
Contents lists available at ScienceDirect

Optics Communications

journal homepage: www.elsevier.com/locate/optcom

Measuring correlations in non-separable vector beams using projective
measurements

Keerthan Subramaniana, Nirmal K. Viswanathanb,⁎

a Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500075, India
b School of Physics, University of Hyderabad, Hyderabad 500046, India

A R T I C L E I N F O

Keywords:
Vector beam
Correlation measurement
Bell's inequality
Spin angular momentum
Orbital angular momentum

A B S T R A C T

Doubts regarding the completeness of quantum mechanics as raised by Einstein, Podolsky and Rosen(EPR)
have predominantly been resolved by resorting to a measurement of correlations between entangled photons
which clearly demonstrate violation of Bell's inequality. This article is an attempt to reconcile incompatibility of
hidden variable theories with reality by demonstrating experimentally a violation of Bell's inequality in locally
correlated systems whose two degrees of freedom, the spin and orbital angular momentum, are maximally
correlated. To this end we propose and demonstrate a linear, achromatic modified Sagnac interferometer to
project orbital angular momentum states which we combine with spin projections to measure correlations.

1. Introduction

EPR in 1935 [1] raised concerns about the completeness of
quantum mechanics by considering a thought experiment consisting
of correlated quantum particles and pointed out how such a system can
be used to demonstrate an apparent violation of the uncertainty
principle which along with the superposition principle is the bedrock
of quantum mechanics. Their experiment lead to two incompatible
conclusions that either quantum mechanics was incomplete or that
instantaneous non-local correlations which Schrödinger called entan-
glement [2] are a reality. They made use of position and momentum of
the particles as observables but its implementation was challenging as
these observables span an infinite dimensional Hilbert space.
Subsequently Bohm [3] suggested a more amenable version of the
experiment utilizing spin-1/2 particles whose spin states span a 2-
dimensional Hilbert space. However these developments had to await
Bell [4] who showed that such states seem to have strong correlations
which cannot be explained by taking a recourse to hidden variables.
Thus the stage was set for Clauser, Horne, Shimony and Holt(CHSH)
[5] and Aspect et.al [6–8] to perform experiments to see if such
systems show correlations violating Bell's inequality by preparing
photons in entangled states and performing projective measurements
to obtain correlations. It turned out that reality was indeed bizarre after
all and that the work of EPR had unwittingly closed the door on local
realism as further attested by recent loophole free tests [9–11]. With
this background to the completeness debate of quantum mechanics,
our work looks at experimentally demonstrating a realization of locally

correlated degrees of freedom(DoF) of photon states which show strong
correlations, culminating in the violation of Bell's inequality. Thus, in
addition to reconciling incompatibility of hidden variable theories with
reality without recourse to entanglement, we demonstrate that see-
mingly macroscopic coherent entities like laser beams can also show
strong correlations.

Entangled particles are represented by a non-separable composite
wavefunction [12–14]. Two such particles whose polarization DoF are
entangled have a composite state vector given by

ψ hh vv| 〉 = 1
2

[| 〉 + | 〉]
(1)

where h| 〉, v| 〉 indicate the horizontal, vertical polarization states of
the two particles. The polarization DoF spans a two dimensional
Hilbert space, and any general polarization state can be represented
in the h| 〉, v| 〉 basis as

ψ
a b

a h b v| 〉 = 1

| | + | |
[ | 〉 + | 〉]p 2 2 (2)

The state of polarization(SoP) of a light beam, consisting of an
ensemble of photons, as represented above can be depicted on the
Poincaré sphere [15] as shown in Fig. 1. All possible polarization states
– linear, elliptical, circular – achievable are represented as a point on
the Poincaré sphere by specifying its θ ϕ( , ) coordinates, with the S1, S2
and S3 components representing the Stokes parameters [16].

Instead of two particles entangled in the polarization DoF, recently
it was proposed [17,18] and realized [18,19] that an ensemble of
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photons having two DoF, say spin angular momentum(SAM) and
orbital angular momentum(OAM), can also be prepared in a non-
separable state. While photonic schemes employing correlations be-
tween polarization and propagation direction have been demonstrated
[20,21], a scheme utilizing spin and spatial components was demon-
strated in neutrons by [22]. The schemes of [17,19] still utilize
entangled photons and a q-plate for heralding preparation of SAM-
OAM correlated states and single-photon counting for detection. In
addition [17,18] extensively utilize dove prisms for unitary transforma-
tions of the OAM state. While [18] attempt to project OAM states using
a folded Mach-Zehnder interferometer, they utilize a piezo transducer
to scan phase variation between the two beams on μs time scales and
extract maximal violation of Bell's inequality. Since photon SAM is
related to its polarization [23] while its OAM is related to the mode of
the light beam [24], vector beams possessing non-uniform SoP across
their cross section can be used as realizations of such non-separable
single particle states but with two DoF [25–27]. The polarization
degree of freedom of the beam can be easily projected using a
polarization beam splitter(PBS) and a waveplate. The OAM DoF,
needing a phase sensitive technique, has so far been projected using
fork gratings [28], spiral phase plates [29], spatial light modulators
[30,19,27,31] and Mach-Zehnder interferometers [18].

