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a b s t r a c t

By using the analytical equations of the propagation of Gaussian beams in which truncation exhibits
negligible consequences, we describe a method that uses the value of the focal length of a focusing lens
to classify its focusing performance. We show that for different distances between a laser and a focusing
lens there are different planes where best focusing conditions can be obtained and we demonstrate how
the value of the focal length impacts the lens focusing properties. To perform the classification we in-
troduce the term delimiting focal length. As the value of the focal length used in wave propagation
theory is nominal and difficult to measure accurately, we describe an experimental approach to calculate
its value matching our analytical description. Finally, we describe possible applications of the results for
characterizing Gaussian sources, for measuring focal lengths and/or alternatively for characterizing
piston-like movements.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

It is well known that there is a difference in the calculation of a
focused field when it is performed by means of ray tracing com-
pared to physical optics. It has been found a shift between the
geometrical focus position and the one obtained using diffractive
models. Contrary to geometrical optics, physical optics demon-
strated that the plane of better focusing moves closer to the
aperture of the lens [1–6]. Calculations on the value of the focal-
shift as a function of the Fresnel number for a focused spherical
wave with a spatial Gaussian profile can be found in [7]. A study of
the focal shift by a thin lens on a weakly-truncated Gaussian beam
as a function of a low Fresnel number has been studied in [8].
Spherical converging waves as a function of the Fresnel number,
particularly when it is less than one were carried out in [9]. In [10]
it was found that the axial intensity distribution is not symme-
trical around the geometrical focus. In [11,12] the focal shift is
determined as a function of an effective Fresnel number and again
the shift is towards the lens. Numerical studies have also been
carried out in which a dependence of the wavelength is included
and it was found that as the geometric focal length increases, the
Fresnel number decreases and the focal shift is magnified [13].

However, to the best of our knowledge, no calculations have
been provided involving the value of the focal length in conjunc-
tion with the distance of propagation between the laser and the
lens. These calculations are essential when setting up an experi-
ment, for example a lens with short focal length can be used for
focusing purposes at a certain distance from the laser and later, for
different experimental requirements, it may be necessary to re-
place the lens by one with a larger focal length working at a dif-
ferent distance. For setting up properly the experiment, it is more
useful to know the consequence of changing both parameters. In
this report, we describe the effect of this change on the focusing
conditions.

In the following sections we will use well-known analytical
equations, based on the scalar Fresnel diffraction integral, that
allow us to classify the behavior of a focusing lens as a function of
its focal length, the distance between the lens and the waist plane
and the wavelength. We show that the plane where best focusing
conditions are obtained follows a specific locus. This locus results
to be a function of the wavelength and the semi-width of the beam
at the waist plane as described in the following sections.
2. Analytical description

Fig. 1 describes the physical situation. The waist of a laser beam
with a circularly-symmetric Gaussian intensity profile is located at
a coordinate plane ( )x y,0 0 , referred as the Gaussian waist plane. A
thin focusing lens with a focal length f is placed at a distance z0 at
a coordinate plane ξ η( ), . The plane of observation is placed at a
distance z1 at a coordinate plane ( )x y,1 1 at the back of the focusing
lens.
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Fig. 1. Physical situation as described in the text.

Fig. 2. Locus of the BFP for a 5.0 cm focal length lens; ≈z 00 , 0.24, 0.52, 1.04, 2.4,
4.0 m; λ¼632.8 nm, r0¼0.44 mm.
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At the Gaussian waist plane, the amplitude distribution of the
field at ( )x y,0 0 is represented by,
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In Eq. (1) A is a constant, not important for our description, and r0
is the semi-width of the Gaussian beam.

The amplitude distribution at the coordinate plane ξ η( ), , just
before the lens, calculated using the Fresnel diffraction integral, is
a diverging Gaussian beam described by,
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where r1 is the semi-width of the beam,
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and R1 its corresponding radius of curvature,
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The amplitude distribution just after the lens is given by Eq. (2)

multiplied by the quadratic phase term π(− )ξ η
λ
+iexp

f

2 2
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by the lens.
The amplitude distribution at the plane of observation with

coordinates ( )x y,1 1 can be calculated again using the Fresnel in-
tegral and is also a Gaussian distribution,
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where the semi-width rF is given as,
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and the radius of curvature as,
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We have previously reported (Eqs. (3)–7) in [14].
The radius of curvature given by Eq. (7) is irrelevant for the

