It is a model-
free iteration control method, which is initialized in 1997 by
Vorontsov [11]. The basic iteration equation is

unþ1ðrÞ ¼ unðrÞ�γδJδuðrÞ ð1Þ

u is the control vector of voltage which is applied on Deform-
able Mirror(DM). r is the spatial coordinate. n is the iteration
number. γis the ration scale. J is the optimized target function and
is also used to be the performance metric. δJis the performance
metric variation. δuðrÞis the perturbation voltage vector, which
follows the Poisson random distribution or Gaussian random
distribution on each iterative step, e.g. the probability density
distributionPðδu¼ 7τÞ ¼ 0:5. γδJ δuðrÞis approximate to gradient
(�du=dt) of control vector. There are many performance metrics
which are commonly used for the specific applications.

J1 ¼
∬

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�x0Þ2 þ ðy�y0Þ2

q
Iðx; yÞ dx dy

∬ Iðx; yÞ dx dy ð2Þ

J2 ¼∬ I2ðx; yÞ dx dy ð3Þ

J3 ¼∬RIðx; yÞ dx dy ð4Þ

J4 ¼
Imax f ðx; yÞ
Ithmax f ðx; yÞ

ð5Þ

x;andy;are the light intensity distribution centroid, x and y are
the distribution coordinates of light intensity. I(x,y) is the light
intensity on every pixel. Imaxf is the experimental maximum light
intensity of far field and Ithmaxf is the theoretical maximum
light intensity of far field. As far as we know, the mean square
radius of metric J1 is the most effective performance metric [27]
since it combines the light intensity and location information. J2, J3
and J4 are only referred to the entire light intensity or partial
intensity. J4 is also the definition of Strehl ration. Imax ¼max
∬ F Aexpð�iφÞ� �� �2, where F{} is the symbol of Fourier transform
operator; max() is the operator of gaining maximum value; A is the
wave-front amplitude and φ is the distortion phase distribution. For
different applications, the choice of the performance metrics may be
diverse, but all these performance metrics mentioned in this paper are
all on the base of Strehl for convenience.

Although the convergence can be accelerated by selecting
suitable performance metric, it still needs over hundreds of
iterations [27]. The main cause of the slow velocity is the coupled
performance metric. It is also analyzed by M.A.Vorontsov [13] who
has put forward several general decoupled methods. Here, the
concept is repeated and some different ideas are generated. Let us
decouple the J in Eq. (1): J ¼ j1; j2…; jn; jn is corresponding to the
DM actuator distribution. Then the iterative equation is

unþ1ðrÞ ¼ unðrÞ�γðδj1; δj2; :::; δjnÞ δuðrÞ ð6Þ

The metric variation δj in Eq. (6) is defined in Eq. (4) and
usually converges to minimum.

The advantage is that it can accelerate the convergence
effectively whereas it makes the system more complex, since it
needs new module such as interferometer. There is not a standard
module like interferometer realized in the system up to now. So
the goal that we want to achieve is to develop a most probable
method based on the existing system to explore the decoupling
algorithm.

2.2. Software decoupled method

If we only consider the decoupled metric in Eq. 6, the focus is
thus to decompose the wave-front on an intelligent way. Because
the wave-front can usually be decomposed by orthogonal Zernike
basis or Karhunen–Loeve modes [1], the general idea is to look for
the correlation between the orthogonal modes and the control
vector.

When we consider the aberration correction of the atmo-
spheric turbulence, there is an accelerated SPGD method called
Model SPGD correction [12]. This method transforms the opti-
mized voltage vector of corrector to the mode coefficients of wave-
front Zernike basis without introducing any extra hardware.
It could be defined as a soft decoupled correction method(SDC)
while the method proposed in [13] could be defined as a
decoupled correction method(HDC) with hardware. In SDC, J is
the decoupled metric on the base of Zernike basis. The interested
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basis order depends on the number of DM actuator. γis the
amplitude of δuðrÞ which is usually a constant for each control
channel. The ration of Zernike basis coefficient varies with differ-
ent types of aberrations. For instance, in atmospheric turbulence
which is affected by wind [2], the tip-tilt error and defocusing
error take up over 80%. If the jn, the ratio of each decoupled
performance, can be adjusted according to the proportional
turbulence Zernike coefficient, or in another speaking, the pertur-
bation could vary with the Zernike coefficients, we can accelerate
the convergence extremely. Fig. 1 denotes the soft decoupled
model. Theoretically, if we can decouple metric J for each channel,
the convergence velocity is only limited by the slowest control
channel. However, the complete decoupling is obviously too
difficult to be achieved in reality. The partial decoupling usually
can be achieved such as metric jn above. This could be also
considered as mismatched situation described in Section 3.

SDC is generally difficult to be achieved since the ration of each
Zernike basis is usually the statistical value which is difficult to be
acquired in practice. In addition, we only optimize the low orders
of Zernike coefficients that we are interested in and usually ignore
the residual higher orders. The proportionρ2j of atmospheric
turbulence parameters depending on the Zernike basis is listed
in Table 1. The first term of Zernike modes is the piston error
which can be approximated to the wave-front average phase and
be usually omitted in the normal correction.

Now the iterative equation correlated to Zernike mode coeffi-
cient is

unþ1
z ðrÞ ¼ un

z ðrÞ�γδJz δuzðrÞ; ð8aÞ
where

δuz ¼ δu�ρu ð8bÞ

ρuis the weight mentioned by Vorontsov [12] and δuz is the
new perturbation based on residual aberrations. The perturbation
optimization is beyond the definition of SPGD algorithm men-
tioned above. We maintain the initial perturbation and then
decouple the metric J as Jz ¼ J�ρu. Now we can get

Jz ¼ ðjz1; jz2…; jznÞ ð9Þ

Eq. (9) shows that the performance J is decoupled based on
Zernike basis. Then we can write it as a new type:

δJz ¼ δJ�ðjr1; jr2;…; jrnÞ ð10Þ

jrn is the nth order of Zernike basis proportion ρ2j based on the
atmospheric aberration (Table 1) and δJ is globally coupled metric
which is a scalar. δJz is a vector which is considered to be the
ensemble of individual jr. The updated equation Eq. (7) turns out
to be unþ1ðrÞ ¼ unðrÞ�γδJz δuðrÞ.

