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We find theoretically that the optical modulation instability can spontaneously happen in the noninstan-
taneous defocusing medium when there is a coherent feedback. It requires both above-threshold gain and
phase matching for the instability to happen, very similar to the oscillation condition of a laser. The the-
oretical result is in good agreement with our experimental observation.
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1. Introduction

Modulation instability (MI), which happens in many nonlinear
wave systems [1–3], is a phenomenon that a small amplitude mod-
ulation of a carrier wave grows exponentially due to the nonlinear
response of the medium. In tradition, it is believed that spatial
optical MI can only exist in the self-focusing medium since the
so-called Lighthill criterion, requiring the nonlinearity working
opposite to the diffraction, must be satisfied [3,4]. However, it
has been known that the behavior of the system may be modified,
or even is completely different, if the response of the system is de-
layed as compared to the instantaneously responding system [5–
8]. In the former study [9–11], it is demonstrated that MI may still
occur in the self-defocusing medium in the noninstantaneously de-
layed defocusing medium and the growth rate is a function of the
spatial and temporal frequencies of the input perturbation (Fig. 1).
In Fig. 1, the instability gain coefficient has no peaks, different from
the usual gain coefficient for self-focusing medium, in which the
spontaneous MI patterns always happen at the frequency of the
highest gain [1–4]. As a result, if the light contains only white
noise, every component at the gain plateau cannot single itself
out and the pattern cannot form spontaneously. Recently, it has
been demonstrated that in a cavity, the characteristic of MI is
greatly modified [12–15]. Other than that, pattern formations with
two light beams counter propagating in a nonlinear medium [16–
19] or with the liquid crystal light valve put into a ring cavity [20–
ll rights reserved.

.
ih).
22] have also shown intriguing behaviors induced by the feedback.
In this paper, we will demonstrate theoretically that the spatial MI
can spontaneously occur in the noninstantaneous defocusing med-
ium when an appropriate ring coherent feedback is present, and
demonstrate its dependence on the feedback, similar to the oscilla-
tion condition of a laser cavity, requiring above-threshold gain and
phase matching. We also demonstrate the results experimentally
and find it in good agreement with the theory.

2. Theoretical analysis

The analysis is based on the setup shown in Fig. 2. A beam split-
ter (BS), a polarization beam splitter (PBS1), and a pair of mirrors
form the cavity. Inside the cavity, a noninstantaneous self-defocus-
ing medium of length L is placed. We first consider the field prop-
agation in the defocusing medium. We follow similar steps in the
previous research [11]. We start from r2E� lð@2D=@t2Þ ¼ 0, with
D ¼ �rðjEj2ÞE being the displacement and the dielectric coefficient
�r ¼ �0ðn0 þ dnÞ2. Assuming that the nonlinearity is of the relaxa-
tion type with time constant s, we have dn½jEðtÞj2� ¼

R t
�1ð1=sÞ

F½jEðt1Þj2� exp½�ðt � t1Þ=s�dt1, with F being the nonlinearity form.
Notice that when substituting E ¼ Að~r; tÞ expðiwt � ikzÞ into the dif-
ferential equation above, we neglect all time derivatives of the
envelope A much smaller than the second time derivative of
expðiwt � ikzÞ, if 1=s� x. Using the paraxial approximation, we
obtain

r2
?A� 2ik

@A
@z
þ 2k2 dnðjAj2Þ

n0
A ¼ 0: ð1Þ
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Fig. 2. Experimental setup.

Fig. 1. Gain Spectrum of modulation instability in a self-defocusing medium. P is
the normalized spatial frequency, X the temporal frequency and s the response
time of the material.
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Let A ¼ ðA0 þ aÞ expð�icÞz as the unperturbed plane wave plus a
small perturbation a, where c ¼ kFðA2

0Þ=n0 and a ¼ a1 þ a2 with

a1;2 ¼ Re½a0
1;2 expðiX � t þ i~k? �~r � ih1zþ h2zÞ�. X and k? are the tem-

poral frequency and spatial frequency, respectively. By separating
the real and imaginary parts of Eq. (1), we get

h1 ¼ � jk
n0

A2
0

h i2
Q

1þQ
P2

h2
with h2 ¼ jkffiffi

2
p

n0
A2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�P4 � 2P2

1þQ2 þ P2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P4 þ 4þ4P2

1þQ2

qr
.