present description and its analytical expression is given for
completeness.
Using Eqs. (3–4) and =z f1 in Eq. (6) gives,
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Eq. (8) stands for the well-known fact that regardless of the
distance between the laser and the focusing lens ( z0), the semi-
width of the beam at the back-focal plane takes always a constant
value which is not necessarily a minimum. As indicated by Eq. (6)
rF is a function of the position of the plane of detection ( z1). The
value z1 that gives the minimum semi-width can be obtained by
calculating the derivative of rF with respect to z1 and this value
corresponds to the position of the plane where the beam exhibits a
minimum semi-with. We will refer to this plane as the best fo-
cusing plane (BFP) and its position is given as,
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In Eq. (9), zOpt will be referred as the best focusing distance
(BFD). The corresponding semi-width at zOpt is obtained by sub-
stituting this value in Eq. (6) as,
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It can be noticed that Eq. (10) depends on (Eqs. (3) and 4)
which in turn are functions of z0.Thus, the semi-width rOpt can be
plotted as a function of z0 and zOpt in a single graph; we will refer
to such a graph as the locus of the BFP. Two loci are illustrated in
Figs. 2 and 3 for two different lenses, one with a relatively short
5.0 cm focal length and the other one with an 81.0 cm focal length.
The plots are calculated for λ¼632.8 nm and r0¼0.44 mm which
correspond to a typical commercially available He–Ne laser.

In Figs. 2 and 3 ≈z 00 corresponds to experimentally posi-
tioning the lens as close as possible to the waist plane. However, as
Eq. (4) diverges at =z 00 , for numerically completing the locus at

≈z 00 it is possible to choose small values on the order of some
micrometers where the equation still remains valid, without re-
flecting appreciable changes on the value of rOpt; for our calcula-
tions we used 1 μm.

From Figs. 2 and 3, two important characteristics can be
extracted.

First, as z0 increases the position of the BFP first moves away
from the focusing lens until a maximum position is reached. As z0
continues increasing the position of the BFP begins to move



Fig. 3. Locus of the BFP for an 81.0 cm focal length lens; ≈z 00 , 0.64, 1.04, 1.72, 2.8,
4.0 m; λ¼632.8 nm, r0¼0.44 mm.
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towards the lens. This property holds for both lenses.
The second characteristic marks a difference between the two

lenses. For the case of the 5.0 cm lens, the semi-width at the BFP
always decreases as z0 increases. In contrast, for the 81.0 cm lens,
as z0 starts to increase, the semi-width at the BFP also increases up
to a maximum value and then decreases.

From the best of our knowledge, the two characteristics de-
scribed above have not yet been reported. In previous reports the
propagation from the waist-plane towards the lens a distance z0
has not been considered. For tuning properly an experimental
arrangement, this propagation results relevant.

An alternative way to appreciate the change of the semi-width
for the case of the 81.0 cm lens is by plotting rOpt as a function of z0,
as illustrated in Fig. 4.

In Fig. 4, the semi-width at the BFP exhibits a maximum at
approximately z0¼80 cm. In this case the maximum value is ap-
proximately 1.3 times the value of the semi-width at ≈z 00 . As a
consequence, increasing the distance between the focusing lens
and the waist plane will not result in a better focusing as can be
seen from Figs. 3 and 4. There is a distance range away from the
lens in which a widening of the beam results, contrary to what
intuitively may be expected.

At this point, it is necessary to establish a criterion to classify
the lenses by means of the value of their focal length. We define
Fig. 4. rOpt as a function of z0 for the 81.0 cm lens.
the term delimiting focal length of a lens, denoted fK , as the one
where the semi-width on the BFP exhibits a maximum increase of
30% as compared with the semi-width at ≈z 00 ; i.e. an increase of
1.3 times of the semi-width at ≈z 00 . For descriptive purposes, the
value 1.3 is selected rather arbitrarily. In particular the focal length
of 81.0 cm chosen in the above example is precisely the delimiting
focal length for λ¼632.8 nm, r0¼0.44 mm.

It is possible to find an appropriate relation of fK as a function
of λ and r0 by means of Eq.(10), which, as indicated, requires (Eqs.
(3) and 4) which are functions of z0. For this, we build a table of rOpt

as a function of z0, providing a guess value for f in the referred
equations, and maintaining r0 and λ constant. From this table, we
record two values, the one that corresponds to rOpt for ≈z 00 , that
will be referred as ( )r 0Opt , and the maximum value of rOpt in the
table which will be referred as rMax. Next, the ratio ( )r r/ 0Max Opt is
calculated. If this ratio differs from 1.3, the table is discarded and a
new table is built by trying a different guess value. This process is
repeated until the desired ratio is obtained. When this condition is
obtained, the value assigned to f corresponds to fK . Fig. 4 re-
presents graphically the table that corresponds to the value fK .

To obtain a plot of fK as a function of λ, we used the above
procedure for different values of λ ranging from 0.1 to 4.0 mm,
maintaining r0¼0.44 mm. Fig. 5 shows the obtained plot. In the
plot dots represent discrete values obtained by the described
procedure and the solid line represents a fitting of the data.

As previously indicated, the value r0 was maintained constant.
To calculate fk as a function of r0, we repeated the above procedure
for different values of r0 ranging from 0.1 mm to 0.6 mm. From the
obtained data, it is possible to fit an equation of the form,
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Figs. 6 and 7 show corresponding plots to the functions given
by Eq. (11).

In Figs. 6 and 7, dots represent data obtained with the analy-
tical procedure. As we have mentioned, a corresponding equation
was fitted for each plot and represented as continuous traces
respectively.

