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Abstract

Simple formulas for optimization of vacuum ultraviolet (VUV) and X-ray self-amplified spontaneous emission

(SASE) free electron lasers (FELs) are presented. The FEL gain length and the optimal b-function are explicitly ex-

pressed in terms of the electron beam and undulator parameters. The FEL saturation length is estimated taking into

account energy diffusion due to quantum fluctuations of the undulator radiation. Examples of the FEL optimization are

given. Parameters of a SASE FEL, operating at the Compton wavelength, are suggested.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Successful operation of the vacuum ultraviolet

(VUV) free electron laser (FEL) at the TESLA

Test Facility at DESY [1,2], based on self-ampli-
fied spontaneous emission (SASE) principle [3],

has stimulated a rapidly growing interest in the

development of VUV and X-ray FELs. A number

of projects (see, for instance, [4–8]) are now at

different stages of design and construction.
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At the first stage of a SASE FEL design one

looks for the dependence of the FEL saturation

length on the wavelength, electron beam parame-

ters, undulator parameters, and b-function. Usu-

ally the parameters are optimized for the shortest
design wavelength since the saturation length is the

largest in this case. The saturation length is pro-

portional to the gain length (e-folding length) of

the fundamental transverse mode (see [9] for more

details). The gain length can be found by the so-

lution of the FEL eigenvalue equation.

The eigenvalue equation for a high-gain FEL,

including diffraction of radiation, emittance, and
energy spread, was derived in [10,11]. There exist

approximate solutions [12,13] of this equation.

The exact solution was presented in [14] as well as

an approximate solution (with a limited validity
ed.
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range). The latter solution was fitted [14] using 3

dimensionless groups of parameters, and 19 fitting

coefficients. An approximate solution, that fits the

exact solution in the entire parameter space with

high accuracy (better that 1%), was presented in

[15]. A numerical algorithm for finding this ap-
proximate solution is very fast and robust. It was

used to obtain the main results of this paper.

In this paper we present the fitting formula for

the FEL gain length written down explicitly in

terms of the beam and undulator parameters. This

formula is not universal, but it provides a good

accuracy (better than 5%) in a typical parameter

range of VUV and X-ray FELs. We present the
formula without derivation since it was not de-

rived analytically. In some sense the parametric

dependencies were guessed, and then the fitting

coefficients were found from the solution of the

eigenvalue equation. For instance, we used only 2

fitting coefficients for the gain length with the

optimized b-function. The formulas of this paper

allow one to quickly estimate FEL saturation
length, including the effect of energy diffusion in

the undulator due to quantum fluctuations of the

undulator radiation. In addition, we present two

practical examples of using our design formulas:

optimization of SASE FEL with negligible energy

spread, and the limitation on SASE FEL wave-

length taking into account quantum diffusion. In

particular, we suggest for the first time the set of
parameters for a SASE FEL operating at the

Compton wavelength.
1 There is also a notion of the power gain length which is

twice shorter.
2. Gain length for the optimized b-function

Let us consider an axisymmetric electron beam

with a current I , and a Gaussian distribution in
transverse phase space and in energy [14,15]. The

focusing structure in the undulator is a superpo-

sition of the natural undulator focusing and an

external alternating-gradient focusing. The eigen-

value equation [14,15] is valid under the following

condition [15]:

Lf

2pb
� min 1;

kr
2p�

� �
;

where Lf is the period of the external focusing

structure, b is an average b-function, � is the rms

emittance of the electron beam, and kr is the FEL

resonant wavelength. The resonance condition is

written as:

kr ¼
kwð1þ K2Þ

2c2
: ð1Þ

Here kw is the undulator period, c is relativistic

factor, and K is the rms undulator parameter:

K ¼ 0:934 kw½cm� Brms½T�; ð2Þ
Brms being the rms undulator field.

In what follows, we assume that the b-function
is optimized so that the FEL gain length takes the

minimal value for given wavelength, beam and

undulator parameters. Under this condition the

solution of the eigenvalue equation for the field

gain length 1 can be approximated as follows:

Lg ’ Lg0ð1þ dÞ; ð3Þ

where

Lg0 ¼ 1:67
IA
I

� �1=2 ð�nkwÞ5=6

k2=3r

ð1þ K2Þ1=3

KAJJ
; ð4Þ

and

d ¼ 131
IA
I

�5=4n

k1=8r k9=8w

r2
c

ðKAJJ Þ2ð1þ K2Þ1=8
: ð5Þ

The following notations are introduced here:
IA ¼ 17 kA is the Alfven current, �n ¼ c� is the rms

normalized emittance, rc ¼ r
E
=mc2 is the rms en-

ergy spread (in units of the rest energy), AJJ ¼ 1 for

a helical undulator and AJJ ¼ J0ðK2=2ð1þ
K2ÞÞ � J1ðK2=2ð1þ K2ÞÞ for a planar undulator, J0
and J1 are the Bessel functions of the first kind.