Here, P ¼ k?=½ð2j=n0Þ�1=2 � kA0 is the normalized spatial frequency,

Q ¼ Xs the normalized temporal frequency, and j ¼ dFðIÞ
dI jI¼A2

0
the

nonlinearity strength. The gain h2 for several Q(Xs) combinations
is shown in Fig. 1. As the former study [11] has shown, the pertur-
bation of light propagating through a distance L in a noninstanta-
neous self-defocusing medium will acquire a amplitude growth
and a phase shift by expðh2LÞ expðih1LÞ. We then consider for the
feedback. We assume a fraction of light, � in amplitude, exiting
the medium is fed back to the input face of the medium. With care-
ful optical setup, the image at the output face of the medium is
mapped at the input face of the medium with exactly the same
transverse coordinates. Light in the cavity can be treated as a single
optical mean field when the coherence length of the light is longer
than the round-trip length of the cavity [15]. For every Fourier
component, að0Þ, of any combination of spatial frequency and tem-
poral frequency of the noise in the field entering the cavity, the
same Fourier component aðLÞ existing the nonlinear medium is

aðLÞ ¼ að0Þ þ �aðLÞ½ � expðh2LÞ expðih1LÞ; ð2Þ

or

aðLÞ ¼ að0Þ expðh2LÞ expðih1LÞ
1� � expðh2LÞ expðih1LÞ : ð3Þ

From Eq. (3), the amplitude feedback ratio �must be larger than
1= expðh2LÞ to satisfy the oscillation condition. The threshold hap-
pens as the denominator of Eq. (3) vanishes, which implies a finite
transmitted wave aðLÞ may still take place spontaneously even
without any incident source að0Þ. It also requires h1L ¼ 2pn to sat-
isfy the phase matching condition with n being an integer. Since h1

and h2 are dependent on P and Q, only certain spatial and temporal
frequency combination can satisfy both conditions simultaneously.
In other words, only the noise of certain spatial and temporal fre-
quencies satisfying the oscillation condition will get infinite ampli-
fication and emerges.

However, the oscillation condition of Eq. (3) is based on the
‘‘ideal feedback” assumption, i.e. the total optical path is a multiple
of the wavelength. If there is a phase deviation caused by the dif-
ference between the length of the feedback optical path and the
multiple of the wavelength, it will bring an additional phase to
the field and modify Eqs. (2) and (3), respectively to

aðLÞ ¼ ½að0Þ þ �aðLÞ expðidÞ� expðh2LÞ expðih1LÞ; ð4Þ

and

aðLÞ ¼ að0Þ expðh2LÞ expðih1LÞ
1� � expðh2LÞ exp½iðh1Lþ dÞ� : ð5Þ

The new oscillation conditions, hence, are rewritten as
h1Lþ d ¼ 2np and 1� � expðh2LÞ ¼ 0.

3. Experimental setup

We then try to observe the theoretical prediction experimen-
tally. We conduct the experiment with a biased photorefractive
SBN:60 crystal (a � b � c = 5mm � 5mm � 10mm) inside the cav-
ity (Fig. 2). A collimated laser light with extraordinary polarization
from a 532 nm CW double frequency NdYAG laser passes through
the SBN crystal and covers the entire crystal. To ensure the mean-
field statement, we performed another interference experiment to
make sure its coherent length is several times the length of the
cavity and it is a single mode. PBS1 reflects part of the light for
the feedback. The amount of feedback can be controlled by adjust-
ing WP1. We adopt the 4-f image method twice by inserting four
lenses in the feedback path to project the image at the output face
of the crystal onto the input face. WP2 and PBS2 rotate the polar-
ization of the feedback light beam to be extraordinary while BS in
front of the crystal combines the incident and feedback beams. BS
is well adjusted to make sure the image at the output face of the
crystal is projected at the input face with exactly the same trans-
verse coordinates. The angle between the overlapping light beams
is also adjusted to be smaller than 1:2� 10�4 degree to make sure
the fields are added as parallel plane waves. To create the self-
defocusing condition, a bias voltage is applied alone the c-axis of
the crystal. Finally, all experimental images are captured by a lens
and a CCD camera. In this setup, the total optical path of the feed-
back is less than 1 m, much less than the coherence length of the
cw laser light, ensuring the mean field assumption.

4. Experimental results

We start the experiment with a biasing voltage at 300 V, which
yields a maximal index change of Dn ¼ 5:06� 10�5 given that the
effective electro-optic coefficient is 260 pm/V. The illumination
intensity is 39 mw/mm2. We increase the feedback ratio (�) gradu-
ally from zero. There is no spontaneous pattern formation for the
feedback ratio up to 16% (Fig. 3a). But when the feedback is near
the threshold at around 22%, the pattern begin to emerge sponta-
neously (Fig. 3b). When it is well above the threshold, the patterns
are clearly displayed (Fig. 3c). According to the theoretical analysis,
the threshold value for � is proportional to 1= expðh2LÞ, where h2

relates positively to the nonlinearity strength j, meaning a system
with smaller j needs larger feedback to satisfy the oscillation con-



Fig. 3. Light intensity patterns at the output face of the self-defocusing photore-
fractive SBN crystal under different biasing voltage within a cavity of different
feedback ratios. Note the faint stripes shown in (a) and (d) are due to the striation in
the crystal.

