
Optics Communications 284 (2011) 3872–3877

Contents lists available at ScienceDirect

Optics Communications

j ourna l homepage: www.e lsev ie r.com/ locate /optcom
Electromagnetic wave scattering by a small impedance particle of arbitrary shape

A.G. Ramm
Department of Mathematics, Kansas State University, Manhattan, KS 66506-2602, USA
E-mail address: ramm@math.ksu.edu.

0030-4018/$ – see front matter © 2011 Elsevier B.V. A
doi:10.1016/j.optcom.2011.04.035
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 28 January 2011
Received in revised form 18 March 2011
Accepted 15 April 2011
Available online 30 April 2011

Keywords:
Electromagnetic waves
Wave scattering by small body
Boundary impedance
Scattering of electromagnetic (EM) waves by one small (ka≪1) impedance particle (body) D of arbitrary shape,
embedded in a homogeneousmedium, is studied. Physical properties of the particle are described by its boundary
impedance. The problem is of interest because scattering of light by colloidal particles, or by dust in the air is an
example of the scattering theory discussed in this paper. An analytic formula is obtained for the EM field in the far
zone without usage of boundary integral equation. If a monochromatic incident field of frequency ω is E0(x, ω),
then the scatteredfield v in the zone r:=|x|≫a, where a=0.5diamD is the characteristic size ofD, is calculatedby

the formula v = ∇ eikr
4πr ;Q

h i
, where [A, B] is the cross product of two vectors, (Q, ej) is the dot product, ej, 1≤ j≤3,

are orthonormal basis vectors in R3, Q j : = Q ; ej
� �

= − iζ j S j
ωμ0

τjp ∇× E0 Oð Þð Þp , over the repeated index p
summation is understood from Eqs. (1) to (3), ζ is the boundary impedance and |S| is the surface area of the
particle, O∈D is the origin, the tensor τjp:=δjp− |S|−1∫SNj(s)Np(s)ds, where Nj(s) is the j-th component of the
unit normal N(s) to the surface S at the point s∈S, k=ω(�0μ0)1/2 is the wave number.
ll rights reserved.
© 2011 Elsevier B.V. All rights reserved.
1. Introduction

In this paper we propose a theory of electromagnetic (EM) wave
scattering by one small (ka≪1, a=0.5diamD) impedance particle
(body) D, embedded in a homogeneous medium which is described
by the constant permittivity ε0N0, permeability μ0N0 and, possibly,
constant conductivity σ0≥0. Although scattering of EM waves by
small bodies has a long history, going back to Rayleigh (1871), see [1],
[16], the result of this paper is new. It might be useful in applications
because light scattering by colloidal particles in a solution, and light
scattering by small dust particles in the air are examples of the
problems to which our theory is applicable. TheMie theory deals with
scattering by a sphere, not necessarily small, and gives the solution to
the scattering problem in terms of the series in spherical harmonics. If
the sphere is small, ka≪1, then the first term in the Mie series yields
the main part of the solution. Our theory is applicable only to small
particles, which can be of arbitrary shapes, and gives the solution
explicitly, not in the form of series in special functions, as in Mie
theory.

Wave scattering problems can be studied theoretically only in the
limiting cases of scattering by small particles, ka≪1, or large bodies,
ka≫1, in which case geometrical optics is applicable. This paper deals
with the case ka≪1. Rayleigh (1871) understood that the scattering
by a small body is given mainly by the dipole radiation. For a small
body of arbitrary shape this dipole radiation is determined by the
polarization moment, which is defined by the polarizability tensor.
For homogeneous bodies of arbitrary shapes analytical formulas,
which allow one to calculate this tensor with any desired accuracy,
were derived in [16]. These bodies were assumed dielectric or
conducting in [16].

In this paper we want to study wave scattering by small
impedance particles. The reason is: we wish to consider subsequently
the EM wave scattering by many small impedance particles with the
objective to develop a method for creating materials with a desired
refraction coefficient by embedding many small impedance particles
into a given material. Such a theory has been developed by the author
for scalar wave scattering, e.g., acoustic wave scattering, in a series of
papers [3–15,17]. The novel physical idea is to reduce solving the
scattering problem to finding some constant vector Q (see formu-
la (26)), rather than a vector function σ (see formula (11)) on the
surface of the scatterer. The vector Q is analogous to the total charge
on the surface of the scatterer D, while the function σ is analogous to
the surface current density. We assume for simplicity that the
impedance ζ (see formula (5)) is a constant given in Eq. (24). The
reason for this assumption comes from paper [4], where this
assumption was used in scalar wave scattering theory. The result of
this theory was a recipe for creating materials with a desired
refraction coefficient in acoustics ([12], [13]). The key point is: the
boundary impedance in Eq. (24) grows as a→0, and allows one to
pass to the limit in the equation for the effective (self-consistent) field
in the medium, obtained by embedding many small impedance
particles into a given medium. Such a theory is briefly summarized in
paper [12], where the equation for the limiting field in the medium is
given. Our aim in this paper is to prepare a way for developing a
similar theory for EM wave scattering by many small impedance
particles embedded in a given material.

