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We investigate the time evolution of entanglement of various entangled states of two-qubit atomic
system in vacuum environment using exact analysis. Compared to our earlier work under Markov ap-
proximation [M. Ikram, F.-L. Li, M.S. Zubairy, Phys. Rev. A 75 (2007) 062336] we show that disen-
tanglement rate is slower and sudden death times are higher than the earlier study in each set of en-
tangled state.
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1. Introduction

The open system dynamics of composite systems, being in-
itially in entangled states, is well explored in recent years. It is
well known that the individual quantum systems obey half-life
and decay exponentially. However, for a composite system–en-
vironment scenario, the coupling makes correlated dynamics
quite complex. Yu and Eberly [1] were the first to study the be-
havior of a composite two-qubit mixed atomic system in the
dissipative environment. They investigated that although local
systems may decay asymptotically but, in contrast, the composite
entangled systems may decay in finite times depending upon the
mixing of doubly excited component. Their work was extended to
a class of initially mixed and pure states for non-interacting [2–5]
and interacting [6–8] qubits. All of this work is done exploiting
the Markov approximation for weak system–environment cou-
pling. This assumption ensures short memory in the sense that
correlation time is very short and there is no feedback from the
environment to the system. However, when the system–en-
vironment coupling is not weak, Markov approximation is no
more valid [9]. In such a scenario, systems do have feedback from
their environment and retain memory of interaction as implied
by Jaynes–Cumming model. In such cases, memory effects are
important and interesting from many points of views. During the
ram).

l., Optics Communications
time span when the memory effects are not negligible, the flow of
energy and information from the system to the environment can
be momentarily reversed. The reversal of these processes causes
recoherence and restoration of previously lost superpositions
[10]. These systems are treated as non-Markovian [11]. Non-
Markovian systems appear in many branches of physics, such as
quantum optics [12,13], solid sate physics [14], quantum chem-
istry [15] and quantum information processing [16]. Memory
effects are usually characterized by a structured spectral density
implying that the quantum system interacts more strongly with
some modes of the reservoir than with others. Leaky optical
cavities and photonic band-gap materials, for example, have such
spectral densities [10,13].

The entanglement dynamics in strong coupling regime has
been recently investigated under different theoretical models [17–
20]. Particularly, the role of spectral width of system–environment
coupling and mixing of the initial state is investigated for two-
qubit systems [22]. In this paper, we investigate the entanglement
dynamics of a two qubit system, with qubits as two-level atoms
trapped in two leaky cavities, thus having structured vacuum re-
servoir inside the cavities. Due to structured reservoir–system
interaction, Markov approximation cannot be applied here.
Knowing that doubly excited component in the entangled state is
the main source of disentanglement, we consider a set of atomic
system having mixing of doubly excited component and study the
entanglement evolution of these states in non-Markovian system–

reservoir interaction. On contrary to the previous study [2], non-
Markovian effect or the exact treatment not only suggests the
(2016), http://dx.doi.org/10.1016/j.optcom.2016.01.055i
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postponement of the death of the entanglement but it exhibit an
evident enhancement in the entanglement. The Wootters con-
currence formula [21] is used as a quantitative measure of two-
qubit entanglement.

The paper is organized as follows. In Section 2, we present the
theoretical model employed to investigate the non-Markovian
effects on the two-qubit entanglement dynamics. Further analy-
tical and numerical results are presented for different cases of
initial mixed states. Section 3 finally concludes the paper with a
brief discussion.
2. Model

We consider the similar model as in [2], i.e., two two-level
atoms representing a bipartite system trapped in two separate
cavities containing structured vacuum acquired through the in-
teraction of cavity fields with the outside vacuum as shown in
Fig. 1. However, the correlation between the atoms depends only
on the initial quantum entanglement between them. We also
consider that the cavities are far apart with no direct cross-mutual
interaction between the atoms or the cavity fields. The total Ha-
miltonian can be written as

= + ( )H H H , 1o I

where Ho and HI are the free and interaction parts, respectively, of
the Hamiltonian, and are given by
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Here, in these equations, ωo is the transition frequency of the two-
level atom, σ σ( )+ −

i i is the raising (lowering) operator for the atom i
and index k labels the different field modes of the reservoir with
frequencies ωk with ( )†b bk k being the field annihilation(creation)
operator. Using the rotating-wave approximation, the interaction
Hamiltonian between an atom and N-mode reservoir takes the
form [23]

∑ ∑ σ σ= ℏ ( + )
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ω ω ω ω
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where gk
i is the coupling constant between the atom i and the

vacuum reservoir. We focus on the case for which the structured
reservoir is the electromagnetic field inside the lossy cavity. It
means that the discrete cavity modes can be effectively replaced
with the spectral density function. We consider a case where the
atom is interacting resonantly with the cavity field reservoir
having Lorentzian spectral density that characterizes the coupling
strength of the reservoir to the qubit as follows:

( )
ω

γ λ
ω ω λ

( ) =
π ( − ) + ( )

J
1

2
.

