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It is shown that polarized light can be polarization squeezed only if it exhibits sub-Poissonian statistics with
the Mandel's Q factor less than −1/2.
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In classical optics, Stokes parameters are used to denote the
polarization state [1,2]. For light beam traveling along the 3-direction,
the Stokes parameters {S_{{0.1.2.3}}} are defined by

S0;1 = E⁎x Ex � Ey
⁎Ey

D E
;S2 + iS3 = 2 Ex

⁎Ey

D E
; ð1Þ

where E = exEx+ eyEy is the analytic signal [3] for electric field and
conical brackets denote the average. For perfectly polarized light,
S0
2=|S|2=S1

2+S2
2+S3

2, and the point with coordinate (S1, S2, S3) lies on a
sphere of radius S0, called the Poincare's sphere [4], and the direction of
S=(S1, S2, S3) represents the polarization state. For unpolarized
light [5–8], S=0 and for partially polarized light |S|bS0 and the point
with coordinates (S1, S2, S3) lies inside the Poincare sphere. Since the
Stokes parameters involve only the coherence functions [9] of order
(1, 1), they are not sufficient for describing polarization in the context of
nonlinear interactions (also discussed in Ref. [6]). Quantum analogue of
Stokes parameters are the Stokes operators defined by

⌢S0;1 = ⌢a†x
⌢ax � ⌢a†y

⌢ay;
⌢S2 + i⌢S3 = 2⌢a†x

⌢ay; ð2Þ

where ⌢ax;y are the annihilation operators for the x and y linear
polarization. Stokes operators satisfy the commutation relations,

⌢
S0;

⌢
Sj

h i
= 0; ⌢Sj;

⌢
Sk

h i
= 2i∑

l
ε j k l

⌢
Sl j; k; l = 1; 2 or 3ð Þ ð3Þ
and lead to the uncertainty relations,

VjVk≥
⌢
Sl

D E2
; Vj≡

⌢
S2
j

D E
− ⌢

Sj
D E2

; j≠k≠l≠j: ð4Þ

Here conical brackets denote the expectation values of the operators.
Relations for Stokes operators are very much similar to those for

Dicke's collective atom hermitian operators [10] ⌢R1;2;3 for two-level
atoms (TLA's). If |u〉j and |l〉j are upper and lower states for the jth TLA,
for an assembly of N TLA's the Dicke's operators ⌢R1;2;3 are defined by

⌢
R1 + i

⌢
R2 = ∑

N

j=1
ju〉j〈l j ; ⌢R3 = ∑

N

j=1

1
2

ju〉j〈u j− j l〉j〈l j
h i

ð5Þ

and satisfy

⌢Rj;
⌢Rk

h i
= i∑

l
ε j k l

⌢Rl; j; k; l = 1;2or3ð Þ; ð6Þ

which is similar to those in Eq. (3), except for the factor of 2 on right
hand side. These lead to uncertainty relations on the basis of which
Walls and Zoller [11] defined atomic squeezing of ⌢R1if

⌢
R2
1

D E
− ⌢

R1

D E2
b
1
2

⌢
R2

D E��� ��� or 1
2

⌢
R3

D E��� ���: ð7Þ

This was generalized by Prakash and Kumar [12], who call the
generalized component ⌢Rn≡ n•⌢R

� �
of ⌢R = ⌢R1;

⌢R2;
⌢R3

� �
along the unit

vector n squeezed if

⌢
R2
n

D E
− ⌢

Rn

D E2≤1
2

⌢
Rn ⊥1

D E2
+ ⌢

Rn ⊥2

D E2
� �1=2

=
1
2

⌢
R

D E2− ⌢
Rn

D E2
� �1=2

ð8Þ

where n⊥1 and n⊥2 are any two unit vectors perpendicular to n.
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For optical polarization, concept of polarization squeezing is
introduced through Eq. (3) Chirkin et al. [13] gave the first defi-
nition in the form, VjbVj cohð Þ = ⌢S0

D E
, for j=1, 2 or 3 where

Vj≡
⌢S
2
j

D E
− ⌢Sj
D E2

is the variance of the operator ⌢Sj and Vj(coh) is

variance for equally intense coherent state. Heersink et al. [14] used

Eq. (3) and called operator⌢Sj polarization squeezed if Vjb
⌢Sl

D E��� ���bVk, for

j≠k≠ l≠ j, which is similar to the definition Eq. (7) of Walls and
Zoller [11] for atomic squeezing. This was generalized by Luis and
Korolkova [15] who wrote criterion for squeezing of as