http://dx.doi.org/10.1016/j.optcom.2011.04.035
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An analytic formula for the electromagnetic field in the region
r :=|x|≫a, is derived:

E xð Þ = E0 xð Þ + ∇ eikr

4πr
;Q

" #
; r≫ a; ð1Þ

where E0 is the incident field, which satisfies Maxwell's equations in
the absence of the scatterer D, [A, B]=A×B is the cross product of two
vectors, (Q, ej)=Q·ej is the dot product, {ej}j=1

3 is the orthonormal
basis in R3,

Qj := Q ; ej
� �

= − iζ jS j
ωμ0

τjp ∇× E0 Oð Þð Þp; ð2Þ

over the repeated index p summation is understood from Eqs. (1)
to (3), ζ is the boundary impedance, |S| is the surface area of the
particle, the tensor τjp is defined by the formula

τjp := δjp− jS j−1∫S Nj sð ÞNp sð Þds; ð3Þ

where Nj(s) is the j-th component of the unit normal N(s) to the
surface S at the point s∈S, k=ω(ε0μ0)1/2 is the wave number, and
O∈D is the origin. By S2we denote the unit sphere inR3. The boundary
S of the small bodyDwe assume smooth: it is sufficient to assume that
in local coordinates the equation of S is given as x3=ϕ(x1, x2), where
the function ϕ has first derivative satisfying a Hölder condition.

Formulas (1)–(3) are the main results of this paper. The paper is
addressed to experimentalists by the following reason: the assumption,
made in the derivations, that the surface divergence of E vanishes, is not
justified. However, in practice it may be that the formulas (1)–(3) will
be useful. Experimental verification of these formulas is of interest.

The scattering problem is formulated and studied in the next two
Sections and in the Appendix. In this paper we do not try to solve the
boundary integral equation to which the scattering problem is
reduced, but rather find asymptotically exact analytic expression for
the vector Qwhich defines the behavior of the field at distances much
greater than the size a of the small scatterer. In fact, these distances d
can be very close to the scatterer: if a is sufficiently small then d can be
less than the wavelength λ = 2π

k .

2. EM wave scattering by one small impedance particle

Let a small body D, ka≪1, a=0.5diamD, kN0 is a wavenumber,
k = 2π

λ , λ is the wavelength of the incident EM wave, be embedded in
a homogeneous medium with constant parameters �0, μ0. Let
k2=ω2�0μ0, where ω is the frequency. Our arguments remain valid
if one assumes that the medium has a constant conductivity σ0N0. In
this case �0 is replaced by �0 + i σ0

ω : Denote by S the boundary of D, by
[E,H]=E×H the cross product of two vectors, and by (E,H)=E·H the
dot product of two vectors.

Electromagnetic (EM) wave scattering problem consists of finding
vectors E and H satisfying the Maxwell's equations:

∇ × E = iωμ0H; ∇ × H = −iω�0E in D′ := R
3
5 D; ð4Þ

the impedance boundary condition:

N; E;N½ �½ � = ζ H;N½ �on S ð5Þ

and the radiation condition:

E = E0 + vE; H = H0 + vH; ð6Þ

where ζ is theboundary impedanceof theparticle,N is theunit normal to
S pointing out ofD, E0,H0 are the incidentfields satisfying Eq. (4) in all of
R

3, vE=v and vH are the scattered fields. One often assumes that the
incident wave is a plane wave, i.e., E0=εeikα· x, ε is a constant vector,
α∈S2 is a unit vector, S2 is theunit sphere inR
3,α·ε=0,vE andvH satisfy

the radiation condition: r ∂v
∂r −ikv
� �

= o 1ð Þ as r :=|x|→∞.
For simplicity, we assume in this paper that the impedance ζ is a

constant, Re ζ≥0. One could assume that ζ is a matrix function 2×2
acting on the tangential to S vector fields, such that