The distortions of phase correspond to the Kolmogorov turbu-
lence model in the analysis. The power spectrum of phase
fluctuations [17] is expressed by

GðqÞ ¼ ð0:023=r5=30 Þq�11=3 ð11Þ
q is the spatial frequency and r0 is the Fried parameter( it is also
the notable coherence length). All the corrected aberrations in this
Table 1
Residual Error Coefficient AN and variances proportionρ2j based on Zernike basis for com

order 2(tip) 3(tilt) 4(defocus) 5

AN 0.582 0.134 0.111 0.088
ρ2j 0.448 0.448 0.0232 0.0232
paper follow this spectrum. Then the software decoupled method
will be analyzed formally in the following.

The variation δJ of the normal metric of the SPGD algorithm is
expressed by δJ ¼ Jðϕþ δϕÞ�JðϕÞ, where J ¼ 1

ψ

R
ϕ2d2r. Then

δJ ¼ 1
ψ

Z
〈δϕ2〉d2r þ 1

ψ

Z
〈δϕ�ϕ〉d2r ð12Þ

ψ is the aperture size of corrector andϕis the wave-front which
is usually decomposed based on the Zernike mode coefficientsρ2j
in Table 1. The first term of Eq. (12) is fixed when current ϕ is
known and the key point is to maximize the second term. If we
consider the aberration based on the orthogonal Zernike basis,
residual aberrationϕand perturbation δϕ can be written as below
respectively.

δϕ¼ ∑
N

i ¼ 1
δaiZi; ϕ¼ ∑

N

i ¼ 1
aiZi ð13Þ

ai is the Zernike coefficient and Zi is the Zernike basis. Here, the
normal control vector consists of the voltage of each actuator,
so any control vector should be transformed to be the voltage
before it is sent to the corrector. In the Eq. (13), a¼ Au, where u is
voltage vector and A is transform matrix. After perturbation is
generated, in order to obtain control voltage, we should take
inverse operator of A. Then u¼ aAþ.

The perturbation of basic metric J in Ref [12] associated to
uncompensated aberration is

〈δJ〉� 2α0 ∑
M

j ¼ 1
〈ρ2j 〉 ð14Þ

The first M orders of aberration are assumed to be corrected. α0
is the correlation coefficient between wave-front perturbation
and Zernike coefficient of turbulence, which is usually a constant
and should be much less than 1 defined in Ref. [12]. The purpose
is to find the appropriate α0 to maximize〈δJ〉while achieving
the optimum correction at one iterative step. For simplification,
the correlation between residual wave-front and perturbation is
represented as

η¼ ∑
M

i ¼ 1
〈aiδai〉 ð15aÞ

In Eq. (15a), ai is the mode coefficient of the current turbulence
and δai is the current perturbation. In the SDC correction, the
convergent velocity is accelerated with maximizing correlation
coefficient between perturbation and residual aberration based on
Zernike modes. Then for normalization, Eq. (15a) can be rewritten
as

ηE ¼
∑M

j ¼ 1〈bjaj〉ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑M

j ¼ 1〈bj〉
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑M

j ¼ 1〈aj〉
2

q ð15bÞ

ηE is redefined as correlation coefficient in Eq. (15b). The con-
vergent velocity achieves optimumwhen η attains maximum. aj in
Eq. (15b) is identical with that in Eq. (15a). bj is the statistics
perturbation corresponding to statistics variance of atmospheric
pensation of Kolmogorov Turbulence.

6 7 8 9 10

0.065 0.059 0.053 0.046 0.040
0.0232 0.0062 0.0062 0.0062 0.0062
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turbulence. bj is the substitution of δai in Eq. (15a) for the general
definition.

The number of optimized coefficient M is usually smaller than
the number of control channels. We can also optimize the
interested modes when the wave-front phase is well cognized.
Even though the number of modes equates to that of channels, the
improvement is also obvious due to the increasing of the correla-
tion between wave-front and perturbation. The explicit analysis
will be conducted in 3ed section.

The theoretical analysis from Eq. (12) to Eq.(15) explains the
benefit of this method by some degree. However, it may confuse
the definition of SPGD. From Eq. (7) to Eq. (10), we should take this
into account and then bj should be redefined as jr in Eq. (10). Now,
it is assumed that the amplitudes of the perturbed coefficients of
the Zernike basis are transformed to be the amplitudes of the
decoupled performance metric. In another speaking, the perfor-
mance metric is decoupled by the proportional Zernike basis.
Then, the approximate gradient of each channel is obtained as
γδJδuðrÞ. In this case, instead of equation Eq. (15b) we have

ηNE ¼
∑M

j ¼ 1〈jrjaj〉ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑M

j ¼ 1〈jjrjj〉2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑M
j ¼ 1〈aj〉

2
q ð15cÞ

This is also the reason of the definition of software decoupled
method which is different from the work of Vorontsov [11].
Fig. 2. Shack–Hartman wave-front sensor.
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2.3. Hardware decoupled method

The HDC method depicted in Fig. 3(a) is on the base of wave-
front sensors. The general wave-front sensors are the interferom-
eters including point diffraction interferometer (PDI) and Zernike
phase contrast interferometer [13] etc. However, these wave-front
sensors are too complex to be realized in DSPGD model especially
for atmospheric turbulence. Here, another useful scheme is
described. In the WFC structure, the S–H sensor is a normal
wave-front sensor in adaptive optics systems.