The mathematical isomorphism between entangled systems and
locally correlated multi-DoF systems leads us to believe that correlation
between the polarization and mode DoF should be identical with the
correlation in the entangled case. As an experimental demonstration
we prepare photons in SAM-OAM correlated states and propose an
achromatic interferometric method consisting of only linear optical
components to project the modes onto the H HG| 〉( )10 , V HG| 〉( )01 basis
followed by a projective measurement in the polarization DoF to obtain
hH| 〉, hV| 〉, vH| 〉, vV| 〉 projections leading to the familiar θcos(2 ) correla-
tion seen for entangled particles culminating in the violation of the
CHSH form [12,32] of Bell's inequality. This leads us to conclude that
violation of Bell's inequality heralding the completeness of quantum
mechanics can also be demonstrated by using non-separable super-
position states possessing no hints of non-local ‘spooky’ effects.

2. Correlations in entangled systems

The first experimental implementations [5–8] of Bohm's version [3]
of EPR gedanken experiment [1] made use of entangled photons which
were separated and their polarization measured separately. This led to
correlations between the photon polarization states showing a θcos(2 )
variation where θ is the relative angle between the projective measure-
ment directions on the two photons.

The entangled state given by Eq. (1) tells us that the photon
polarization states are completely correlated. Such correlations are
preserved even if the polarization projections for the two photons are

performed at the same angle θ1, since the state vector in the
l l l l l l l l| 〉, | 〉, | 〉, | 〉θ θ θ θ θ θ θ θ+90 +90 +90 +901 1 1 1 1 1 1 1

basis remains non-separable:

ψ l l l l| 〉 = 1
2

[| 〉 + | 〉]θ θ θ θ+90 +901 1 1 1 (3)

In general correlations arising out of projections for first particle at
θ1 and second particle at θ2 can be immediately gleaned by represent-
ing the state vector in terms of the basis states at angle θ θ, + 901 1 for
particle-1 and θ θ, + 902 2 for particle-2.

ψ θ θ l l

θ θ l l
θ θ l l
θ θ l l

| 〉 = 1
2

[cos( − )| 〉

+sin( − )| 〉
−sin( − )| 〉
+cos( − )| 〉]

θ θ

θ θ

θ θ

θ θ

1 2

1 2 +90

1 2 +90

1 2 +90 +90

1 2

1 2

1 2

1 2 (4)

Thus the probability of detection in the hh, hv, vh and vv ports in
terms of the relative angle θ are

P P θ

P P θ

= = 1
2

cos

= = 1
2

sin

hh vv

hv vh

2

2
(5)

These probabilities lead to a correlation(C) which depends on θ as,

C θ P P P P θ( ) = + − − = cos2hh vv hv vh (6)

Experimentally the probabilities are obtained from coincidence
measurements between the two quantum particles – ie, how many
times one obtains counts in the ports hh, hv, vh, vv using single photon
counters. This should however not distract us from the fact that the
coincidence measure is in fact a projective measurement where the
weights of the basis vectors – hh| 〉, hv| 〉, vh| 〉 and vv| 〉 – of the composite
state are obtained.

3. Correlated SAM-OAM photon states

The above discussion clearly points out to the fact that correlation
between two particles violating Bell's inequality arise naturally out of
the non-separability of the state vector describing the system. Is it then
surprising that such strong correlations are also obtainable from
projective measurements on a system whose two degrees of freedom
– which individually span a 2-dimensional and together span a 4-
dimensional Hilbert space – are locally correlated? In fact, this form of
local correlations as opposed to non-local multi-particle correlations in
quantum mechanics, has been christened Classical Entanglement
[33,34] though we refrain from using it as it has been hotly debated
[35]. In addition, hybrid entanglement [36] demonstrating both local
and non-local correlations has also been demonstrated recently
[37,19,38]. In what follows we take liberty in using the term vector
beam, mode-polarization correlated beam to be equivalent to SAM-
OAM correlated photons and entangled state to connote multi-particle
entanglement.