Re ζEt ; Et
� �

≥ 0 ∀Et∈T; ð7Þ

where T is the set of all tangential to S continuous vector fields such
that DivEt=0, where Div is the surface divergence, and Et is the
tangential component of E. By the tangential to S component Et of a
vector field E the following is understood in this paper:

Et = E−N E;Nð Þ = N; E;N½ �½ �: ð8Þ

Thisdefinitiondiffers fromtheoneusedoften in the literature, namely,
from the definition Et=[N, E]. Our definition (8) corresponds to the
geometrical meaning of the tangential component of E and, therefore,
should be used. The impedance boundary condition is written usually as

Et = ζ Ht
;N

h i
;

where ζ is the boundary impedance. If one uses definition (8), then this
condition reduces to Eq. (5), because [[N, [H, N]], N]=[H, N]. The
assumption Reζ≥0 is physically justified by the fact that this
assumption guarantees the uniqueness of the solution to the boundary
problem in Eqs. (4)–(7).

Lemma 1. Problem in Eqs. (4)–(7) has at most one solution.

Lemma 1 is proved in the next Section.
Let us note that problem in Eqs. (4)–(7) is equivalent to the

problems in Eq. (9), (10), (6), and (7), where

∇ × ∇ × E = k2E in D′; H =
∇ × E
iωμ0

; ð9Þ

N; E;N½ �½ � = ζ
iωμ0

∇ × E;N½ �on S: ð10Þ

Thus, we have reduced our problem to finding one vector E(x). If
E(x) is found, then H = ∇ × E

iωμ0
, and the pair E and H solves the

Maxwell's equations and satisfies the impedance boundary condition.
Let us look for E of the form

E = E0 + ∇ × ∫S g x; tð Þσ tð Þdt; g x; yð Þ = eik jx−y j

4π jx−y j ; ð11Þ

where E0 is the incident field, which satisfies Maxwell's equations in
the absence of the scatterer D, t is a point on the surface S, t∈S, dt is an
element of the area of S, and σ(t) is an unknown vector-function on S,
which is tangential to S, i.e., N(t)·σ(t)=0, where N(t) is the unit
normal to S at the point t∈S. This E solves Eq. (9) in D for any
continuous σ(t), because E0 solves Eq. (9) and

∇ × ∇ × ∇ × ∫S g x; tð Þσ tð Þdt = ∇∇⋅∇ × ∫S g x; tð Þσ tð Þdt
−∇2∇ × ∫S g x; tð Þσ tð Þdt = k2∇ × ∫S g x; tð Þσ tð Þdt; x∈D′:

ð12Þ

Here we have used the known identity div curlE=0, valid for any
smooth vector field E, and the known formula

−∇2g x; yð Þ = k2g x; yð Þ + δ x−yð Þ: ð13Þ

The integral ∫ Sg(x, t)σ(t)dt satisfies the radiation condition. Thus,
formula (11) solves problem in Eqs. (9), (10), (6), and (7), if σ(t) are
chosen so that boundary condition (10) is satisfied.
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Let O∈D be a point inside D. To derive an integral equation for
σ=σ(t), substitute E(x) from Eq. (11) into impedance boundary
condition (10), use the known formula (see, e.g., [2]):

N;∇× ∫S g x; tð Þσ tð Þdt
h i

∓
= ∫S Ns; ∇xg x; tð Þ jx= s;σ tð Þ½ �½ �dt � σ sð Þ

2
; ð14Þ

where the ± signs denote the limiting values of the left-hand side of
Eq. (14) as x→s from D, respectively from D′, and get the following
equation:

σ tð Þ = Aσ + f ; Aσ = −2 Ns;Bσ½ �: ð15Þ

Here A is a linear Fredholm-type integral operator, where the
operator B is defined by formula (21), and f is a continuously
differentiable vector function, defined by formula (16).

Let us find formulas for A and f. Eq. (14) is derived in Appendix and
there the formulas for f and A are obtained.

One has:

f := 2 fe sð Þ;Ns½ �; fe sð Þ := Ns; E0 sð Þ;Ns½ �½ �− ζ
iωμ0

∇ × E0;Ns½ �: ð16Þ

Boundary condition (10) and formula (14) yield

fe sð Þ + 1
2

σ sð Þ;Ns½ � + ∫S Ns; ∇sg s; tð Þ;σ tð Þ½ �½ �dt;Ns

h i
− ζ

iωμ0
∇ × ∇ × ∫S g x; tð Þσ tð Þdt;Ns

h i���x→s = 0:
ð17Þ

Using the known formula ∇×∇×=graddiv−∇2, the relation

∇x∇x ·∫S g x; tð Þσ tð Þdt = ∇x∫S −∇tg x; tð Þ;σ tð Þð Þdt
= ∇x∫S g x; tð ÞDivσ tð Þdt = 0;