The principle of S–H sensor is repeated simply again in Fig. 2.
The wave-front goes through micro lens array and then images on
the focus. The gradient can be obtained through comparison
between calibration and the real-time images. After that, the
wave-front is rebuilt by the gradient information with different
methods. For the typically modal correction, the equations are
listed below:

Sðx; yÞ ¼ ∑
N

i ¼ 1
AiZiðx; yÞ ð16Þ

Az ¼ BU ð17Þ
S(x,y) is the gradient distribution of incident wave-front. i is the

Zernike order. N is the total number of Zernike orders. Ai is the ith
Zernike polynomial coefficient. Zi(x,y) is the gradient of ith Zernike
polynomial basis. U is the voltage vector of DM. B is the influence
function of actuator. When the gradient is obtained firstly, the
Zernike coefficient matrix Az can be calculated from pseudo-
inverse operation of Z. Thus, we get A¼ S½ZZþ��1Zþ from Eq.
(16). Then the voltage can be calculated by B on the same methods
(U ¼ AzinvðBÞ) where inv() is the inverse operation. If we suppose
that the total Zernike orders are 30 and the matrix of wave-front
pixels size is 100�100, the size of matrix Ai will be 1�30 and the
size of matrix Z will be 30�10000. The computation budget will
be very huge especially over the thousand actuators.

The ultimate goal we want to achieve for correcting the
aberration is to minimize the gradient of WFS, in another speak-
ing, to flat the wave-front. Each sub-aperture gradient could be the
performance metric applied to SPGD. This can decrease the
computation burden effectively at the cost of reducing the close
loop bandwidths. Actually the mass centroid of sub-aperture beam
is only necessary on this method. Then the new metric is

Sr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSx�Sx0Þ2 þ ðSy�Sy0Þ2

q
ð18Þ
Beam splitter

Wave-front
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mixed Metric verctor
calculation
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GD model (b) mixed DSPGD model.
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The mass centroid is defined as Sx ¼∑xIðxÞ=∑IðxÞ; Sy ¼∑y
IðyÞ=∑IðyÞ in the Cartesian coordinate system. Sx is the mass
centroid of x direction coordinate and Sy is on the y direction. Sx0
is the mass cetroid calibrated on the x direction; Sy0 is calibrated
on the y direction; Sr is the relative radius of beam position which
will be the minimum after correction. The reason that we choose
Sr rather than metrics J1, J2, J3 and J4 described in the second
section is that the image received by detector for each sub-
aperture has fewer pixels and is insensitive to those metrics. Then,
the Eq. (7) becomes

unþ1ðrÞ ¼ unðrÞ�γðδSr1; δSr2;…; δSrnÞ δuðrÞ ð19Þ

The basic assumption is the identical control channels on both
WFS and DM. However, in practice, the actuators number is
usually less than the number of WFS sub-apertures. This is a kind
of mismatched condition which will be specified in the third
section. Even though the amount is equal, the scale is usually not
matched. The mismatched scale between DM actuator and WFS
subaperture has been analyzed based on continous surface DM in
Ref. [13].
Eq. (2).
2.4. Mixed decoupling method based on hardware

The number of continuous DM actuators is approximated to

N� ðD=r0Þ2 ð20Þ

D is the aperture of entrance pupil. The correction capability of
DSPGD model also depends on both the actuator number of DM
and sub-aperture number of sensor. The best condition is the
identical control channels of both DM and corrected Zernike
modes for turbulence. Then Eq. (20) becomes

NDM ¼Nmod es � ðD=r0Þ2 ð21Þ

In the specific method proposed based on the S–H sensor, the
normal metrics (J1, J2, J3, J4) cease to be effective since the light
intensity in a single subaperture is not enough to offer the
sensitive variation of the metric. For example, if there is a camera
with 8 bit referred to the gray level of 0–255 scale, the one unit
of the S–H sensor with 8�8 subapertures will only take the ratio
1/(8�8) of the entire light intensity of the pupil. The range of gray
level would be also reduced by about tens times. It is easy to
generate the idea to combine the far-field metric J in Eq. (2) and
S–H sensor metric in Eq. (18) since the global metric J2 is also
minimized like the slope in Eq. (18). The new iteration equation is
stated below.

unþ1ðrÞ ¼ unðrÞ�γðδSr1; δSr2…; δSrnÞδuðrÞ�ηγδJn δuðrÞ ð22Þ

Eq. (22) shows the combination of far-field metric and near-
field sensor metric in iterations. η is the adjustable parameter
which is usually smaller than 1 since the third term is the global
metric and changes slowly. In addition, ηshould be determined on
certain conditions. We call this method the mixed DSPGD
algorithm.

The mixed decoupling method makes use of the simple metric
effectively which may accelerate the convergence potentially.
However, there are problems probably when it is applied to
practical system since both sensor output and the optical detector
output may be out of sync where the metric does not fit to the
theoretical expectation. It is supposed that the process is perfect
synchronous in the discussion of this paper. In addition, another
new parameter η should be adjusted carefully.
2.5. Discussion of the decoupled methods

For the rough validity of the proposed methods above, the
simple aberration is corrected by different methods in this part.
The corrected aberration is the superposition of the first 10 orders
of Zernike modes with the coefficients in Table 1. In the SDC, the
first 5 orders is the optimized target. The corrector unit is typical
distribution of symmetrical rectangle with 8�8 channels. The
Strehl ration evolution of different methods for correcting the
same initial aberration(StrE0.27) is showed in Fig. 4.