The polarization and mode DoF each span a 2-dimensional Hilbert
space and can be represented on a sphere as shown in Fig. 1, with the
modal sphere being useful for mapping Hermite Gaussian(HG) and
Laguerre Gaussian(LG) modes. In our experiment we use the iso-
morphism between the two spheres to identify analogous points on the
modal sphere [39] and construct non-separable photon states. Such
non-separable states can be realized as vector beams [27,40] which
have a spatially varying SoP that can be extracted from Stokes
polarimetry [41,15]. Since the state of polarization at different points
in the beam cross-section is different, a global polarization-mode
structure cannot be defined and hence the non-separability ensues. A
few state representations of such beams are

Fig. 1. Poincaré and Padgett spheres for representation of polarization and mode states
respectively both of which span a 2-d Hilbert space. Any two diametrically opposite
points on the sphere are orthogonal states and can be used to span the entire 2-d Hilbert
space.
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ψ hH vV

ψ hV vH

ψ hR vL

| 〉 = 1
2

[| 〉 + | 〉]

| 〉 = 1
2

[| 〉 + | 〉]

| 〉 = 1
2

[| 〉 + | 〉]
(7)

4. Projective measurements and correlations

Let us now consider SAM-OAM correlated photons whose state
vector can be described as

ψ hH vV| 〉 = 1
2

[| 〉 + | 〉]
(8)

To measure the correlation between the two DoF, the non-separable
vector beam is to be projected simultaneously in the polarization and
mode DoF as described below.

4.1. Polarization/mode projections

A polarizing beam splitter(PBS) is a polarization projector whose
orientation determines the basis along which an incoming state vector
is projected. By itself, without phase shifters, a PBS oriented at an angle
θ can be used to project the state vector along the linearly polarized
state l| 〉θ . Though functionally the PBS does not operate on the mode
DoF, for a vector beam passing through it this does not mean that its
output mode is unchanged.

If we could conceive of an optical device, hereinafter called a mode
beam splitter(MBS), described in Section 6, which would analogously
operate on the mode DoF and project the modes onto H| 〉, V| 〉 and in
general |Ł 〉θ basis state on the modal sphere we would be able to
perform OAM projections.

Combining the polarization and mode projections by passing a
beam first through a MBS and then through two PBSes, one at the
output of each port as shown in Fig. 2, we can resolve the beam into all
its components – hH| 〉, vH| 〉, hV| 〉, vV| 〉. In general, we can resolve the
photon states into l L| 〉θ θ1 2

, l L| 〉θ θ +901 2
, l L| 〉θ θ+901 2

, l L| 〉θ θ+90 +901 2
basis states

by orienting the MBS along θ2 and PBSes along θ1. Such measurements
would do away with single photon counting as the ensemble measure-
ments directly give the weights corresponding the basis states.

4.2. Correlation between SAM and OAM

By fixing the orientation of the MBS, and rotating the PBSes one
can obtain various projection weights for different relative orientations
by measuring the intensity at the four ports as shown in Fig. 2. These
measurements give us the analogue of coincidence counts in the Aspect
experiment, which lead us to obtain the correlation [12] between the
polarization and mode DoF as,

C θ
I I I I
I I I I

( ) =
+ − −
+ + +

hH vV hV vH

hH vV hV vH (9)

where the intensities IhH, IvH, IhV and IvV refer to normalized
intensities. Though with MBS and PBS orientations at angles as shown
in Fig. 2 the state vector is resolved into the l L| 〉θ θ1 2

, l L| 〉θ θ +901 2
, l L| 〉θ θ+901 2

,
l L| 〉θ θ+90 +901 2

basis states, we still denote the ports as hH, vH, hV and vV
for notational convenience.

By obtaining the correlation coefficient S θ( ) for different relative
orientations(θ), given in Eq. (10), one can obtain the CHSH form of
Bell's inequality [32] which is obeyed by hidden variable theories.

S θ θ θ θ C θ θ C θ θ C θ θ C θ θ

S θ C θ C θ

−2 ≤ ( , , ′ , ′ ) = ( , ) + ( ′ , ) + ( ′ , ′ )− ( , ′ ) ≤ + 2

( ) = 3 ( )− (3 )
1 2 1 2 1 2 1 2 1 2 1 2

(10)

5. Vector beam generation

We use a Sagnac interferometer with a spiral phase plate(SPP) [42]
as shown in Fig. 3 to generate a non-separable vector beam. The
resulting beam at the output of the interferometer may be described as

ψ hR vL| 〉 = 1
2

[| 〉 + | 〉]
(11)

The resulting intensity distribution and polarization variation of the
beam, in terms of Stokes parameters(S1,S2,S3) [43], obtained experi-
mentally, is shown as false color images in Fig. 3. The beam informa-
tion so obtained clearly emphasizes the high degree of SAM-OAM
correlation.