5c

0
2

2 2
Fig. 1. Two two-level atoms, initially prepared in an entangled state, trapped in two c
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This corresponds to a cavity supporting a single mode of frequency
ωc which can be leaked out through the non-ideal cavity walls
with a probability proportional to λ2, where λ is the spectral width
of the field distribution inside the lossy cavity. It is connected to
the reservoir correlation time τB by the relation τ λ= −

B
1 and the

time scale τR on which the state of the system changes is given by
τ γ= −

R 0
1. Here the parameter γ0 is proportional to the strength of

the atom–cavity coupling. Typically, in weak coupling regime
λ γ( > )2 0 , the qubit–reservoir system is Markovian and in strong
coupling regime λ γ( < )2 0 , non-Markovian dynamics occurs ac-
companied by a reversible decay.

In this paper, we are interested in two-qubit entanglement
dynamics in strong coupling regime. To incorporate the para-
meters that control the atomic dynamics under strong coupling,
we need to study the decay of a single two-level atom. We,
therefore, consider a single two-level atom initially in excited state
a trapped in a cavity containing vacuum modes, then time de-
pendent wave function of the system and the environment can be
written as

( ) ( ) ( )∑ψ = +
( )

t A t a B t b, 0 , 1 ,
6k

k k

where ( )A t and ( )B tk are the probability amplitudes of atom in
excited state a with vacuum in cavity and atom in ground state b
with cavity in single photon in kth mode 1k , respectively. From
Schrodinger equation we get the integro-differential equation

( ) ( )∫( )̇ = − ́ − ́ ́
( )A t dtf t t A t , 7

t

0

where ( − )́f t t is a correlation function defined in terms of con-
tinuous limits of the environment frequency as

⎡
⎣⎢

⎤
⎦⎥( )∫ ω ω ω ω( − )́ = ( ) ( − ) − ́

( )−∞

∞
f t t d J i t texp .

8k0

Considering the frequency distribution inside the cavity as defined
in Eq. (5) for λ > 0 and − ́t t real, we get

( )γ λ( − )́ = ( )λ− − ́f t t e , 9t t1
2 0

where it is assumed that atomic transition frequency ω0 is re-
sonant with the cavity's central frequency mode ωc. Now, we can
solve the integro-differential equation (Eq. (7)) using initial con-
dition ( ) =A 0 1 i.e., atom is initially in excited state and vacuum in
the cavity, as

⎛
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⎛
⎝⎜

⎞
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2
sinh

2
,

10
t1/2

where λ γ λ= −d 22
0 and is defined in the strong coupling regime

γ λ> /20 or τ τ< 2R B. The single atom dynamics exhibits an exponential

decay by the oscillatory function ( ) = ( ) + ( )λp t dt dtcosh /2 sinh /2
d

.
Thus we can easily calculate the modified decay rate using
Γ ( ) = − [ ̇ ( ) ( )]t A t A t2 Re / , as
avities having structured vacuum reservoir surrounded by vacuum environment.
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To study the entanglement dynamics, a quantitative measure of en-
tanglement is necessary. For any bipartite system, Wootters con-
currence [21] is a convenient method. The concurrence can be calcu-
lated explicitly from the time dependent X-type density matrix ρ ( )t for
two qubits [2] as

{ }( ) ( ) ( )Λ Λ= ( )C t t tMax 0, , , 121 2

where Λ ρ ρ ρ( ) = (| ( ) | − ( ) ( ) )t t t t21 23 11 44 and Λ ρ ρ ρ( ) = (| ( ) | − ( ) ( ) )t t t t22 14 22 33 .
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Fig. 2. Entanglement dynamics of Bell states ψ± and ϕ± . Green solid and blue
dotted-dashed lines are for the evolution of the state ϕ± under Markov approx-
imation and Exact analysis, respectively. Red dotted and purple dashed lines are for
the evolution of the state ψ± under Markov approximation and exact analysis,
respectively. For exact treatment λ γ= 0.2 0 in all cases. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of
this paper.)
3. Entanglement dynamics in structured reservoir

