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Abstract

Recently a novel method has been proposed for the calculation of the scattering of an incoming electromagnetic

wave by an arbitrarily shaped photonic crystal. The method rests on the representation of an arbitrary electromagnetic

field inside a volume V by a fictitious surface current distribution along the boundary of this volume which acts as a

source for a point response tensor for the medium. The validity of such a representation is rigorously proven.
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1. Introduction

The appropriate analytical and numerical de-

scription of the scattering process of electromag-

netic waves by photonic crystals is of great

importance for our understanding of their behav-

iour and potential use. During the past decade,

much theoretical effort in this field has been de-
voted to calculating photonic band structures and

densities of states for ideal infinite crystals [1–10].

However, such calculations do not suffice to de-

scribe the optical response of real (finite) photonic

materials, as they do not account for the scattering
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of the light at the crystal’s surface. For instance,

the proper reflection of light on a photonic crystal

or a photonic coating on a waveguide clearly

involve such a scattering phenomenon.

Existing methods that deal with this scattering

problem, are e.g. the transfer-matrix method

[11–13], the repeated-supercell method [14] and the

generalised field-propagator method [15–18]. The
transfer-matrix method assumes that the crystal

can be built up from thin infinite layers whose

scattering properties can be treated perturbatively

(weak scattering). This leads to the calculation of a

transfer matrix for each layer. Proper multiplica-

tion of the transfer matrices of all layers gives the

transmission and reflection for a crystal slab. The

repeated-supercell method applies the transfer
concept for finite-size structures by artificially

making them infinite by periodic repetition.
ed.
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Finally, the generalised field-propagator method

formulates the interaction problem in terms of the

appropriate three-dimensional vector integral

equations, which are then solved numerically.

These numerical computations are very time-con-

suming as a result of the three-dimensional nature
of the integral equations.

Recently we have proposed an alternative

method to deal with the scattering of light on the

boundary surface of photonic crystals, which takes

full advantage of the existing infinite crystal

bandstructure calculations [10]. This method was

based on the property that any solution to Max-

well’s equations in an arbitrary linear medium may
be considered as arising from one virtual current

density distribution on the boundary surface of the

medium. The main purpose of the present paper is

to proof that such a representation actually exists;

as far as we are aware, such a proof has not been

given for an arbitrary linear medium.

The proposed representation by means of sur-

face integrals (line integrals for two-dimensional
crystals) is a non-trivial extension of a similar one

valid for scattering by a perfect conductor, where

the field is generated by a real surface current. Our

representation clearly differs from the classical

one, known as the equivalence principle [19,20],

for two reasons. Classically, two virtual surface

currents as well as two volume-current distribu-

tions are needed to represent the field, instead of
only one surface current needed for our method.

Moreover, our representation allows to represent

the field either in terms of the Green’s tensor C
$

itself or, alternatively, in terms of r� C
$
. We call

this the equivalence of current- and dipole-layer

representations, similarly to their electrostatically

analogues [21,22].

The method put forward by us in [10] for scat-
tering of light on three-dimensional (two-

dimensional) systems, expresses the electromag-

netic fields on either side of the boundary by means

of surface integrals (line integrals). The integrands

of these integrals are virtual surface-current density

distributions times the appropriate point response

(Green)tensor, generating the electromagnetic

field. The continuity conditions of the electro-
magnetic field then lead to sets of linear equations

for the virtual current densities on either side
of the boundary with a two-dimensional (one-

dimensional) nature. This is what makes our

method numerically less time-consuming than the

generalised field-propagator method.

We note that our method to describe scattering

of light on an arbitrary linear medium may be
considered related, to some extent, to the method

of fictitious sources described by Boag et al. [23],

by Zolla et al. [24] and Garcia de Abajo et al. [25].

Nevertheless, our method is essentially distinct

from theirs, for various reasons. Firstly, they

consider fictitious currents on the surface of every

individual scatterer, which may consist of many

separate scatterers arranged on a lattice, whereas
we work with a virtual current distribution situ-

ated only on the boundary surface of the scattering

medium (e.g. a photonic crystal). Secondly, in our

method the scatterers do not need to be perfectly

conducting, as assumed in [23]. Finally, the con-

cept of Green’s functions in combination with the

virtual surface currents is not an ingredient of the

method employed in [23].
This paper is organised as follows: The proof of

our key result, viz. the representation of an arbi-

trary electromagnetic field in terms of one surface

current distribution is given in Section 2. The ap-

plication of the proven representation to scattering

problems (especially those for photonic crystals),

is given in Section 3. Finally, in Section 4 we

conclude.
2. The representation of the H field by surface

currents

In this section, we will present the proof of the

representation of the electromagnetic field by a

single current-density distribution at the surface of
a medium. The proof is valid for fields in both two-