Fig. 6. Table of normalized spatial frequency P. PðexpÞ is measured from the
experimental patterns. PðtheoryÞ is derived from theory.
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dition. Fig. 3d–f shows another series of results under the biasing
voltage 250 V and the intensity 26 mw/mm2. Since the nonlinear-
ity strength of this arrangement for photorefractive material de-
pends on the applied voltage only [23–26], we can see that the
threshold feedback required in the second case is about 34% indeed
much larger than 22% in the first case. We also notice that the pat-
terns, when appear, are not static but continue to vary with time
(Fig. 4). This is predicted by the theory shown in Fig. 1, in which
noise component with X ¼ 0 obtains zero gain. Moreover, the pat-
tern with higher feedback ratio has the faster moving rate. This is
because higher feedback yields higher total intensity and the
photorefractive response time is inversely proportional to the total
intensity. Fig. 4 shows the dynamic pattern of feedback ratio of
26%. By measuring the number of stripes passing through a fixed
point in a specific time interval, we can estimate the temporal fre-
quency of the moving patterns. The corresponding temporal fre-
quency of Fig. 6 (� ¼ 26%) is 0.016 s�1 per second compared to
0.013 s�1 when the feedback is 22%.

Even under the same �, patterns of different spatial periods ap-
pear at different time (Fig. 5). In our experiment, since the optical
path drifts very slowly within a small fraction of wavelength, this
results in the phase deviation during the feedback process. The
form of phase matching condition is h1Lþ d ¼ 2np as the path
deviation is taken into account. For keeping the phase matching
condition, h1 must vary with d. Because h1 is the function of spatial
Fig. 4. Time varying MI patterns. (1.95 MB).

Fig. 5. Formation of MI patterns of different spatial periods under the same
feedback ratio and strength of the nonlinearity at the same area at different time.
and temporal frequency, different phase deviation d then leads to
different spatial period. To confirm this, we do some quantitative
calculations to compare it with the theory. Although the phase
shift d is not controlled in the experiment, we still can estimate
it. The total field leaving the cavity is the summation of all fields
inside, including the incident light E0 and the additional part from
feedback. If the feedback factor � is small enough, the total inten-

sity can be expressed as I ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE0 þ �E0 cos dÞ2 þ ð�E0 sin dÞ2

q
�

ð1þ 2� cos dÞjE0j2 ¼ ð1þ 2� cos dÞI0 to the first order of �. By mea-
suring the total intensity with the feedback (I) and without it
(I0), we can obtain cos d and d corresponding to every experimen-
tally measured feedback ratio (�), i.e. cos d ¼ ðI=I0Þ�1

2� , and evaluate
h1 through the phase matching condition h1Lþ d ¼ 2np by indicat-
ing certain integer of n. We know h1 is related to h2 of the form

h1 ¼ � jk
n0

A2
0

h i2
Q

1þQ
P2

h2
. At exactly the threshold, there is a corre-

sponding h2 to satisfy the oscillation condition � ¼ 1= expðh2LÞ.
Therefore, we can estimate h2 ¼ � ln �=L and get a new P–Q-rela-

tion of QP2

1þQ ¼ h1h2=� jk
n0

A2
0

h i2
. Together with the equation

h2 ¼ jkffiffi
2
p

n0
A2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�P4 � 2P2

1þQ2 þ P2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P4 þ 4þ4P2

1þQ2

qr
, we can find out the theo-

retically allowed normalized spatial frequency PðtheoryÞ. PðexpÞ
can directly be obtained based on the definition of the normalized

spatial frequency P ¼ k?=½ð2j=n0Þ�1=2 � kA0 where k? is the distance
from the origin to the peak of the Fourier transform of the intensity
picture corresponding to the spatial period. In both PðtheoryÞ and

PðexpÞ, j� A2
0 ¼ Dn is used. We operate the experiment just at

the threshold feedback under biasing voltage at 300 V. We observe
the patterns and measure the total intensity I and find them to
change with respect to time. We calculate their corresponding
PðtheoryÞ and PðexpÞ, and compare them with the captured exper-
imental images from CCD. We find that theoretical and experimen-
tal results agree very well (Fig. 6). The spatial period varies at
different moment with different corresponding d. It never really
reach as a steady state. Most time it oscillates between n = 2 or
n = 3, but sometimes at the higher order n = 5. Also found in the re-
sults, larger n corresponds to smaller spatial periods. This is similar
to a laser cavity, in which larger round-trip phase yields shorter
wavelength.
5. Conclusion

In conclusion, we investigate the modulation instability in the
noninstantaneous defocusing medium with a coherent feedback
theoretically and experimentally. We find out the instability will
happen spontaneously if the feedback exceeds a certain threshold.
For the larger biasing voltage, which generates the higher nonlin-
earity, the threshold is lower. The phase matching condition of
the coherent feedback decides the spatial periods of the MI pat-
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