In this section, we consider the entanglement dynamics of the
two qubit system in a structured vacuum reservoir. Using the
general quantum reservoir theory, with the Hamiltonian (Eq. (4)),
we can derive the following equation of motion for the reduced
density matrix of the atoms interacting with the structured va-
cuum reservoir [12]:
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where Γ ( )ti is the time-dependent decay rate of the ith atom. The
exact decay rate for the two atoms trapped in two separate cavities
containing structured vacuum reservoir is calculated and given in
Eq. (11). This modification in the decay rate is due to the feedback
from the cavity reservoir onto the atomic system. Henceforth, in
deriving Eq. (13), we consider that the interaction between the
atoms and reservoirs is non-Markovian and atomic transitions
take place into integrated modes of the cavities. Since two iden-
tical atoms interact with almost the same environment in the
cavities, so we may assume Γ Γ Γ( ) = ( ) = ( )t t t1 2 (Eq. (11)).

The solution of time dependent master equation (13) depends
upon the initial state of the atoms. We note that for a class of the
initial states that will be considered below, the solution of Eq. (13)
has the X-matrix form in the representation spanned by the basis

= a a1 ,1 2 , = a b2 ,1 2 , = b a3 ,1 2 , = b b4 ,1 2 , and is given by
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The matrix elements ρ ( )tij are determined from the master equa-
tion (13) as [22]

( ) ( ) ( )ρ ρ= ( )t A t0 , 1514 14
2

( ) ( ) ( )ρ ρ= ( )t A t0 , 1623 23
2

( ) ( ) ( )ρ ρ= ( )t A t0 , 1711 11
4

{ }( ) ( ) ( )( )( ) ( )ρ ρ ρ= − + ( )t A t A t1 0 0 , 1822
2 2

11 22

{ }( ) ( ) ( )( )( ) ( )ρ ρ ρ= − + ( )t A t A t1 0 0 , 1933
2 2

11 33
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We can see that the decay of ρ ( )t11 is simply modified by the
presence of ( )p t4 from the Markovian approximation. This term
also imparts it with the oscillatory behavior and remarks the en-
vironment feedback. Therefore, entanglement dynamics now also
depends on whether λ γ< 2 0 or λ γ> 2 0, the later is the weak
coupling regime so we can readily consider the dynamics under
Markov approximation in this case.

Let us first consider the entanglement dynamics of the Bell
states which show maximum correlations in the two-qubit sys-
tems and has maximum concurrence which is 1, as follows:

Ψ = (| ± )
( )

± a b b a
1
2

, , ,
21a

1 2 1 2

Φ = (| ± | )
( )

± a a b b
1
2

, , .
21b

1 2 1 2

The entanglement dynamics for these maximally entangled states
under Markov approximation and through exact analysis are
shown in Fig. 2. The entanglement dynamics is independent of the
phases for these two states Φ Ψ( )± ±, as evident from Eq. (12).
The exact dynamics of these two states Ψ± and Φ± is determined
as ( )A t2 and ( )A t4 , respectively, which clearly show that Φ decays
faster than Ψ mainly due the presence of doubly excited com-
ponent in the entangled state Φ . Further the dynamics of these
states is modified by factors of ( )p t2 and ( )p t4 , respectively, for Ψ
and Φ from Markov approximation. It not only shows the higher
amount of entanglement during evolution but it decay slower than
the dynamics under Markov approximation.

It has been shown earlier [3,5] that Markovian dynamics of the
state

χ β β= + ( )a a b b, , , 22aa bb1 2 1 2

with β β+ = 1aa bb
2 2 , shows asymptotic decay of entanglement

when β β≤aa bb
2 2, and sudden death of entanglement (SDE) when

β β>aa bb
2 2. Thus, when the probability of doubly excited com-

ponent is higher than 1/2, then instead of asymptotic decay of
entanglement we observe finite time disentanglement with
(2016), http://dx.doi.org/10.1016/j.optcom.2016.01.055i
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sudden death time (SDT) under Markov approximation given as
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⎠⎟γ

β
β β

=
− ( )

t
1

Log ,
23

d
aa

aa bb0

where γ0 is the spontaneous decay of a two-level atom. In the case
of exact entanglement dynamics of the state χ , the concurrence
comes out to be

{ }( )( )( ) ( )β β β= − − ( )C t A t A t2 1 . 24aa bb aa
2 2

The SDE, in this case, occurs when
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where p(t) is an oscillating function with discrete zeroes at
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1

Hence, the decay probability ( )A t2 can only be analytical function
for ∈ [ [t t0, 0 , where t0 corresponds to the smallest possible zero of
the decay dynamics.