The formula (3) provides an accuracy better

than 5% in the domain of parameters defined as
follows:

1 <
2p�
kr

< 5; ð6Þ



Fig. 2. Gain length versus undulator period for the following

set of parameters: kr ¼ 1 nm, K ¼ 1, I ¼ 2:5 kA, �n ¼ 2 lm,

r
E
¼ 1 MeV. Undulator is planar, resonance is maintained by

tuning electron beam energy, b-function is optimized for each

case. Line is the solution of the eigenvalue equation [15], and

the circles are calculated using formula (3).
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d < 2:5 1

(
� exp

"
� 1

2

2p�
kr

� �2
#)

: ð7Þ

Note that the condition (6) is usually satisfied in
realistic designs of VUV and X-ray FELs when

one does optimization for the shortest wavelength

(defining the total undulator length). The condi-

tion (7) is practically not a limitation. To illustrate

the accuracy of the formula (3) we present a nu-

merical example. The following nominal operating

point is chosen: kr ¼ 1 nm, kw ¼ 3 cm, K ¼ 1,

I ¼ 2:5 kA, �n ¼ 2 lm, r
E
¼ 1 MeV, energy is 2.8

GeV, undulator is planar. We scan over different

parameters and compare the gain length calculated

with formula (3) and by solving the eigenvalue

equation [15]. The results are presented in Figs. 1–

6. We have carefully checked the accuracy of for-

mula (3) for different combinations of dimensional

parameters entering (4) and (5). The deviation of

the approximate formula (3) from the solution of
the eigenvalue equation [15] is indeed defined only

by the parameters 2p�=kr and d, and is within 5%

in the above specified domain.

We also present here an approximate expression

for the optimal b-function (an accuracy is about

10% in the above mentioned parameter range):

bopt ’ 11:2
IA
I

� �1=2
�3=2n k1=2w

krKAJJ
ð1þ 8dÞ�1=3

: ð8Þ
Fig. 1. Gain length versus resonant wavelength for the fol-

lowing set of parameters: kw ¼ 3 cm, K ¼ 1, I ¼ 2:5 kA,

�n ¼ 2 lm, r
E
¼ 1 MeV. Undulator is planar, resonance is

maintained by tuning electron beam energy, b-function is op-

timized for each case. Line is the solution of the eigenvalue

equation [15], and the circles are calculated using formula (3).

Fig. 3. Gain length versus undulator parameter K for the fol-

lowing set of parameters: kr ¼ 1 nm, kw ¼ 3 cm, I ¼ 2:5 kA,

�n ¼ 2 lm, r
E
¼ 1 MeV. Undulator is planar, resonance is

maintained by tuning electron beam energy, b-function is op-

timized for each case. Line is the solution of the eigenvalue

equation [15], and the circles are calculated using formula (3).
Note that dependence of the gain length on b-
function is rather weak when b > bopt.

Finally, let us note that the saturation length
cannot be directly found from the eigenvalue

equation. However, with an accuracy 10–20% one

can accept the following estimate:

Lsat ’ 10Lg: ð9Þ



Fig. 4. Gain length versus normalized emittance for the fol-

lowing set of parameters: kr ¼ 1 nm, kw ¼ 3 cm, K ¼ 1, I ¼ 2:5

kA, r
E
¼ 1 MeV. Undulator is planar, b-function is optimized

for each case. Line is the solution of the eigenvalue equation

[15], and the circles are calculated using formula (3).

Fig. 5. Gain length versus current for the following set of pa-

rameters: kr ¼ 1 nm, kw ¼ 3 cm, K ¼ 1, �n ¼ 2 lm, r
E
¼ 1

MeV. Undulator is planar, b-function is optimized for each

case. Line is the solution of the eigenvalue equation [15], and

the circles are calculated using formula (3).

Fig. 6. Gain length versus energy spread for the following set of

parameters: kr ¼ 1 nm, kw ¼ 3 cm, K ¼ 1, I ¼ 2:5 kA,

�n ¼ 2 lm. Undulator is planar, b-function is optimized for

each case. Line is the solution of the eigenvalue equation [15],

and the circles are calculated using formula (3).
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3. Influence of quantum diffusion in an undulator on

saturation length

Energy spread growth due to the quantum

fluctuations of the spontaneous undulator radia-

tion can be an important effect [3,16] in future

SASE FELs. The rate of the energy diffusion is

given by [17]:
dr2
c

dz
¼ 14

15
´crec4j3

wK
2F ðKÞ; ð10Þ

where ´c ¼ 3.86 �10�11 cm, re ¼ 2:82� 10�13 cm,

jw ¼ 2p=kw, and

F ðKÞ ¼ 1:42K þ ð1þ 1:50K þ 0:95K2Þ�1

for helical undulator:

F ðKÞ ¼ 1:70K þ ð1þ 1:88K þ 0:80K2Þ�1

for planar undulator: ð11Þ

To estimate the FEL saturation length, we ac-

cept the following scheme. First, we neglect energy

diffusion and find a zeroth order approximation to

the saturation length from (9) and (3)–(5). Then we

calculate an induced energy spread in the middle

of the undulator from (10), add it quadratically to

the initial energy spread, and find a new expression

for d. Then, using (9) and (3)–(5), we find the first
approximation to the saturation length. Then we

do the next iteration, etc. The saturation length is

then proportional to a series
P1

n¼0d
n
q and is given

by

Lsat ’ 10Lg0

1þ d
1� dq

; ð12Þ

where
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dq ¼ 5:5� 104
IA
I

� �3=2
´cre�2n

k11=4r k5=4w

� ð1þ K2Þ9=4F ðKÞ
KA3

JJ

: ð13Þ

Note that in the latter formula the powers are
somewhat simplified. Comparing Eqs. (9) and (12),

we can introduce an effective parameter

deff ¼
dþ dq
1� dq

; ð14Þ

which should be used instead of d in (7) to check

the applicability range and in (8) to estimate the

optimal b-function.
Although formula (12) is rather crude estimate,

it can be used for quick orientation in the pa-

rameter space with a posteriori check using a nu-

merical simulation code.
2 One can notice the difference with more crude estimate

presented in [16].
4. Examples of SASE FEL optimization

4.1. Optimized FEL with a negligible energy spread

Formulas, presented in the previous Sections 2

and 3 can be used for the optimization of undu-

lator parameters as soon as a specific type of the
undulator is chosen. We demonstrate such a pos-

sibility with the planar NdFeB undulator of which

magnetic field can be described by the following

formula [8]:

Bmax½T� ¼ 3:694 exp

"
� 5:068

g
kw

þ 1:52
g
kw

� �2
#

for 0:1 < g=kw < 1; ð15Þ

where g is the undulator gap. The rms value of the
parameter K is given by Eq. (2) with Brms ¼
Bmax=

ffiffiffi
2

p
.

We assume that the energy spread effect on the

FEL operation can be neglected (d; dq ! 0). Then,

using (3), (2) and (15), we minimize the gain length

for a given undulator gap. The optimal undulator

period is independent of kr, I and �n and is found

to be

ðkwÞopt½cm� ’ 1þ 2g½cm� for g > 0:5 cm ð16Þ
The optimal value of K is then defined from (15)

and (2), the electron beam energy – from (1), and

the optimal b-function – from (8). The minimal

gain length can be expressed (in practical units) as

follows:

ðLgÞmin½m� ’ 20
�5=6n ½lm�g1=2½cm�
I1=2½kA�k2=3r ½�A�

: ð17Þ

Using estimate of the saturation length (9), we
find the minimal wavelength at which SASE FEL

can saturate within the given undulator length Lw:

ðkrÞmin½�A� ’ 3� 103
�5=4n ½lm�g3=4½cm�
I3=4½kA�L3=2

w ½m�
: ð18Þ

4.2. SASE FEL at the Compton wavelength

Another example is the optimization of sub-�A
FELs for which the effect of quantum diffusion in

the undulator can play an important role. We

consider the case when the energy spread is dom-

inated by the quantum diffusion, and neglect initial

energy spread (d ! 0). Optimizing undulator pe-

riod and parameter K in (12), we get the following
estimate for the minimal wavelength: 2

ðkrÞqmin½�A� ’ 4�n½lm�
I3=5½kA�L2=5

w ½m�
ð19Þ

Note that in some cases the optimal undulator
parameters can be impractical. In any case, the

estimate (19) gives a lower limit. The following

numerical examples show that one can be close

to this limit with technically feasible undulator

parameters.

Let us consider the electron beam parameters

(peak current and emittance) assumed in [18]. One

of the examples, considered in [18], is a SASE FEL
operating at kr ¼ 0.28 �A with I ¼ 5 kA and

�n ¼ 0:3 lm. Another example is even more am-

bitious: kr ¼ 0.12 �A with I ¼ 5 kA and

�n ¼ 0:1 lm.

We try to push the wavelength closer to the

extreme given by Eq. (19). In our first example we

assume I ¼ 5 kA and �n ¼ 0:3 lm. With these
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parameters the wavelength kr ¼ 0:1 �A can be

reached at the electron beam energy 23 GeV in a

planar undulator with kw ¼ 2 cm and K ¼ 1 (with

the gap g ¼ 0:7 cm according to (15) and (2)). The

optimal b-function is about 40 m, and the satu-

ration length is estimated at 160 m.
The second example is a SASE FEL operating

at the Compton wavelength, kr ¼ kc ¼ 0.0234 �A
(photon energy is 0.5 MeV). We assume the elec-

tron beam with I ¼ 5 kA and �n ¼ 0:1 lm, the
energy is 40 GeV. We choose a helical undulator

with kw ¼ 2 cm and K ¼ 0:7. The optimal b-
function is about 35 m, and the saturation is

reached within 200 m. Our estimates show that

quantum effects, other than energy diffusion, give

small corrections to the classical description and

can be neglected.
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