and three-dimensional space. Our proof will be a

generalisation of those given in [21,22] for scalar

fields that obey the Laplace or Helmholtz equa-

tion, such that the theory becomes fully applicable

to electromagnetic (vector) fields, satisfying Max-

well’s equations in an arbitrary dielectric medium

with position dependent dielelectric constant eðrÞ.
In such a medium of volume V the magnetic field

vector HðrÞ satisfies the vectorial wave equation:
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r0 � ðgðr0Þr0 �Hðr0ÞÞ ¼ ðx=cÞ2Hðr0Þ ð1Þ
and any point response dyadic Green function

satisfies:

r0 � ðgðr0Þr0 � G
$
ðr; r0ÞÞ

¼ ðx=cÞ2G
$
ðr; r0Þ þ I

$
dðr� r0Þ; ð2Þ

where gðrÞ ¼ ðeðrÞÞ�1
and I

$
is the 3-dimensional

unit tensor.

To be specific, our aim is to prove that elec-

tromagnetic fields inside the volume V , written in

terms of their magnetic components HðrÞ, can be

expressed as an integral over the surface S of V of

a dyadic Green’s function G
$
ðr; r0SÞ times one effec-

tive surface current-density distribution Jeffðr0SÞ:

HðrÞ ¼
Z
S
G
$
ðr; r0SÞ � Jeffðr0SÞdr

0
S : ð3Þ

This will enable us to formulate the scattering

problem in terms of one surface current-density

distribution instead of two as would be needed

when using the classical equivalence principle

given in [19,20]. For the derivation of Eq. (3)
we need the vector analogues of the two Green

integral theorems. Using the vector identity

r � ða� bÞ ¼ b � ðr � aÞ � a � ðr � bÞ; ð4Þ
we can deriveZ
V
ðr0 � ðgðr0Þr0 � G

$
ðr; r0ÞÞÞ �Hðr0Þdr0

¼
Z
V
ðgðr0Þr0 � G

$
ðr; r0ÞÞ � ðr0 �Hðr0ÞÞdr0

þ
Z
V
r0 � ððgðr0Þr0 � G

$
ðr; r0ÞÞ �Hðr0ÞÞdr0 ð5Þ

andZ
V
G
$
ðr; r0Þ � ðr0 � ðgðr0Þr0 �Hðr0ÞÞÞdr0

¼
Z
V
ðgðr0Þr0 �Hðr0ÞÞ � ðr0 � G

$
ðr; r0ÞÞdr0

�
Z
V
r0 � ðG

$
ðr; r0Þ � ðgðr0Þr0 �Hðr0ÞÞÞdr0

¼
Z
V
ðgðr0Þr0 � G

$
ðr; r0ÞÞ � ðr0 �Hðr0ÞÞdr0

�
Z
V
r0 � ðG

$
ðr; r0Þ � ðgðr0Þr0 �Hðr0ÞÞÞdr0:

ð6Þ
Combining Eqs. (5) and (6) yields the vector form

of Green’s second theorem:Z
V

ðr0
h

� ðgðr0Þr0 � G
$
ðr; r0ÞÞÞ �Hðr0Þ

� G
$
ðr; r0Þ � ðr0 � ðgðr0Þr0 �Hðr0ÞÞÞ

i
dr0

¼
Z
V
r0 � ðgðr0Þr0

h
� G

$
ðr; r0ÞÞ �Hðr0Þ

þ G
$
ðr; r0Þ � ðgðr0Þr0 �Hðr0ÞÞdr0

i

¼
Z
S
n0 � ðgðr0SÞr0

h
� G

$
ðr; r0SÞÞ �Hðr0SÞ

þ G
$
ðr; r0SÞ � ðgðr0SÞr0 �Hðr0SÞÞ

i
dr0S ; ð7Þ

where, using Gauss’s theorem, the volume integral

over a finite volume V is turned into a surface

integral over a closed surface S, with the normal

vector n0 perpendicular to the surface and pointing

outward. All position vectors with the subscript
‘S’, for example rS , refer to positions lying on the

surface S. Position vectors with the superscript ‘)’
(‘+’), for example r� (rþ) will be used to refer to

position vectors inside (outside) the surface S.
Combination of Eqs. (1), (2) and (7) leads toZ