In order to simplify the definition, we define the soft decoupled
method as DSPGD1, the HDC method with new performance
metric in Eq. (18) as DSPGD2, and the HDC method with perfor-
mance metric J2 in Eq. (2) as DSPGD3. DSPGD4 is the mixed
decoupling method with the iterative function in Eq. (22). Fig. 4
shows the almost identical performance of both the soft decoupled
method and the HDC method with new defined metric. The HDC
method with metric J2 only converges to the local extreme value,
because the sub-aperture of WFS matched to detector only has few
pixels which are not enough to build up the metric in Eq. (2). Fig. 4
also depicts that the DSPGD method converges to the extreme
value after 20–30 iterations while SPGD method needs hundreds
of iterations.

The simple model is built up to compare the proposed method
to the classical method in this part. Almost the identical perfor-
mance could be achieved by our two proposed methods in this
model and the great advantage of convergence velocity over the
normal SPGD algorithm is also revealed. This model is useful
especially for the aberration consisting of low order Zernike modes
like laser purification [25].
3. Discussion of mismatched control channels in decoupled
models

The complete decoupling means the elements numbers of both
metric variation δJand perturbation δuðrÞ are equal. However, the
WFS sub-apertures and DM actuators are usually not matched
with each other perfectly. Firstly, one sub-aperture of sensor will
be matched with more than one actuator. Secondly, more than one



Fig. 5. The structure of the 32�32 sub-apertures of S–H sensor which are divided
by 8�8 sub-apertures.

Q. Fu et al. / Optics Communications 310 (2014) 138–149 143
sub-aperture will be matched with one actuator of corrector.

NðδJÞoNðδuÞ
NðδJÞ4NðδuÞ

(
ð23Þ

The mismatched situations are listed in Eq. (23). Nð�Þ denotes
the element number of the vector. The mismatched cases are
obviously in HDC between sensors and correctors. There is still the
mismatched situation in the SDC model without wave-front
sensor. In SDC correction, it is inevitable to analyze the number
of metrics which is more than the number of perturbed control
channel since the orders of Zernike modes are usually less than
actuator number of correctors[12].

3.1. Mismatched control channels in SDC

It has been analyzed that the DM with a certain structure has
the certain correction capability when it is applied to atmospheric
turbulence [2]. When the DM is fixed on the telescope pupil, the
actuator spacing d is related to r0 which determines the ‘fitting
error’ of DM. The analysis [2] shows that the corrected Zernike
modes number should approximately equal to the actuators
number. However, it is impossible to use the identical control
channels with actuators in SDC since the performance has been
improved through changing the big number of actuators channels
to a small number of Zernike modes. The first 10 orders of
aberrations are the key Zernike aberration and also the big scale
aberration of turbulence [17]. It is feasible and meaningful to
correct the concerned aberration by SDC method. The mixed
perturbation applied in SPGD algorithm has been analyzed in
Ref. [12] to accelerate the convergence.

It is assumed that the first N orders of Zernike aberration is
compensated and the DM correction capability is the first P orders
of aberration where PZN. Then the residual turbulence aberration
expectation becomes

〈Jr〉¼ ∑
P

j ¼ Nþ1
〈a2j 〉þ ∑

1

j ¼ Pþ1
〈a2j 〉 ð24Þ

The first term of Eq. (24) is the residual DM correction capability
and the second term is the ultimately residual error after the DM
reaching its limit. The residual errors of turbulence are s2N ¼
AN

D
r0

� �5=3
for Nr10 whereANis the fitting coefficient in Table 1 and

s2N � 0:2944N�
ffiffi
3

p
=2 D

r0

� �5=3
for NZ10 [2] where N is the corrected

orders and s2N is the residual variance. During the whole evolution
process, we can find that perturbation always exists. The perturbation
is invariable if the scaling factor is fixed. Thus, compared to the WFS
correction, this method would degrade the ultimate performance.
When the convergence goes to the stability, the gradient will achieve
the minimum, approximating zero, and hence the control vector will
not vary any more. The components of gradientγand δuzðrÞare the
constants while the only variable isδJz .

The adjustable parameters are the constants which should be
adjusted carefully to keep the perfect performance. In practice, it is
relatively difficult to adjust the parameter to be the optimum.
Then an extra term should be added to Eq. (24)

〈Jr〉¼ ∑
N

j ¼ 1
〈χ2j 〉þ ∑

P

j ¼ Nþ1
〈a2j 〉þ ∑

1

j ¼ Pþ1
〈a2j 〉 ð25Þ

It is assumed that the first N orders are the optimized targets
and the first P orders are the correction capability of the system in
Eq. (25). The first term is the statistical variance of the first N
orders of residual Zernike coefficients referred to perturbation δJz
which can be considered as noise in the fourth section. Then the
residual error is

s2N ¼ s2r þ AN
D
r0

	 
5=3

¼ Anew
D
r0

	 
5=3

;

where s2r is the residual variance of uncompensated Zernike
aberration which are still in the correction range of DM, D is the
aperture diameter of telescope and Anew is the new fitting
coefficient.
3.2. Mismatched control channels in HDC

The mismatched control channels are classified into 2 cases in
the HDC model stated in Eq. (23). The first case can be analyzed
and realized by simple way. The actuators of DM are grouped to
match the WFS. Each actuators group is treated as one unit and
one individual perturbation voltage will be exerted on it. The
grouped channels of sensor are depicted in Fig. 5. The white dot on
the black ground is the image of the sub-aperture of the sensor.
The red dashed line divides the sub-apertures of sensor into 8�8
groups. Each group fits to the corresponding channel of corrector.