Vnb
⌢Sn⊥

D E��� ��� ; Vn≡
⌢S2
n

D E
− ⌢Sn
D E2

; ð9Þ

where n⊥ is a unit vector perpendicular to n. This was written by
Prakash and Shukla [16] in the form,

Vn≡
⌢
S2n

D E
− ⌢

Sn
D E2

b
⌢
Sn⊥

D E��� ���
max

= ⌢
S

D E��� ���2− ⌢
Sn

D E2
� �1=2

: ð10Þ

which is very much similar to definition Eq. (8) for atomic squeezing
by Prakash and Kumar [12].

The basis states for study of polarization need not necessarily
be the two linear polarizations and can in the most general case be
the two general orthogonal elliptical polarizations represented by
two orthogonal unit vectors, say, ε and ε⊥which satisfy obviously
ε⁎•ε=ε⊥⁎•ε⊥=1 and ε⁎•ε⊥=0. Since we can write the expansion of
vector potential ⌢A for a monochromatic unidirectional optical field in
the form,

⌢
A =

ffiffiffiffiffiffiffi
2π
ωV

r
ε⌢aε + ε⊥

⌢aε⊥

� �
ei k z + h:c:� =

ffiffiffiffiffiffiffi
2π
ωV

r
ex
⌢ax + ey

⌢ay
� �

ei k z + h:c:�
h"

ð11Þ

in natural units, where h.c. stands for hermitian conjugate, it leads to
[see, e.g., Ref. [7] also]

⌢aε = ε⁎x
⌢ax + ε⁎y

⌢ay;
⌢aε⊥ = ε⁎⊥x

⌢ax + ε⁎⊥y
⌢ay ð12Þ

and also

⌢ax = εx
⌢aε + ε⊥x

⌢aε⊥ ;
⌢ay = εy

⌢aε + ε⊥y
⌢aε⊥ : ð13Þ

Operators ⌢aε and
⌢aε⊥are annihilation operator for two orthogonal

modes having polarization represented by complex unit vector ε and
ε⊥. These help us define [17] state |ψ〉 of light polarized in the mode ε
by

⌢aε⊥ jψ〉 = 0; 〈ψ j⌢a†ε⊥ = 0 ð14Þ

To study polarization squeezing in this state, straight calculations
using Eqs. (2) and (14) give,

⌢
S0

D E
= ⌢a†ε

⌢aε
D E

;
⌢
Sj

D E
= mj

⌢a†ε
⌢aε

D E
; ð15Þ

S2j
D E

= ⌢a†ε
⌢aε

D E
+ m2

j
⌢a†ε

2⌢a2ε
D E

; ð16Þ

⌢
Sj;

⌢
Sk

n oD E
= 2mjmk

⌢a†ε
2⌢a2ε

D E
; j≠kð Þ; ð17Þ

where

m1 = εxj j2− εy
��� ���2;m2 = ε⁎x εy + ε⁎y εx

� �
;m3 = −iε⁎x εy + iε⁎y εx

� �
ð18Þ
define a unit vector m. If we write

ε = excos
θo
2

+ eysin
θo
2

eiφo ð19Þ

and let angles θo and φo define the polarization state, the polarization
state will also be represented by unit vector,

m = excosθo + eycosφo + ezsinφo

� �
sinθo: ð20Þ

We canwrite the unit vectorn, squeezing of components of S along
which we are considering, in a similar form as

n = excosθ + eycosφ + ezsinφ
� �

sinθ: ð21Þ

Eqs. (15–17), then give

⌢Sn
D E

= ⌢a†ε
⌢aε

D E
cosΦ;

⌢S2n
D E

= ⌢a†ε
⌢aε

D E
+ ⌢a†ε

2⌢a2ε
D E

cos2Φ; ð22Þ

where

cosΦ = n•mð Þ = cosθocosθ + cos φo−φð Þsinθosinθ ð23Þ

Here Φ is angle between unit vectors n and m with 0≤Φ≤π.
Polarization squeezing therefore occurs if

⌢S2n
D E

− ⌢Sn
D E2− ⌢S

D E2− ⌢Sn
D E2

� �1=2
= ⌢a†ε

⌢aε
D E

1−sinΦð Þ

+ ⌢a†ε
2⌢a2ε

D E
− ⌢a†ε

⌢aε
D E2

� �
cos2Φb0

ð24Þ

Mandel's Q factor is defined by [18]