S
gðr0SÞ ðr0

h
� G

$
ðr�; r0SÞÞ � ðn0 �Hðr�0

S ÞÞ

þ G
$
ðr�; r0SÞ � ðn0 � ðr0 �Hðr�0

S ÞÞÞ
i
dr0S ¼ �Hðr�Þ

ð8Þ
for r� inside S andZ

S
gðr0SÞ ðr0

h
� G

$
ðrþ; r0SÞÞ � ðn0 �Hðr�0

S ÞÞ

þ G
$
ðrþ; r0SÞ � ðn0 � ðr0 �Hðr�0

S ÞÞÞ
i
dr0S ¼ 0 ð9Þ

for rþ outside S. Eqs. (8) and (9) are valid for any

field H and dyadic Green’s function G
$
that satisfy

Eqs. (1) and (2). The representation (8) for the

magnetic field inside S shows that this field is
represented by a sheet of vector ‘‘dipoles’’ r0�
G
$
ðr�; rSÞ0 with strength n0 �Hðr�0

S Þ and a sheet of

vector ‘‘charges’’ G
$
ðr�; r0SÞ with strength

n0 � ðr0 �Hðr�0
S ÞÞÞr0S . The terms ‘dipole’ and

‘charge’ originates from the analogy with the

corresponding dipole- and charge-layer-induced

fields arising in electrostatics, where a dipole dis-



1 This statement follows from the integral equation represen-

tation: G
$
¼ C

$
þ
R
C
$
� ðe� 1ÞG

$
where C

$
denotes any free space

Green tensor. As the second term involves integrations over C
$

only, the highest order singularity of G is dictated by C
$
.
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tribution at the surface generates a field propor-

tional to n � rG and a charge distribution at the

surface generates a field proportional to G, where
G denotes any scalar Green function occurring in

electrostatics. As our aim is to obtain a represen-
tation of the field in terms of a vector charge sheet

distribution only (viz. Eq. (3)) we observe that we

have obtained this goal if the dipole sheet distri-

bution is transformed to a charge sheet distribu-

tion. To this end we define the function W, which

is the ‘‘dipole sheet part’’ of Eq. (8):

WðrÞ �
Z
S
gðr0SÞðr0 � G

$
ðr; r0SÞÞ � ðn0 �Hðr�0

S ÞÞdr0S

ð10Þ
and prove the existence of a tangential current-

density distribution function JðrSÞ, such that

Wðr�Þ¼
Z
S
gðr0SÞG

$
ðr�;r0SÞ �Jðr0SÞdr

0
S for r� inside S:

ð11Þ

If Eq. (11) holds, it shows that every ‘‘dipole’’-

layer-induced field can also be represented by an

equivalent ‘‘current’’-layer-induced field, a result

known in the literature of scalar fields as the

equivalence of layers [21,22].

For convenience we define

VðrÞ �
Z
S
gðr0SÞG

$
ðr; r0SÞ � Jðr0SÞdr

0
S ð12Þ

and

XðrÞ � WðrÞ � VðrÞ

¼
Z
S
gðr0SÞ ðr0

h
� G

$
ðr; r0SÞÞ � ðn0 �Hðr�0

S ÞÞ

� G
$
ðr; r0SÞ � Jðr0SÞ

i
dr0S : ð13Þ

Eq. (13) shows that the transformation from a

‘‘dipole’’ layer to a ‘‘charge’’ layer distribution is

accomplished once we have shown the existence of

a tangential current-density distribution function

JðrSÞ, such that Xðr�Þ ¼ 0 for r� inside S. Explic-
itly, if Xðr�Þ ¼ 0, the representation Eq. (3) holds
with Jeffðr0SÞ ¼ Jðr0SÞ þ n0 � ðr0 �Hðr0SÞÞ:

For rS lying on the surface S and assuming that

the normal derivative n� ðr �WðrþS ÞÞ exists, we

know that (see [26] for the vectorial case and
[21,22] for the scalar case) there is a unique choice

for the function JðrSÞ, such that

n� ðr � Vðr�S ÞÞ ¼ n� ðr �WðrþS ÞÞ: ð14Þ
In other words, JðrSÞ is fixed by imposing (14). The

singular behaviour of the Green’s 1 tensor G
$

is

equal to the singular behaviour of the free-space

Green’s tensor C
$
, both inside and outside the

surface S. Let S0 � S be a small area around the

singularity of G
$
ðr; r0Þ at r0 ¼ r. Then it follows

from the standard theory of singular vector inte-

gral equations in [27, pp. 243–244] that the normal

derivative of VðrSÞ possesses a discontinuity at the

surface S, whose size is equal to JðrSÞ:
n� ðr � ðVðr�S Þ � VðrþS ÞÞÞ

¼ n�
Z
S0

gðr0SÞðr � G
$
ðr�; r0SÞ

� r� G
$
ðrþ; r0SÞÞ � Jðr0SÞdr

0
S ¼ JðrSÞ: ð15Þ

With this discontinuity of n� ðr � VðrSÞÞ, Eq.
(14) now states that JðrSÞ is fixed by imposing

JðrSÞ ¼ n� ðr � ðWðrþS Þ � VðrþS ÞÞÞ
¼ n� ðr � XðrþS ÞÞ: ð16Þ

From Eq. (13) it is verified immediately, that for
both rþ outside S and r� inside S, Xðr�Þ is a so-

lution of the wave equation (1), with H � X.