The first case could be considered to be the partial decoupling
as the first equation of Eq. (23). In this case, we classified
the actuators of DM into different groups matched to sub-
apertures of wave-front sensor as described in Fig. 3. The specific
decomposing is

(26)
j in Eq. (26) is a local metric, corresponding to actuators on the
identical numbers, which will degrade the performance due to the
local decoupling. There are 2 different decoupling methods in this
case.
1.
 The sub-groups are combined to be an individual group applied
on single perturbation for single group where any sub-group
½δun1; δun2;…; δunn�can be shortened to be the ith element δui of
perturbed control vector in Eq. (26). Each sub-group is applied by
the same perturbation. This method could decrease the resolution
of the correctors whereas it is the complete decoupling.
2.
 The sub-group is considered to be the sub-system of SPGD
where ½δu1; δu2; :::; δun� could be a vector for different perturba-
tions. This method is a partial decoupling since each sub-group
could be considered as a individual SGPD systemwhere a single
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metric obtained from the sensor will be matched with a single
group. The individually iterative equation is unþ1

gi ðrÞ ¼ un
giðrÞ

�γðδjiÞδugiðrÞ where un
giðrÞ is the updated ith group of control

vector at nth step and δji is the ith element of the metric
obtained from the sensor. The actuators elements of each group
are applied to the different perturbations. This method may
increase the resolution of the first method at the cost of
decreasing the convergence velocity.

The best method is the combination of these 2 conditions
above if there is a unique corrector in the system. Then we get

unþ1ðrÞ ¼ unðrÞ�γ1ðδj1; δj2…; δjnÞðδu1ðrÞ; δu2ðrÞ;…; δunðrÞÞ
�γ2ðδj1; δj2…; δjnÞð½δu11ðrÞ; δu12ðrÞ;…; δu1nðrÞ�1;…;

½δun1ðrÞ; δun2ðrÞ;…; δunnðrÞ�nÞ ð27Þ

γ1andγ2are the adjustable parameters for the two methods in
Eq. (27) respectively. Eq. (27) is something like Eq. (22) where the
metrics of wave-front sensor and far-field detectors are combined.
Eq. (27) will degenerate to Eq. (22) if the ðδj1; δj2…; δjnÞare
combined together as δJin the second term.

The new idea can be generated that normal SPGD algorithm
could be accelerated based on the analysis above. Firstly, the wave-
front with big-scale aberrations are corrected by the grouped
actuators DM as low resolution corrector and then the small scaled
aberration could be corrected by the high resolution corrector. This
complicated model is called cascade adaptive optics system [8].

The second case is common, which we may encounter stated by
the second equation of Eq. (23). Decomposing the whole metric J
in Eq. (1) of normal SPGD algorithm, we then get

(28)
Fig. 6. Evolution of Metric Strehl with different sub-apertures and matched control
channels: 8�8, 16�16 and 32�32, the corrected aberration is a low order Zernike
aberration( within first 5 orders).
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Fig. 7. Evolution of Strehl with differently mismatched conditions. Black dot line is
for DSPGD model with matched 8�8 units, red dash line (M-DSPGD1) is for
mismatched model with 8�8 units sensor and 16�16 units DM where resolution
of DM is lowered to 8�8 by grouped actuators, blue line (M-DSPGD2) is for
mismatched model with 8�8 units sensor and 16�16 units DM, yellow line is for
normal SPGD model of 8�8 units DM without wave-front sensor. (For interpreta-
tion of the references to color in this figure legend, the reader is referred to the web
version of this article.)
Eq. (28) is the basic decomposition of metric applied in DSPGD
model. The initial information obtained from the sensor
isj11;j12;…j1n;j21; j22;…j2n;…jn1; jn2;…jnn. Then they are divided by
different group jnconsisting ofjn2;…jnn. Finally, the separated
metric jn matches to the control channelunof corrector. Comparing
Eq. (28) to Eq. (26), we could find the difference between the
number of decoupled metrics and the number of the control
channels of corrector. Eq. (28) is the more common case since
the sensor with the identical number of channels is low cost in
manufacture than the corrector. The more accurate metric should
be a weighted average since the grouped channels of practical
wave-front sensor as described in Fig. 5 is not matched with DM
actuators exactly. The weighted averagejncould bejn ¼ an1jn1
þan2jn2þ; :::; annjnn. ann is the weighted coefficient depending on
the actual architecture of wave-front sensor. The more compli-
cated metric J should be considered only for non-interfering wave-
front sensor.

However, the second case is a bit complicated while the
performance metric obtained from the WFS should be averaged
to fit to the channels of corrector. The difference appears in this
case that the method with PDI is available to get the metric while
the method with S–H sensor should adopt the new metric fitting
to the new condition. The performance metric variationδSri corre-
lated to the WFS sub-apertures

Sri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2ip1 þ S2ip2þ;…;þS2ipn

q
ð29Þ
Sipnis the slope of the nth sub-aperture of S–H sensor. Sriis the
sum of all slopes of the sensor. The purpose is to minimizeSrito
achieve the best Strehl ratio.

3.3. simulation analysis for mismatched model

Here, we still use the model as depicted in Section 2.5 to
analyze the mismatched condition. The channels of Corrector are
expanded to 8�8, 16�16, and 32�32. The corrected aberration
consisting of the first 10 orders of the modes is identical from
Fig. 6 to Fig. 8.

Fig. 6 depicts the average Strehl convergent results with
different resolution models. The convergence limits are almost
identical since the corrected aberration is the low order with big
scale. The Fig. 7 depicts the performance comparisons of different
mismatched conditions where the M-DSPGD1 stands for the first
case in section 3.2 and M-DSPGD2 stands for the second case. The
convergence results of partial decoupling of mismatched model
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with Eq. (27) for two mismatched conditions in Fig. 7(M-DSPGD1
and M-DSPGD2) show that the decreasing the resolution of DM
can accelerate the convergence at the cost of lowering the
convergence limit. The mismatched model in the second case
shows that the partial decoupling in Fig. 7(M-DSPGD2) lowers the
convergence velocity apparently where it needs about 100 itera-
tions to go to limit for low order aberration. This is still much
better than normal SPGD model which needs over about 200
iterations to go to limit. The convergence limit of Strehl is only
about 0.8 in Fig. 7 because of the limitation of DM resolution.