6. Mode beam splitter: an interferometric implementation

The correlation measurements demand that the input mode of the
light beam be projected onto the L| 〉θ basis states. With this requirement
in mind and utilizing the fact that any two diametrically opposite points
on the modal sphere are orthogonal states and can be used to span the
entire 2-dimensional space, we immediately realize that the modes on
the equator, the rotated HG modes L| 〉θ , can be obtained by a linear
combination of equal weights of R| 〉, L| 〉 with a suitable phase modula-
tion as shown in Eq. (12):

L e R e L| 〉 = 1
2

[ | 〉 + | 〉]θ
iθ iθ−

(12)

Thus in order to resolve the incoming modes into H| 〉 state one
needs to superpose the input beam and its twin which has undergone
an extra reflection. This ensures that the R| 〉 component of the beam is
superposed with its twin, which due to an extra reflection flips its
azimuthal phase variation from anticlockwise to clockwise culminating
in an L| 〉 mode. Such a scheme can be readily implemented in an
interferometer with linear optical components as shown in Fig. 4.
However, in general to project the mode onto the rotated HG state L| 〉θ
the beam will need to accrue a phase of θ while its twin loses the same
amount. The phases that the beams accumulate or lose with respect to
each other can be dynamical or geometric. Dynamical phase can be
manipulated by simply letting the beams travel different path lengths

Fig. 2. Projective measurement scheme for SAM-OAM projection. MBS is a mode beam
splitter which projects the OAM state, while PBS (Polarizing Beam Splitter) projects the
polarization or SAM state. The MBS is realized in our experiment as shown in Fig. 4.
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through the same media, while geometric phase can be accumulated by
performing transformations on the polarization state [44–48].

The best implementation scheme, with the stability of the inter-
ferometer in mind, is to have a common path scheme such as a Sagnac
interferometer and introduce opposite geometric phase for the counter-
propagating beams. However such a scheme is untenable in a common
path configuration as we seek an extra reflection for the twin beam. As
a trade-off between stability and manipulating individual beams we
propose a shifted version of the Sagnac interferometer [49] as shown in
Fig. 4. Such a scheme would in addition give us control over phases for
individual beams in addition to giving us the extra reflection we seek,
which we implement using a prism and could equivalently be im-
plemented using a mirror or a dove prism. Since the two ports of the
interferometer are complementary, if one port projects onto the L| 〉θ
state the other naturally gives the L| 〉θ+90 projection.

In order to implement phase accumulation through geometric

phase we utilize a combination of quarter, half, quarter(QHQ) wave
plates. When photons with h| 〉, v| 〉 polarization pass through a λ/4 wave
plate oriented at 45° the SoP is transformed to R| 〉, L| 〉 respectively. On
passing this through a λ/2 wave plate at θ−45 + the SoP is now
transformed to L| 〉, R| 〉 via L| 〉θ and L| 〉θ+90 respectively. The final λ/4
wave plate at 45° transforms it back to h| 〉, v| 〉. However in this sequence
of transformations the magnitude of the solid angle is the same, half of
which gives the magnitude of the geometric phase, while the closed
path representing the transformations are in an opposite sense –

clockwise in one while anticlockwise in the other beam path. Thus, by
having one beam pass through the λ/2 plate at θ−45 + and the other
beam at θ−45 − opposite phases can be accumulated culminating in
L| 〉θ and L| 〉θ+90 projections for each of the polarization basis states h| 〉
and v| 〉. The phase accumulation with the QHQ combination for each
polarization basis state and direction is summarized in Fig. 5. Thus, our
MBS implementation utilizes only linear optical elements and is
achromatic. We analyse below the resulting transformation for scalar

Fig. 3. (Colour Online) Vector beam preparation and Stokes parameters. The figure shows the experimental setup used for generating non-separable SAM-OAM states while the inset
shows the resulting Stokes tomogram (a: Intensity; b-d: Stokes parameters S1-S3) which was obtained experimentally. Mi mirrors; Pol, Polarizer; PBS, Polarizing beam splitter; SPP,
spiral phase plate; λ λ/2, /4 – Half and quarter wave plates; CCD, Charge coupled device for imaging.

Fig. 4. Achromatic, linear interferometric implementation of an MBS (Mode Beam
Splitter) which is used in our experiment to project OAM states; BS, beam splitter; Mi,
mirrors; λ λ/2, /4 – Half and quarter wave plates. The QHQ plates consisting of
λ λ λ/4, /2, /4 in that order are used for introducing a geometric phase through

transformations on the polarization DoF.

