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Abstract

Using a perturbative approach, we study the changes that the transformation of a refracting medium from positive/

negative phase velocity to negative/positive phase velocity has on the diffraction of a plane wave due to a periodically

corrugated boundary. In contrast to specular reflection, we find that nonspecular reflection, albeit weak for weakly

corrugated boundaries, is highly affected by the type of refracting medium, due to the involvement of evanescent waves

in the troughs of the corrugated boundary.
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1. Introduction

The phase velocity vector is opposed in direc-

tion to the time-averaged Poynting vector in cer-

tain isotropic dielectric–magnetic materials [1].

Though several names have been proposed for this
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class of materials, we think that the most de-

scriptive is: negative phase-velocity (NPV) mate-
rials [2]. In contrast, the phase velocity and the

time-averaged Poynting vectors are co-parallel in

positive phase-velocity (PPV) materials. PPV ma-

terials are, of course, commonplace and require no

introduction.

During the last four years, a spate of research

publications have appeared on electromagnetic

fields in NPV materials [3,4]. Many interesting ef-
fects have been predicted, with some experimen-

tal backing as well [5–7]. The intrinsic difference
ed.
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between NPV and PPV materials is easily gauged

from the reflection and refraction of a plane wave

due to a homogeneously filled half-space. Let vac-

uum be the medium of incidence, while �2 and l2

denote the relative permittivity and relative per-

meability of the medium of refraction. Let a line-
arly polarized plane wave be incident on the planar

interface of the two mediums at an angle h0,
(jh0j < p=2), from the normal to the interface, and

qðh0Þ be the reflection coefficient. If the transfor-

mation f�2 ! ���2; l2 ! �l�
2g is implemented,

then qðh0Þ ! q�ðh0Þ, where the asterisk denotes the

complex conjugate [8]. Thus, the replacement of a

NPV/PPV refracting half-space by an analogous
PPV/NPV half-space changes the phase of the re-

flection coefficient but not its magnitude.

To see what would happen if the surface were

corrugated, we study here the case of surface-relief

gratings [9]. Restricting ourselves to slightly rough

surfaces, we use a perturbative approach based on

the Rayleigh hypothesis [10]. This perturbative

approach has been used for periodically corru-
gated hard surfaces [11], as well as for periodically

corrugated boundaries between either two dielec-

tric non-magnetic materials [12,13] or two index-

matched dielectric–magnetic materials [14]. Our

intention here is to elucidate the mechanism for

the behavioral differences between periodically

corrugated NPV and PPV half-spaces, rather than

to put forward the perturbative approach as a
design paradigm. An expð�ixtÞ time–dependence

is implicit, with x as the angular frequency.
2. Analysis

2.1. Boundary value problem

In a rectangular coordinate system ðx; y; zÞ, we
consider the periodically corrugated boundary

y ¼ gðxÞ ¼ gðxþ dÞ between vacuum and a ho-

mogeneous, isotropic, linear material, with d being
the corrugation period. The region y > gðxÞ is

vacuous, whereas the medium occupying the re-

gion y < gðxÞ is characterized by complex-valued

scalars �2 ¼ �2R þ i�2I and l2 ¼ l2R þ il2I . If this

medium is of the NPV type, then [2,15]

�2Rjl2j þ l2Rj�2j < 0 ð1Þ
otherwise

�2Rjl2j þ l2Rj�2j > 0: ð2Þ
As the refracting medium is being modeled here as
a continuum, its microstructural features are as-

sumed to be considerably smaller in size than the

undulations of the boundary. A linearly polarized

electromagnetic plane wave is incident on this

boundary from the region y > gðxÞ at an angle h0,
(jh0j < p=2), with respect to the y axis.

Let the function f ðx; yÞ represent either the z-
directed component of the total electric field for
the s-polarization case, or the z-directed compo-

nent of the total magnetic field for the p-polari-
zation case [16]. Outside the corrugation region

min gðxÞ6 y6 max gðxÞ, f ðx; yÞ is rigorously rep-

resented by the following Rayleigh expansions:

f ðx; yÞ ¼ exp iða0x
h

� bð1Þ
0 yÞ

i

þ
Xþ1

n¼�1
qn exp iðanx

h
þ bð1Þ

n yÞ
i
;

y > max gðxÞ; ð3Þ

f ðx; yÞ ¼
Xþ1

n¼�1
sn exp iðanx

h
� bð2Þ

n yÞ
i
; y <min gðxÞ:

ð4Þ
Here, fqng

þ1
n¼�1 and fsngþ1

n¼�1 are scalar coeffi-
cients to be determined; and

a0 ¼ x
c sin h0

an ¼ a0 þ 2np=d

bð1Þ
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c2 � a2n

q
bð2Þ
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c2 �2l2 � a2n

q

9>>>>>=
>>>>>;
; ð5Þ

where c is the speed of light in vacuum. Note that

bð1Þ
n is either purely real or purely imaginary; and

the conditions

Re bð1Þ
n

h i
P 0

Im bð1Þ
n

h i
P 0

9=
;8n ð6Þ

are appropriate for plane waves in the vacuous

half-space y > gðxÞ. The refracting half-space

y < gðxÞ being filled by a material medium, �2I > 0

and l2I > 0 by virtue of causality constraints im-

posed on constitutive relations [17]. The refracted
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plane waves must attenuate as y ! �1, which

requirement leads to the condition

Im bð2Þ
n

h i
> 0: ð7Þ

Fulfilment of this condition automatically fixes the

sign of Re½bð2Þ
n �, regardless of the signs of �2R and

l2R. We note here that the condition (7) ensures

that the power density decays as y ! �1, but the

enhancement of the amplitude of a field compris-

ing an upgoing and a downgoing evanescent waves

is still permitted in that direction [18].

2.2. Rayleigh hypothesis

In accordance with the Rayleigh hypothesis

[10], expansions (3) and (4) can be used in the

boundary conditions

f ðx; gðxÞþÞ ¼ f ðx; gðxÞ�Þ
n̂ � rf ðx; gðxÞþÞ ¼ r�1n̂ � rf ðx; gðxÞ�Þ

�
; ð8Þ

where r ¼ l2 for the s-polarization case and r ¼ �2
for the p-polarization case, while n̂ is a unit vector

normal to the boundary. Invoking the Rayleigh

hypothesis, and then projecting into the Rayleigh
basis fexpðiamxÞgþ1

m¼�1, we obtain a system of linear

equations for fqng
þ1
n¼�1 and fsngþ1

n¼�1. With slight

changes, we repeated the steps sketched by Lester

and Depine [14] to obtain the system of equations

X1
n¼�1

ð1� rÞ bð1Þ
n bð2Þ

m þ anam
h i

� x2

c2 l2�2 � r½ �

bð2Þ
m � bð1Þ

n

� Dmn bð1Þ
n

�
� bð2Þ

m

�
qn

¼
ð1� rÞ bð1Þ

0 bð2Þ
m � a0am

h i
þ x2

c2 l2�2 � r½ �

bð2Þ
m þ bð1Þ

0

� Dm0

�
� bð1Þ

0 � bð2Þ
m

�
8m; ð9Þ

with

DmnðuÞ ¼
1

d

Z d

0

exp

�
� i

2p
d
ðm� nÞxþ iugðxÞ

�
dx:

ð10Þ
2.3. Perturbative approach

The integrals DmnðuÞ can be stated exactly as the

power series
DmnðuÞ ¼
X1
j¼0

ðiÞj

j!
uj~gðjÞðm� nÞ; ð11Þ

where

~gðjÞðmÞ ¼ 1

d

Z d

0

gðxÞ½ �j exp
�
� im

2p
d
x
�
dx; ð12Þ

is the mth Fourier coefficient of the function

½gðxÞ�j. These coefficients can be obtained through

the recurrence relation

~gðjÞðmÞ ¼
X
n

~gðj�1Þðm� nÞ~gð1ÞðnÞ; jP 1; ð13Þ

beginning with

~gð0ÞðmÞ ¼ dm0; ð14Þ
where dmn is the Kronecker delta.

Assuming the expansion [11–14]

qn ¼
X1
j¼0

ð�iÞj

j!
qðjÞ
n ; ð15Þ

we arrive at an iterative scheme, whereby the co-
efficient qðjÞ

n , jP 1, can be obtained in terms of all

lower-order coefficients qðj�1Þ
n ; . . . ; qð0Þ

n as follows:

qðjÞ
n ¼ 1

Mnn
Nn bð1Þ

0

h(
þbð2Þ

n

ij
~gðjÞðnÞ

�
X
m

Mnm

Xj

p¼1

j

p

� �
bð2Þ
n

h"
�bð1Þ

m

ip
~gðpÞðn�mÞqðj�pÞ

m

#)
:

ð16Þ

This scheme commences with

qð0Þ
n ¼ rbð1Þ

n � bð2Þ
n

rbð1Þ
n þ bð2Þ

n

dn0; ð17Þ

which is the planewave reflection coefficient for a

perfectly flat boundary (i.e., gðxÞ � 0) [19], and

requires the computation of

Nn ¼
ðbð1Þ

0 bð2Þ
n � a0anÞð1� rÞ þ x2

c2 ð�2l2 � rÞ
bð1Þ
0 þ bð2Þ

n

;

ð18Þ

Mnm ¼
ðbð1Þ

m bð2Þ
n þ amanÞð1� rÞ � x2

c2 ð�2l2 � rÞ
bð2Þ
n � bð1Þ

m

:

ð19Þ
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Provided the series (15) converges rapidly, the

reflection coefficients qn can be computed eco-

nomically in order to obtain the diffraction effi-

ciencies

ern ¼
Re bð1Þ

n

h i
bð1Þ
0

jqn j2 : ð20Þ

The principle of conservation of energy requires

thatX
n

ern 6 1: ð21Þ
angle of incidence (deg)