Therefore, we know that Eqs. (8) and (9), with H

replaced by X and r� interchanged by rþ, are valid:Z
S
gðr0SÞ ðr0

h
� G

$
ðrþ; r0SÞÞ � ðn0 � Xðrþ0

S ÞÞ

þ G
$
ðrþ; r0SÞ � ðn0 � ðr0 � Xðrþ0

S ÞÞÞ
i
dr0S ¼ �XðrþÞ

ð17Þ

for rþ outside S andZ
S
gðr0SÞ ðr0

h
� G

$
ðr�; r0SÞÞ � ðn0 � Xðrþ0

S ÞÞ

þ G
$
ðr�; r0SÞ � ðn0 � ðr0 � Xðrþ0

S ÞÞÞ
i
dr0S ¼ 0 ð18Þ



Fig. 1. Scattering of light by a photonic crystal. The electro-

magnetic fields outside the crystal are generated by the virtual

current J1 on the outside of the boundary surface S. The fields
inside the crystal are generated by J2.
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for r� inside S. Adding Eqs. (13) and (17) givesZ
S
gðr0SÞ ðr0

h
�G

$
ðrþ; r0SÞÞ � ðn0 � ðXðrþ0

S Þ þHðr�0

S ÞÞÞ

þG
$
ðrþ; r0SÞ � ðn0 � ðr0 �Xðrþ0

S ÞÞ � Jðr0SÞÞ
i
dr0S ¼ 0

ð19Þ

for rþ outside S.
Using the representation of JðrSÞ as in Eq. (16),

Eq. (19) turns intoZ
S
gðr0SÞðr0 � G

$
ðrþ; r0SÞÞ � ðn0 � ðXðrþ0

S Þ

þHðr�0

S ÞÞÞdr0S ¼ 0 ð20Þ
for rþ outside S. If the system is not at resonance,

Eq. (20) can only be valid if

n� XðrþS Þ ¼ �n�Hðr�S Þ ð21Þ
for rS lying on the surface S.

Substituting Eqs. (16) and (21) into (18), and

using Eq. (13) we obtain:

Xðr�Þ ¼ 0 ð22Þ
for the unique choice of JðrSÞ imposed by Eq. (14).
As argued below Eq. (13) this completes the proof

of the representation Eq. (3).
3. The scattering problem for photonic crystals

We consider the scattering of monochromatic

electromagnetic waves of frequency x at the sur-
face of a photonic crystal and use the above pro-

ven representation Eq. (3) for the fields. After

having expressed the fields in terms of the virtual

current densities at the surface, we solve the scat-

tering problem by matching the fields across S, i.e.
by imposing the continuity of the tangential

components of the magnetic and the electric fields.

This leads to a set of linear equations for the,
hitherto unknown, current-density distributions.

Solution of these equations suffices to obtain the

fields everywhere. We note that for a d-dimen-

sional photonic crystal, the equations for the sur-

face-current densities have a dimensionality of

only d � 1, which is an important computational

advantage of our method.

Now we turn to the explicit formulation of the
solution (cf. Fig. 1). First we would like to stress
the point that the only requirement on the

Green’s tensors involved is that they solve the

field equations within the medium of interest

(crystal or vacuum) for a point source, viz. Eq.

(2). In particular, they do not need to satisfy any

boundary conditions on the crystal surface, as these

will be accounted for later in the calculation by

fixing the virtual surface currents through the
application of the continuity relations. For the

example of light scattering on the interface be-

tween vacuum and a photonic crystal, we can take

advantage of this freedom by using the dyadic

Green’s tensors appropriate to infinite vacuum

and to the infinite photonic crystal on the outside

and inside of the crystal respectively. The latter

can be expanded conveniently in terms of the
solutions (the eigenfrequencies and eigenvectors)

of the infinite-crystal photonic band-structure

calculation.