With the fitted equations, Eq. (11) can be written approxi-
mately as,
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Fig. 5. fk as a function of λ for r0¼0.44 mm.



Fig. 6. ( )A r0 as a function of r0.

Fig. 7. ( )B r0 as a function of r0.

Fig. 8. Plots for the 20.0 cm focal length lens for z0¼1.6, 2.0 and 2.4 m.
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Eq. (12) can be used to estimate the value of fK with reasonable
accuracy by knowing the wavelength and the semi-width of the
Gaussian waist. For instance, for our experimental setup, sub-
stituting r0¼0.44 mm, λ¼632.8 nm, gives λ( )≈f r ,k 0 0.81 m as
anticipated.

To experimentally verify the approximation given by Eq. (12),
we used a lens of focal length 80 cm, which is commercially
available and has a value near fK (81 cm) for our laser. We placed
the lens at two different positions, first, as closed as possible of the
output of the laser and then at a distance of approximately 80 cm
from the output. The semi-widths at the respective BFPs were
measured. As anticipated, approximately 1.3 increase on the semi-
width was measured. To further verify Eq. (12) for different values
of λ and r0 experiments with different lasers have to be performed.
As indicated, Eq. (12) was obtained in a range of λ between 0.1 and
4 μm and r0 from 0.1 to 0.6 mm.

For the case of a source exhibiting a different spatial distribu-
tion, it should be possible to represent it by a superposition of
Gaussian wavelets; however, additional research is required in this
direction.

In a previous report [14], we have demonstrated experimen-
tally the accuracy of the equations applied to a real lens, we have
also described how to obtain the BFP locus by means of a knife-
edge homodyne profilometer especially devised for this purpose.
However, it has not yet been explicitly determined the value of f
for a real lens. In the following section we describe a procedure to
determine the value of f that fits appropriately with the analytical
equations. In general, this value does not coincide with the one
reported by the lens manufacturer, and neither with the one used
in other reports. Once this value has been obtained, the system
may then be used to experimentally characterize piston-like
movements by means of Gaussian beams.
3. Experimental section

To determine f experimentally we will make use of a well-
known effect. If the plane of observation is placed at a position just
behind the focusing lens and then moved away from the lens, the
beam under inspection will exhibit an excursion that ranges from
a focusing region up to a diverging one. This effect can be calcu-
lated by using Eq. (6) which is a function of z0 as it depends on
(Eqs. (3) and 4). Fig. 8 shows plots of the semi-width at the plane
of observation when it is moved at different distances z1 from just
behind the lens up to a distance of approximately 0.8 m. The semi-
width at each plane is plotted as a function of z1 for large values of
z0. Three values around z0¼2.0 m, are plotted. The plots corre-
spond to a lens with a focal length of 20.0 cm that we have arbi-
trarily chosen to be used in our experimental set up. The value of
the focal length chosen to carry this measurement is unimportant
since the behavior of the plots is similar regardless of the value of
the focal length; thus, the method can be applied to any focusing
lens.

Precisely just behind the lens, when z1 is small, the semi-width
for each curve corresponds approximately to the value r1 given by
Eq. (3); this value is imposed by the divergence of the laser. As z1
increases the semi-width decreases up to a minimum that
corresponds to the one in the BFP and can be determined from its
corresponding locus. Further increasing z1 will result in increasing
semi-widths.

The procedure to measure f consists in fixing a constant dis-
tance z1 for the plane of observation, i.e., to fix the distance be-
tween the lens and the plane of observation This distance z1 must
be away from the focal region, in our experiment we have selected
z1¼0.4 m. With z1 fixed, we now proceed to change the distance z0
in a range away from the laser source and registering the semi-
width for each position z0. In Fig. 9 dots correspond to the ex-
perimental data measured in a range of z0 from 2.0 to 9.0 m. The
continuous lines were obtained by using the analytical (Eqs. (3),



Fig. 9. Beam semi-width as a function of z0 for z1¼ 0.4 m. λ¼632.8 nm,
r0¼0.44 mm. Dots correspond to experimental data. The continuous lines are ob-
tained by using the analytical equations as referred in the text.
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4) and (6) with z1¼0.4 m for 5 different values of f ranging from
0.18 to 0.22 m. It can be noticed that the value f ¼0.2 m fits well
with the experimental data. As predicted by the analytical equa-
tions a linear response is obtained, and from this response the
value of f can easily be determined; this value corresponds to the
one given in the quadratic phase lens.

Once the laser source and the focal length are characterized,
the plots can be applied, for example, in characterizing piston-like
movements by fixing a mirror to the surface of the moving object
and using a fast camera for determining the semi-width in real
time.
4. Conclusions

We have examined characteristic loci of focusing lenses using
analytical equations of Gaussian beams. We found that there are
two different loci which depend on the value of the focal length
affecting the focusing behavior at best focusing conditions. From
the loci differences, the term delimiting focal length was defined
and used to characterize focusing properties of lenses. Once a lens
has been properly characterized, the model can be applied to
characterize Gaussian sources or piston-like displacements.
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