Fig. 1. Diffraction efficiency er0 as a function of the incidence

angle h0, for a sinusoidally corrugated interface between vac-

uum and a linear homogeneous medium. The interface function

gðxÞ ¼ 0:5h cosð2px=dÞ, where h=d ¼ 0:07 and xd=c ¼ 2p=2:1.
The refracting medium is of either the PPV (�2 ¼ 5þ
i0:01; l2 ¼ 1þ i0:01) or the NPV (�2 ¼ �5þ i0:01;l2 ¼ �1þ
i0:01) type. Calculations were made for both the s- and the

p-polarization cases. Note that er0ðh0Þ ¼ er0ð�h0Þ.
3. Results and discussion

The perturbative scheme derived in the previous

section was implemented for a variety of cases.

Similarly to what occurs for PPV refracting me-

diums [12–14], our numerical studies showed that

this scheme converges quickly for NPV refracting

mediums as well – provided the boundary is

weakly corrugated.
When the boundary is perfectly flat, the only

non-zero reflection coefficient is q0. The transfor-

mation f�2 ! ���2; l2 ! �l�
2g – that is, the re-

placement of a NPV/PPV refracting medium by an

analogous PPV/NPV refracting medium – changes

the phase of q0 but not its magnitude [8]; hence,

the transformation does not affect er0 at all. For a

weakly corrugated boundary, we therefore expect
that the magnitude of the specular reflection co-

efficient would not be greatly affected by the

transformation f�2 ! ���2; l2 ! �l�
2g, but the ef-

fect of the transformation should be unambigu-

ously evidenced by the nonspecular diffracted

orders.

Fig. 1 presents the diffraction efficiency er0 as a

function of h0 2 ð�p=2; p=2Þ when the boundary is
sinusoidally corrugated as follows: gðxÞ ¼
h
2
cosð2pd xÞ. We chose h=d ¼ 0:07 and xd=c ¼

2p=2:1, so that ern � 08n 6¼ 0. The refracting me-

dium is of either the PPV (�2 ¼ 5þ i0:01;
l2 ¼ 1þ i0:01) or the NPV (�2 ¼ �5þ i0:01; l2 ¼
�1þ i0:01) type. Calculations were made for both

the s- and the p-polarization cases. Clearly, the

transformation f�2 ! ���2; l2 ! �l�
2g does not

greatly affect er0, except at low jh0 j.
The situation for the specular diffraction effi-

ciency does not change when xd=c is increased to

2p=0:8, as is clear from Fig. 2. In contrast, the

same figure shows that the nonspecular diffraction

efficiency er�1, which is non-zero only for

sin h0 > �0:2, is gravely affected by the type of the

refracting medium. The diversity can be under-

stood as follows: When the boundary is perfectly
flat, the transformation f�2 ! ���2; l2 ! �l�

2g
leaves the magnitude of the reflection coefficient

unchanged only for non-evanescent incident plane

waves; but that is not a true statement for incident

evanescent plane waves [20]. In the troughs of a

corrugated boundary, the total field actually has

both specular (n ¼ 0) and nonspecular (n 6¼ 0)

components. Most of the nonspecular components
are like evanescent plane waves because they are

characterized by Re½bð1Þ
n � ¼ 0. Their presence en-

sures that the nonspecular diffraction efficiencies

are considerably affected by the transformation of

the refracting medium from NPV/PPV to PPV/

NPV.

The foregoing understanding should hold for

corrugations of other shapes as well. Therefore, we
computed the diffraction efficiencies when the unit

cell of gðxÞ is an isosceles triangle. The counter-
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Fig. 3. Same as Fig. 1 except that the corrugations are shaped

as isosceles triangles.
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Fig. 2. Diffraction efficiencies er0 and er�1 as functions of the

incidence angle h0, for a sinusoidally corrugated interface be-

tween vacuum and a linear homogeneous medium. The inter-

face function gðxÞ ¼ 0:5h cosð2px=dÞ, where h=d ¼ 0:07 and

xd=c ¼ 2p=0:8. The refracting medium is of either the PPV

(�2 ¼ 5þ i0:01;l2 ¼ 1þ i0:01) or the NPV (�2 ¼ �5þ i0:01;

l2 ¼ �1þ i0:01) type. Calculations were made for both the

s- and the p-polarization cases. Note that er0ðh0Þ ¼ er0ð�h0Þ.
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as isosceles triangles.
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parts of Figs. 1 and 2 are Figs. 3 and 4, respec-

tively. The latter two figures confirmed our

understanding.

To conclude, we adapted a perturbative ap-

proach to study the changes that the transforma-
tion of a refracting medium from positive/negative

phase-velocity to negative/positive phase-velocity

has on the diffraction of a plane wave due to a

periodically corrugated boundary. We concluded

that nonspecular reflection, albeit weak for weakly

corrugated boundaries, is highly affected by the

type of refracting medium, in comparison with
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specular reflection – due to the involvement of

evanescent waves in the troughs of the corrugated

boundary.
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