Q = ⌢a†ε
2⌢a2ε

D E
− ⌢a†ε

⌢aε
D E2

� 	
=

⌢a†ε
⌢aε

D E
: ð25Þ

For classical fields, Q≥0. Qb0 gives the non-classical features of
light, sub-Poissonian statistics. The criterion for polarization squeez-
ing is then,

1−sinΦ + Qcos2Φ = 1−sinΦð Þ 1 + Q 1 + sinΦ½ �ð Þb0: ð26Þ

This cannot be satisfied for Q≥0, i.e. for Poissonian or super-
Poissonian statistics. For Qb0 also, this cannot be satisfied if Q≥−1/2.
For Qb−1/2, however, this can be satisfied for values of Φ
for which 1NsinΦN |Q|−1−1, which is same as 0bcosΦb [2|Q| -1]1/2/
|Q|. Polarized light in the state representedbym can thus be polarization
squeezed in Stokes operator ⌢

Sn only if it exhibits sub-Poissonian
statistics and Qb−(1+sinΦ)−1. For a given value of Q which is less
than −1/2, we thus get a cone of semi-vertical angle sin−1(|Q|−1−1)
about theunit vectormwhichdescribes the polarization state. If the line
of n lies outside this cone and is not perpendicular to its axis then ⌢

Sn is
squeezed.

It is also interesting to see that if Q=−1, the lowest possible
value, which occurs for pure photon number state, the semi-vertical
angle of cone is zero and hence all components⌢Sn are squeezed except
those for which Φ=0 or π/2 [16].

If we use angles θ and φ, i.e., unit vector n, to define orthogonal
complex unit vectors ε and ε⊥ by

ε = cos
θ
2

ex + sin
θ
2

eiφ ey; ε⊥ = �sin
θ
2

ex + cos
θ
2
eiφ ey; ð27Þ

it can be shown that

⌢Sn = n•⌢S
� �

= ⌢Nε�⌢Nε⊥ ;
⌢S

D E2� ⌢Sn
D E2

= 4 ⌢Nε

D E ⌢Nε⊥

D E
; ð28Þ
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where⌢Nε = ⌢a†ε
⌢aε and

⌢Nε⊥
= ⌢a†ε⊥

⌢aε⊥
are photon number operators for

light polarized along ε and ε⊥. Eq. (28), helps us write

Vn−
⌢S2

D E
� ⌢Sn
D E2

� �1=2
= ⌢N2

ε

D E
+ ⌢N2

ε⊥

D E
�2 ⌢Nε

⌢Nε⊥

D E
− ⌢Nε

D E
� ⌢Nε⊥

D E� �2−2 ⌢Nε

D E1=2 ⌢Nε⊥

D E1=2

ð29Þ

This shows that to detect squeezing in ⌢Sn, therefore, only measure-
ment of expectation values of⌢Nε and

⌢
Nε⊥ and their squares andproduct is

required. This can be done easily by shifting phase of y-component by φ
followedby rotating thebeamby−θ/2 about thedirectionof propagation
and measurement in x and y linearly polarized components.

Also since Eq. (29), can be written as

Vn−
⌢S

D E2− ⌢Sn
D E2

� �1=2
= ⌢a†ε

2⌢a2ε
D E

+ ⌢a†2ε⊥
⌢a2ε⊥

D E
−2 ⌢a†ε

⌢a†ε⊥
⌢aε

⌢aε⊥

D E

− ⌢a†ε
⌢aε

D E
− ⌢a†2ε⊥

⌢a2ε⊥

D Eh i2
+ ⌢a†ε

⌢aε
D E1=2

− ⌢a†
2

ε⊥
⌢a2ε⊥

D E1=2
� �2

;

ð30Þ

if thedensityoperatorof light iswritten in theSudarsan–Glauberdiagonal
representation [19] in the basis of coherent state |α, β〉ε, ε⊥ in the form

⌢ρ = ∫d2αd2β P α;βð Þ jα;β〉ε;ε⊥ 〈α;β j ; ð31Þ

We have

Vn�½ ⌢S
D E2� ⌢

Sn
D E2�

1=2
= ∫d2a d2β P α;βð Þ αj j2� βj j2� αj j2

D E
� βj j2
D E� �n o2

+ αj j� βj jð Þ2
� �

:

ð32Þ

This shows that if polarization squeezing is exhibited, nonon-negative
P(α, β) can exist and therefore this is a purely non-classical feature.
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