Fig. 5. Action of QHQ (Quarter, Half, Quarter waveplates) for introducing geometric
phase through polarization transformations; λ λ/2, /4 – Half and quarter wave plates.

These transformations are unitary and restore the polarization to its initial state, thereby
ensuring that the polarization DoF of the outgoing beam is identical to the incoming
beam.
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beams and vector beams. Contrary to vector beams which have a non-
uniform SoP across their cross section and are realizations of correlated
SAM-OAM states, scalar beams have a uniform SoP and are realiza-
tions of non-correlated SAM-OAM states.

6.1. Scalar beam hR| 〉
For this beam, transformation along the anticlockwise direction

accumulates a geometric phase θ while retaining the mode as R| 〉 while
the clockwise beam is transformed into L| 〉 mode and accumulates a

Fig. 6. Experimental results of projective measurements. Intensity measurements in the four ports of the MBS-PBS setup(I I I I, , ,hH vH hV vV ) and correlation[C θ( )] are contrasted for both

the SAM-OAM correlated(column-1) and uncorrelated(column-2) cases. Also presented is the correlation coefficient[S θ( )] calculated using intensity measurements for the correlated

case which clearly shows violation of Bell's inequality.
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phase of θ− . Thus the output beam is

ψ e e hR e hL

e hL

| 〉 =
2

[ | 〉 + | 〉]

=
2

| 〉

o

iθ
iθ iθ

iθ

θ

−
−

−

(13)

6.2. Vector beam hR vL[| 〉 + | 〉]1
2

The analysis is the same as above for the hR| 〉 component of the
beam. The anticlockwise propagating beam corresponding to the vL| 〉
component accumulates a phase of θ− while its clockwise twin being
transformed to vR| 〉 accumulates a phase of θ. These transformations
culminate in an output beam

ψ e h e v L| 〉 = 1
2

[ | 〉 + | 〉]| 〉o
iθ iθ

θ
−

(14)

7. Results

To experimentally perform correlation measurements between the
two DoF, a cascade of MBS and PBSes were realized as shown in Fig. 2
with the MBS oriented at angle of 0° and the PBS orientations at θ.
Subsequently, beam intensities were measured in all the four ports of
the optical setup for both scalar and vector beams. These intensity
measurements were put together to obtain the correlation[C θ( ) Eq. (9)]
and the correlation coefficient[S θ( ) Eq. (10)]. The experimentally
obtained results for scalar and vector beams are contrasted in Fig. 6
from which it can be seen that the intensity and correlation predictions
clearly follow the behavior discussed in Section 2. The correlation
measurements for the vector beam show a θcos(2 ) variation which
culminates in the violation of Bell's inequality, while the scalar case is
devoid of correlations. It may be pointed out that since the generated
correlated state is hR vL[| 〉 + | 〉]1

2
as against hH vV[| 〉 + | 〉]1

2
, the kind of

non-separable state alluded to in Section 2, the C θ( ) and S θ( ) curves in
Fig. 6 are shifted by 45°.

8. Discussion

What our work highlights is that any two DoF each spanning a 2-
dimensional Hilbert space can be made to interact in such a way that
they are locally correlated, and that such correlations cannot be
described by recourse to hidden variable theories. Since measurements
on the two DoF are done locally, we do away with single photon
counting and coincidence measurement in order to reckon correlations
between them. What is also important to consider is that since we are
working with coherent systems, seemingly macroscopic entities such as
beams of light appear to violate Bell's inequalities, but such violations
are because of the fact that for locally correlated systems that are
coherent, projective measurements reduce to average measurements
such as measuring the beam power. It is also interesting to point out
that introduction of decoherence such as using unpolarized or partially
polarized light or mode scrambler in the state preparation destroys the
strong correlations and the Bell's inequality is no longer violated.

A pertinent question in this context, is quantum mechanics non-
local? Yes, as unequivocally shown by CHSH and Aspect experiments
demonstrating violation of Bell's inequality with entangled photons.
However, Bell's theorem answers a more fundamental question of
hidden variables which lead to non-locality and not the other way
round. So our attempt has been to see if the question of hidden
variables can be reconciled using Bell's theorem but without invoking
non-locality in any way. If the question of hidden variables is answered,
all its consequences however counter-intuitive such as that of non-
locality should follow. In conclusion, we hope to have convinced the
reader that though non-locality is an oddity and an interesting
phenomena in its own right it need not be invoked to demonstrate

the completeness of quantum mechanics.
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