For the interfering wave-front sensor like PDI, jn could be
expressed as jn ¼ jn1 þ jn2þ;…;þjnn which is the same to the
second case in Section 3.2. The convergent velocity of DSPGD
method with this metric can achieve the optimum compared to
the matched structure sincejnas the light intensity in Eq. (3) is
sensitive to the phase changing. Fig. 8 depicts performance of the
hardware DSPGD method based on wave-front sensors differed in
sub-aperture number and the corrector with the identical number
of actuators. Different resolution models show the almost identical
performance especially for iterations in Fig. 8. There is slight
difference among the convergence limits of three conditions due
to the low resolution of simulation. We just use the simplified
model to validate the analysis above, so the precision could be
limited. The more explicit simulation is depicted in Section 4.
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Fig. 9. Strehl evolution for atmospheric turbulence affected by noise of different scale
(b) noise impact on S–H sensor.
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Fig. 8. The averaged results of convergence based on different kinds of mismatched
corrector and wave-front sensor. The corrector consists of 8�8 units and the wave-
front sensors consist of 8�8 units (blue line), 16�16 units (red dot) and 32�32
units (black dot-line) respectively. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
4. The effect of system noise on DSPGD algorithm

In the WFS, it is inevitable to confront the vast majority of noise
as analyzed in WFC [18,22], but there are still some other problems
which should be noted. Because SPGD algorithm is an iterative
method, the random perturbation in Eq.(6) is approximated a part
of the noise. Thus, the perturbation would be analyzed specifically
in this part.

According to the source of perturbation, there are two types of
SPGD algorithm [19]. One is the perturbation of algorithm on
single direction and the other is the perturbation on double
direction consisting of positive and negative parts in single
iteration. Here two types of variation of metric J in original
Eq. (1) are

δJn ¼ Jn�Jn�1 ð30aÞ

δJn ¼ Jnþ�Jn� ð30bÞ

Eq. (30a) shows the single direction which means the metric J is
obtained from the different iterative steps. The iterations in double
directions in Eq. (30b) show that the metric J is obtained from the
individual iteration step. Jnþand Jn�denote the positive and nega-
tive perturbation on each iteration respectively. The iteration of
algorithm on double directions is usually superior to that in the
single direction since the former is not sensitive to the variation of
performance metric including noise at the last step. So the
perturbation in double directions can accelerate the convergence
better than that in single direction [19].

In Eq.(6), there are 2 elements which are sensitive to the noise.
One is the voltage U(r) and the other is the performance metric (j1,
j2,…, jn). In the SPGD algorithm, the perturbed amplitude must be
bigger than noise, otherwise the parameters will be contaminated
resulting that the algorithm cannot converge to the limit. Con-
versely, the perturbation could not be too larger to exceed the real
gradient, otherwise leading to oscillation of correction all the time
with large scale. Because the performance metric is decoupled to
be small elements, the DSPGD model is sensitive to the noise than
normal SPGD. The iterative equation could be written as follow.

unþ1
iþ1 ðrÞ ¼ ðun

i ðrÞ þ ΔuiÞ�γðδj1 þ Δi1; δj2 þ Δi2;…; δjn

þΔjinÞðδuðrÞ þ ΔδuðrÞÞ ð31Þ

Δui stands for the voltage noise; Δji1is the performance noise
and ΔδuðrÞstands for the perturbation noise. We can extract the
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noise terms easily from Eq. (31). Thus, we get

Ω¼Δui�γðΔji1;Δji2;…;ΔjinÞδuðrÞ�γðδji1; δji2;…; δjinÞΔδuðrÞ ð32Þ

Ωstands for the noise ensemble of all terms and could be also
the noise of updated voltageunþ1

iþ1 ðrÞ.δuðrÞis the perturbation con-
taminated by the noise. Then δuðrÞ ¼ δuðrÞ þ ΔδuðrÞ. Here, the
analyzed noise is additive. The multiplicative noises are usually
not taken into account for most detectors. The additive noise
usually consists of readout noise, photos noise and dark current
noise, et al. The perturbation noise ΔδuðrÞ could usually be
neglected, since the noise is always the Gaussian type distributed
like the perturbation. Their summation also fits to the Gauss
distributed process. Then the noise of the third term in Eq. (32)
could be a part of iterative process in Eq. (6). Eq. (33) can be
shorten to be

Ω¼Δui�γðΔji1;Δji2;…;ΔjinÞδuðrÞ ð33Þ

Eq. (33) seems to be a iterative equation of DSPGD in Eq. (6).
The difference is that the optimized target is the voltage noise Δui

in Eq. (33) and the noise is random on each iterative step.
Eventually, the main noise sources which we should consider are
the noise Δj of the performance metric J and voltage noiseΔuðrÞ.