Concurrences of the initial entangled state equation (22), with
and without Markov approximation, are compared in Fig. 3. It
clearly demonstrates that the loss of entanglement as a result of
decoherence under exact treatment is slower than the Markovian
one. Thus it is obvious that the doubly excited component in the
two qubit entangled state is the main cause of disentanglement.
SDE occurs when β β>aa bb

2 2 with disentanglement time being
larger for the exact case than the one with Markov approximation.

In the following, we use the master equation (Eq. (13)) to in-
vestigate the exact dynamics of entanglement for different mixing
of states with the Bell states that follow X-matrix (Eq. (14)) and
compare with our earlier results under Markov approximation [2].
Fig. 4 compares the entanglement dynamics of various cases under
Markov approximation in left column along with exact treatment
in right column.

Case 1: Consider the initial state ρ Ψ Ψ( ) = ( − ) ++ +a a a a a a0 1 , ,1 2 1 2

where a is the mixing constant varying between 0 and 1. In this
state, Bell state Ψ+ is mixed with the doubly excited state a a,1 2 .
The concurrence can be found from Eq. (12) as

{ }( ) ( )Λ= ( )C t tMax 0, , 271

where
0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

0t
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0.

0.

0.

0.

0.

1.

Fig. 3. Entanglement dynamics of the state β β+a a b b, ,aa bb1 2 1 2 with β β+ = 1aa bb
λ γ= 0.2 0. The white line in each plot shows sudden death of entanglement.
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( )( )( )( ) ( )( ) ( )Λ = − − − − ( )t A t a a A t aA t1 2 1 1 . 281
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The plots of concurrence against initial mixing a and time are
shown in Figs. 4a and b under weak coupling (Markov approx-
imation) and strong coupling (Exact) regimes, respectively. This
state has maximum amount of entanglement when there is no
mixing of doubly excited component i.e., a¼0. We see that time of
disentanglement or sudden death time (SDT) increases with in-
crease in mixing parameter a. For this state, SDE is found for

> −a 3 2 2 considering Markov approximation, while it is much
higher under exact treatment. Comparison of the two plots 4a and
4b clearly shows that the entanglement region including the
amount of entanglement and duration is much higher than the
one under the Markov approximation. From Eq. (28), we can see
that as →a 1, the initial state is separable and remains un-
entangled under Markov approximation while under exact treat-
ment entanglement survives even with high mixing of doubly
excited component. This happens due to the memory effect of the
environment which is not there under the Markov approximation.

Case 2: Consider the initial state ρ Φ Φ( ) = | 〉〈 | + − | 〉〈 |+ + a a a a a0 2 /2 , ,a
2 1 2 1 2

( < ≤ )a0 2 . In this expression, Bell state Φ is mixed with the
doubly excited state a a,1 2 . Here, unlike the state considered in
the previous example, the maximally entangled state itself con-
tains the double excitation component. For this initial state, the
time evolution of concurrence can be calculated as

{ }( ) ( )Λ= ( )C t tMax 0, , 292

where

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭( )( )( ) ( )( )Λ = − − −

( )
t

A t
a a A t

2
4 1 .

30
2

2
2

We can see that this state has finite SDT only when ( )A t becomes
zero or when mixing = − ( ) − ( )a A t A t41 /22 2 . The plots of con-
currence against initial mixing a and time are shown in Figs. 4c and
d for the two regimes, Markovian and Non-Markovian, respectively.
We see that it has maximum entanglement at a¼2, which decays
asymptotically, while with slight lower mixing ( < )a 2 , we always
see SDE with time of disentanglement being higher under exact
dynamics than the approximated one. Entanglement decreases as
mixing parameter a decreases and it is separable at a¼0. En-
tanglement dynamics at intermediate values of mixing a is slower
than the approximated one. Region of entanglement is also larger
than the one with Markov approximation case.
0 1 2 3 4 5
0

2

4

6

8

0

0t

b

0

1

, in vacuum environment under (a) Markov approximation, (b) exact analysis with
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Fig. 4. Time evolution of the concurrence of the initial atomic states for the cases 1–4 with λ γ= 0.2 0. The plots in the left column {(a), (c), (e), (g)} are the dynamics of the
entangled states for four cases (1–4) under Markov approximation while plots in the right column {(b), (d), (f), (h)} are the dynamics of these states using exact analysis. The
white lines in each plot show sudden death of entanglement. The amount of entanglement and sudden death of entanglement time in each case shows improvement in
exact treatment than under Markov approximated ones.
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Case 3: Consider the Werner state [24]

(

) ( )

ρ Ψ Ψ( ) = + − | +

+ + |

− −

31

a
a

a a a a b b b b

a b a b b a b a

0
1

4
, , , ,

, , , , .