On the vacuum side of the interface S, the

magnetic field is expressed as

H1ðr; tÞ ¼ eixtH1ðrÞ

¼ eixt
Z
S
C
$
ðr; r0S ;xÞ � J1ðr0SÞdr

0
S ; ð23Þ

where J1 is a virtual current-density distribution

and C
$

is the appropriate dyadic Green’s tensor

needed for the description of electromagnetic fields

in vacuum. In case we have an interface with a

two-dimensional photonic crystal, the appropriate

vacuum Green’s tensor reads:
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C
$
ðr; r0S;xÞ ¼

1

4i
ð I
$
þ ðc=xÞ2r�rÞH ð2Þ

0

�ðxjr� r0S j=cÞ; ð24Þ

while for three-dimensional crystals it is given by

C
$
ðr; r0S;xÞ ¼

1

4i
ð I
$
þ ðc=xÞ2r�rÞ

� expðixjr� r0S j=cÞ
jr� r0S j

: ð25Þ

Here H ð2Þ
0 is the zeroth-order Hankel function of

the second kind. These tensor satisfy the inhomo-

geneous wave equation:

r� ðr � C
$
ðr; r0S ;xÞÞ � ðx=cÞ2C

$
ðr; r0S ;xÞ

¼ I
$
dðr� r0SÞ; ð26Þ

with r a two-dimensional or three-dimensional
vector, respectively.

Similarly, on the crystal side of the interface S,
assuming a linear response of the medium, the

magnetic field is expressed as

H2ðr; tÞ ¼ eixtH2ðrÞ

¼ eixt
Z
S
G
$
ðr; r0S ;xÞJ2ðr0SÞdr

0
S; ð27Þ

where J2 is a virtual current-density distribution
and G

$
is the appropriate dyadic Green’s tensor

that is needed for the description of electromag-

netic fields in photonic crystals:

G
$
ðr; r0S ;xÞ ¼

X
n

Z
1BZ

~hnðr; kÞ � ~h�nðr0S ;kÞ
ððxnðkÞÞ2 � x2Þ=c2

dk;

ð28Þ
where ~hnðr; kÞ are the Bloch modes, with dispersion

relation xnðkÞ, that follow from standard band

structure calculations, and the integration runs

over the first Brillouin zone.

We remind the reader that the current-density
distributions J1 and J2 are unknown quantities

initially. They can be solved from a set of coupled

linear equations, which are obtained by imposing

the continuity requirements on a discretizised

mesh across the interface S.
One of the applications, for which we can use

this method, is the calculation of the reflected far

fields in the vacuum region from the current-den-
sity distribution J1, which actually involves the
Fourier transformation of J1. Then we can plot an

angular distribution of the intensity, i.e. the dis-

tribution of the energy flow over all outgoing di-

rections, indicated by the angle a with respect to

the normal direction; �90� < a < 90�. For this

angular distribution of the field intensity, we make
use of the asymptotic behaviour of the Green’s

tensor C
$
at large distances from the crystal surface.

Examples of such applications to two-dimensional

photonic crystals have been presented in [10].
4. Discussion and conclusions

We have presented a method to calculate the

scattering of light at the surface of a photonic

crystal. The scattering problem is solved in terms

of virtual surface-current distributions. These dis-

tributions generate together with any Green tensor

valid for an arbitrary linear medium every elec-

tromagnetic field within this medium or in the

outside free space using a free space Green tensor.
The physical interpretation of this result is that a

generalisation of Huygens principle for electro-

magnetic fields inside an arbitrary linear medium

has been obtained: A superposition of Green ten-

sor point response functions with appropriate

strengths generate any electromagnetic field. This

result is the generalisation of previously obtained

results for the (scalar) case of the Helmholtz
equation. In this case it was proven that any field

inside a bounded domain always can be repre-

sented by a surface charge distribution. The use of

surface currents reduces the dimensionality in the

problem and thus also reduces the required com-

puter time and memory. An important aspect of

the method is that any Green tensor satisfying Eq.

(2) is suitable for the field representation and that
no a priori information concerning the shape of

the boundary or boundary conditions has to be

incorporated for the choice of the Green tensor to

be used. Hence infinite-medium Green’s tensors

can be used even if the scattering problem deals

with finite-sized photonic crystals. We have given

for the first time a detailed technical proof of the

correctness of the concept of fictitious current
distributions on which the method is based. We

note that our method automatically accounts for
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surface modes. These modes are localised near the

surface of a photonic crystal due to exponential

decay in both directions (into the crystal structure

as well as into the vacuum). Our method does not

require a special analysis of these modes, as given

by Meade et al. [28] and by Robertson et al. [29].
First numerical results obtained by this method

were given in a previous publication, [10], showing

the feasibility of the method. Further results for

transmission through photonic crystals slabs will

be published elsewhere.
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