The calculated model is the same to that in Section 2 and the
corrector is 8�8 units matched to point diffraction interferometer.
Fig. 9 shows the sensitivity to the noise with different signal noise
ratio (SNR). The noise ratio is defined by Rnoise ¼ Varnoise=Varinitial
where the Var is the symbol of variance. In the simulation, we found
that the two main sources of the noise almost exerted the same
effect on the model. Then the only one kind of noise left to be
analyzed. The mean value of noise is 0 and RMS varies. In addition,
the adjusting parameter γ is reduced gradually followed by the
noise growing larger. The phenomenon shows that the noise Δj is a
kind of perturbation if it fits to the initial perturbation typeδuðrÞ.
The convergence velocity becomes slow and the limit is also
decreased with noise growing as showed in Fig. 9. When Rnoise is
bigger than 0.15, the ultimate Strehl is reduced by almost 10%. The
decoupled method with S–H sensor is similar to that with inter-
ferometer sensor where the limit of convergence also degrades
along with the increasing of the noise ratio. The comparison
between Fig. 9(a) and (b) shows that the decoupled method with
S–H sensor has the bigger noise tolerance than the method with
interferometer. For another speaking, the method with slope-type
sensor is less sensitive to the noise than that with interferometer
sensor. This can be generally accounted for by the different principle
of the sensor used with which we obtain different metrics.
Considering the general point- to-point interferometer, noise on
each sampled point will directly affect the light intensity of each
pixel. However, for the S–H sensor, only all the noise points in a
subaperture affect indirectly a single slope.
5. Simulation analysis under atmospheric turbulence

5.1. Numerical model

We only analyze the type of continuous-deformation DM since
almost all of the DM with high units (over 100) for correcting the
atmospheric turbulence are continuous [3,5]. The wave-front grid
size is 128�128. The geometrical shape of the sub-apertures for
both DM and WFS are identical. The soft decoupled SPGD model is
described in Section 3A. The aberration of atmospheric turbulence
is generated as the incident wave-front by the first 20th Ed Zernike
basis with the statistical coefficients [2] of atmospheric turbu-
lence. The HDC method incorporates both the typical point
diffraction interferometer [15] and S–H sensor as the wave-front
sensors. Each model is simulated by average of 50 phase screens.
The configuration is the same to Fig. 1. The Peak-Valley value of the
incident wave-front phase of atmospheric turbulence is about
4.5 rad; the Root-Mean-Square (RMS) is about 1.2 rad and the
Strehl ration is around 0.27. The wave-front does not consist
of the first (piston) and the second (tip-tilt) Zernike aberration.
All of the simulation work is on the base of the Matlab software of
MathWorks Company. In addition, the mismatched corrector and
sensor [13] are not analyzed.
5.2. Correction for static aberration

The soft decoupled correction (DSPGD1) method is shown in
Fig. 10(a) compared to the normal SPGD algorithm(red line). The
convergence line of soft decoupled SPGD model with unoptimized
perturbation (δu in Eq. (7) with random distribution) is also
depicted in Fig. 10(a). Fig. 10(b) shows that the improvement of
correlation defined in Eq. (15c) between perturbation and residual
wave-front can accelerate the convergence and that is also the
reason of definition of soft-decoupled method(SDSPGD). Further
more, the correlation coefficient of the normal SPGD model (red
dot-line) is random showed in Fig. 10(b). The correlated coefficient
of normal SPGD is calculated by Eq. (15b) after transforming the
perturbation δu to the Zernike modes coefficients. The soft
decoupled method is only implemented for the first 10 orders of
Zernike aberration which are the main aberrations for atmosphere
turbulence aberration showed in Table 1. The SDC method can
also converge to the extreme value after 30 to 40 iterations.
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This requires that the statistic Zernike aberration components of
wave-front should be learned previously.

The results in Fig. 11(a) show that the 8�8 channels of low
resolution corrector is insufficient to correct the aberration com-
pletely while the high resolution corrector with 16�16 and
32�32 units can compensate the distortion with the limit of
Strehl ratio to over 0.9 on the same velocity only after 30–40
iterations. The comparison of different HDC methods is showed in
Fig. 11(b). For the complex aberration, the mixed decoupling
method (red dot line) in the Fig. 11(b) with S-H wave-front sensor
is superior to the single S–H decoupled method(blue dashed line).
The reason is that S–H sensor is not the point-to-point mapping
sensor which could be sensitive to the noise with small scale. We
have showed that the single low order aberration could be
corrected based on S–H sensor as well as PDI sensor in Fig. 4.
For the turbulence aberration including more than the 10 orders of
Zernike aberration, the gradient information is insensitive to the
phase variation compared to the interferometer type sensor. The
DSPGD model with S–H sensor is apt to trap in the local extrimum.
In the simulation, we find all the repeated iterations with S–H
sensor are trapped in the local extreme like Fig. 11(b) denoted. The
metric obtained from S-H sensor combined with far-filed Strehl
could converge to global extremum in Fig. 11(b).

The ultimate residual aberration after correction with mixed
hardware methods (DSPGD4) is compared to that with PDI
method(DSPGD2) in Fig. 12. The S–H wave-front sensor is impos-
sible to detect the piston type aberration [1], but the 2π ambiguity
does not appear. The HDC method with S–H wave-front sensor is
also impossible to correct piston aberration [13], but the 2π ambi-
guity exists in most cases as depicted in Fig. 12(b). Two adjacent
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Fig. 12. Comparisons of residual wave-fronts after correction of the identically incident
(a) DSPGD4 correction results with 8�8 units corrector (b) DSPGD2 correction results
domains are super Owing to the selected metric slopes of the
DSPGD4 method, the DSPGD4 method is able to suppress the 2π
ambiguity since slopes is very sensitive to the variation of the
controlling voltage.

The advantage of S–H wave-front sensor is that we can use S–H
wave-front sensor or other slope-type sensor effectively under
existing WFC system without designing any other complex device.
Although the HDC method is a bit worse than the other decoupled
methods, this method can correct the atmospheric aberration
potentially with the easiest method to be implemented. The
iterative correction method relies on the processing power of
computation where the normal SPGD method has been realized by
very large scale integration circuit (VLSI)[20,21]. It is supposed that
a static aberration can be corrected at 30–50 iterations showed in
this paper and the WFC correction method bandwidth is about
1 k Hz. On the one hand, the situation that there are 3 times of
sensor readouts time during each time of iteration of DSPGD
model may decrease the bandwidth severely. On the other hand,
there is no big matrix computation in the DSPGD method. This can
save a bit time. The ultimate bandwidth can be estimated about
1 k/40 Hz on the identical computation ability for DSPGD correc-
tion model compared to the WFC correction.