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

In this expression, the maximally entangled state Ψ− is mixed
with the equally weighted four possible states of a two-qubit
system. The concurrence for this state can be obtained as

{ }( ) (Λ= ) ( )C t tMax 0, , 323

where

⎧⎨⎩
⎫⎬⎭( )Λ = ( ) − ( − )( − ( ) + − ( ))

( )
t A t a a A t

a
A t1 1

1
4

.
33

3
2 2 4

The plots of concurrence for Markov approximated dynamics
and exact dynamics against initial mixing a and time are shown in
Figs. 4e and f, respectively. When a¼0, we have a state with four
equally weighted basis and the concurrence is zero. Concurrence
remains zero for <a 1/3 then it increases with increasing a until it
becomes maximum at a¼1. Entanglement dynamics for >a 1/3
shows SDE with disentanglement time as well as amount of en-
tanglement being larger in exact analysis than that of Markov
approximated dynamics.

Case 4: Finally we consider the initial state ρ Ψ( ) = | 〉+0 2/3
Ψ〈 |) + | 〉〈 | + − | 〉〈 |+ a a a a a a b b b b/3 , , 1 /3 , ,1 2 1 2 1 2 1 2 . Unlike the initial
state in case (1), this state contains both the double excited
component and the double ground states components at the same
time. This state was first considered by Yu and Eberly [1] and for
this SDE is found for >a 1

3
considering Markov approximation. The

concurrence for this state can be obtained as

( ) ( )Λ= { } ( )C t tMax 0, , 344

where

⎪ ⎪
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⎨
⎩

⎫
⎬
⎭

( )( )Λ = − [ − ( + ) ( )] + ( )
( )

t
A t

a a A t aA t
2

3
1 3 2 1 .

35
4

2
2 4

The plots of concurrence against initial mixing a and time are
compared with the Markov approximated case in Figs. 4g and h.
The concurrence is maximum at extreme values, =a 0 and a¼1,
i.e., absence of doubly excited component a a,1 2 and absence of
doubly grounded component b b,1 2 , respectively. The concurrence
decreases as a increases until =a 1

2
when both mix states become

equally weighted, then concurrence increases with increase in a
until we get another maximally entangled state. The time dy-
namics of the state is asymptotic for <a 1/3. Entanglement dy-
namics for >a 1/3 shows SDE with disentanglement time and
amount of entanglement larger than Markov approximated
dynamics.
4. Conclusion

We consider the two-qubit entanglement dynamics of a class of
initial mixed states for two atoms trapped in leaky cavities oper-
ating under comparatively strong coupling regime. In comparison
to our earlier work related to weak coupling regime (using Markov
approximation), our study demonstrated that exact system
Please cite this article as: M. Qurban, et al., Optics Communications
dynamics is slow and sudden death times are delayed in each case.
The dynamics in strong coupling regime is modified and shows
oscillatory behavior due to the feedback from the environment.
The comparison of entanglement dynamics in exact treatment or
strong coupling case with the weak coupling regime shows that
entanglement under Markov approximation is under estimated. If
the entangled atoms are trapped in the cavities containing vacuum
then we have larger amount of entanglement and larger dura-
tion compared with the Markov approximated entanglement
dynamics.

The enhancement of entanglement is basically due to the lessor
number of modes in the cavities than the number of modes in
Markov approximation having no memory effects and the in-
formation flow from the system to environment is completely lost.
While in the exact analysis, due to less number of modes in the
environment, information can flow from environment to the sys-
tem. The photons which have been emitted by the atoms are re-
absorbed at later time. The enhancement of entanglement also
results in delay of sudden death of entanglement. Thus in exact
analysis or in the non-Markovian regime entanglement and sud-
den death of entanglement are at higher values than the ap-
proximated ones in the Markovian dynamics.
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