5.3. Correction for aberration affected by dynamic atmosphere
turbulence

The model-free optimization could be considered as an open
loop control due to its relatively slow convergence rate which
is implicitly performed on low wind velocity. On the contrary, if
the capability of the device calculation could be improved, the
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shortcoming of the model would be overcome on some degree.
The dynamic model of the atmospheric turbulence is build up
according to the method in Ref. [23]. The first-order autoregressive
model is introduced to describe the state equation:
φnþ1 ¼ Aφn þ snwhere φnis the current state of atmospheric tur-
bulence, φnþ1is the following state and snis the white noise of
covariance matrixCν. Cνcan be obtained by Cν ¼ ACφA

T�Cφ where
Cφ is the Zernike-basis covariance and AT is the transposition of
the diagonal A defined in Ref.[24]. Thanks to the modal cut-off
frequency of the Power Spectral Density of a Taylor turbulence
phase, the diagonal elements could approach to ai ¼ expð�0:3ðnþ
1ÞV=ðf DÞÞ where ai is the ith diagonal element, n is the radial order
of Zernike basis, V is the wind velocity, f is the clock frequency and
D is the diameter of the telescope. Currently, the dynamic part is
the wave-front φn which is shifted by wind V. D/r0 is used to
characterize the atmosphere turbulence strength for the receiver
system with the pupil D. Here, D/r0 is set by classical ratio 6; f is
1000 Hz; n is 11 (the amount order is reduced to 72)and D is 0.8 m.

The HDC method based on S–H sensor is compared to that
based on PDI sensor for correcting the classical atmosphere
turbulence with different wind velocity depicted above. The
number of control channel is 8�8 and The subapertures of both
sensors are 32�32. Therefore, the mismatched model in Eq. (28)
is analyzed in this part. We investigated the achieved Strehl ratio
after 100 iterations for different wind velocity on the same D/r0.

The starting points of all curves in Fig. 13 are random since each
convergent process is conducted on the respective turbulence
evolution Cφ with the random process noise. When the wind
velocity is increased, both convergent limits are decreased and the
convergent processes become unstable in Fig. 13. The worst
processes fluctuating severely on the wind velocity 10 m/s means
that the wind velocity becomes unacceptable at this level. The
convergence with S-H sensor is a little worse than that with PDI
sensor since the method with PDI sensor only make use of the
single perturbation given in Eq. (19), while the method with S–H
sensor needs the mixed perturbation with two kinds of perfor-
mance metrics given in Eq. (22). For the mediumwind velocity less
than 5 m/s, the 40–60 iterations will be needed to achieve the
stable correction. Although the method with S-H sensor is not as
good as that with PDI sensor, there is of interest to explore it in
practice since the sensor is commonly used in traditional adaptive
optics system. We have to indicate that the normal SPGD algo-
rithm is not showed here since only the low wind velocity not
more than 1 m/s will radically impact the performance (1 m/s
leading to the lost convergence) at the same clock frequency to
the above.
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Fig. 13. Correction for dynamic atmosphere turbulence on different wind velocities
(1 m/s, 5 m/s and 10 m/s). The HDC method based on PDI sensor is on the lines of
blue type. The HDC based on S–H sensor is on the lines of red type.
5.4. Discussion

We have compared the static and dynamic correction above
between different methods. In the dynamic condition, the system
seems not fast enough to correct the aberration in the medium
turbulence. It is still necessary to state the algorithm in the other
applications. Apart from the advantage stated, the shortcoming
should be focused on as well. The main drawback is that the
bandwidth is deduced severely when the extra sensor is intro-
duced. This may be overcome when Very Large Scale Integrated
Circuit(VLSI) substitutes the normal PC. Because the wave-front
senor is added to the model-free method, the system model may
be much more complex. In addition, the constraint of the specific
sensors should be considered such as sensitivity to the noise. Up to
now, there is no standard sensor applied in decoupled method, so
a set of sensors should be tested such as S–H sensor of the slope
type sensor and interferometer type sensor. Moreover, the system
correction capability should be estimated based on the WFC
method. The comparison between WFC and model-free method
is on the aspects of the control algorithm, system architecture,
residual error, demand for Luminous flux, etc.
6. Conclusion

We mainly concern the improvement of the SPGD algorithm in
this paper. The SDC method and HDC method are discussed
explicitly. Based on hardware S–H sensor of the decoupled
method, the wave-front conjugated correction is linked initially
and efficiently to SPGD algorithm of model-free methods. The
results of numerical simulation present that it is not as good as the
completely decoupled SPGD method incorporating interferometer
sensors, whereas it is superior to normal SPGD algorithm. The
basic DSPGD method with S–H sensor is not available to achieve
the best convergent limit. It should combine the far field metric or
any other global metric obtained from the sensor to form a mixed
DSPGD method achieving the high convergence velocity when the
atmospheric turbulence aberration is corrected. In the current AO
system, only using the algorithm without updating any hardware
seems impossible to play a role in the stronger turbulence.
However, there is still the potential prospect applied in the
existing optical system when the slow variation of wave-front
aberration appears. The noise impact on DSPGD method is also
analyzed in the paper. The results show that the decoupled
method with S-H sensor is more robust to the influence of noise
than that with PDI sensor.

The soft decoupled method could be useful when the wave-
front aberration mainly consists of the low order or big scale error
which should be tested in real-time environment. For other
applications, the hardware decoupled correction could be a
potential consideration. In addition, the mismatched control
channels could be met frequently for the existing systems which
should be analyzed according to the methods in the paper. The
experiment setup will be built up in the lab incorporating the S–H
sensor to test the DSPGD method next.
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