ð18Þ

where Div is the surface divergence, and the formula

−∇2
x∫S g x; tð Þσ tð Þdt = k2∫S g x; tð Þσ tð Þdt; x∈D; ð19Þ

where Eq. (12) was used, one gets from Eq. (17) the following
equation

− Ns;σ sð Þ½ � + 2fe sð Þ + 2Bσ = 0: ð20Þ

Here

Bσ := ∫S Ns; ∇sg s; tð Þ;σ tð Þ½ �½ �dt;Ns

h i
+ ζiω�0 ∫S g s; tð Þσ tð Þdt;Ns

h i
:

ð21Þ

Take cross product of Ns with the left-hand side of Eq. (20) and use
the formulas Ns·σ(s)=0, f := f(s) :=2[fe(s), Ns], and

Ns; Ns;σ sð Þ½ �½ � = −σ sð Þ; ð22Þ

to get from Eq. (20) Eq. (15):

σ sð Þ = 2 fe sð Þ;Ns½ �−2 Ns;Bσ½ � := Aσ + f ; ð23Þ

where Aσ=−2[Ns, Bσ]. The operator A is linear and compact in the
space C(S), so that Eq. (23) is of Fredholm type. Therefore, Eq. (23) is
solvable for any f∈T if the homogeneous version of Eq. (23) has only
the trivial solution σ=0. In this case the solution σ to Eq. (23) is of the
order of the right-hand side f, that is, O(a− κ) as a→0, see
formula (16). Moreover, it follows from Eq. (23) that the main term
of the asymptotics of σ as a→0 does not depend on s∈S. The role of
the assumption concerning the surface divergence-free vector field σ
is interesting to verify by numerical simulation of the theory,
proposed in this paper.
Lemma 2. Assume that σ is a smooth tangential vector-field on S, and
σ(s)=Aσ. Then σ=0.

Lemma 2 is proved in the next Section.
We assume that

ζ =
h
aκ

; ð24Þ

where Re h≥0 and κ∈ [0,1) is a constant.
Let us write Eq. (11) as

E xð Þ = E0 xð Þ + ∇xg x;Oð Þ;Q½ � + ∇ × ∫S g x; tð Þ−g x;Oð Þð Þσ tð Þdt; ð25Þ

where

Q := ∫Sσ tð Þdt: ð26Þ

The central physical idea of the theory, developed in this paper, is
simple: one can neglect the second sum in Eq. (25) compared with the
first sum, if ka≪1. Consequently, the scattering problem is solved if one
vector Q is found, rather than an unknown function σ(t), which is
usually found numerically by the boundary integral equations (BIE)
method. The reason for the second sum in Eq. (25) to be negligible,
comparedwith the first one, is explained by the estimates, given below.
In these estimates the smallness of the body is used essentially: even if
one is in the far zone, i.e., ad≪1, one cannot conclude that estimate (29)
holds unless one assumes that ka≪1. Thus, the second sum in Eq. (25)
cannot beneglected in the far zone if the condition ka≪1 does not hold.

Since σ=O(a− κ), one has Q=O(a2− κ). Wewant to prove that the
second sum in Eq. (25) is negligible compared with the first one. This
proof is based on several estimates.

We assume in these estimates that a→0, and d :=|x−O|≫a.
Under these assumptions one has

j1 := j ∇xg x;Oð Þ;Q½ � j ≤ O max
1
d2

;
k
d

� �	 

O a2−κ
� �

; ð27Þ

j2 := j∇ × ∫S g x; tð Þ−g x;Oð Þð Þσ tð Þdt j ≤ aO max
1
d3

;
k2

d

( ) !
O a2−κ
� �

;

ð28Þ

and

j2
j1

����
����= O max

a
d
; ka

n o� �
→0;

a
d

= o 1ð Þ; a→0: ð29Þ

These estimates show that one may neglect the second sum in
Eq. (25), and write

E xð Þ = E0 xð Þ + ∇xg x;Oð Þ;Q½ � ð30Þ

with an error that tends to zero as a→0 under our assumptions.
Note that the assumption |x|≫ka2, describing far zone, is satisfied

for d=O(a) if ka≪1. Thus, formula (30) is applicable in a wide region.
Let us estimate Q asymptotically, as a→0.
Integrate Eq. (22) over S to get

Q = 2∫S fe sð Þ;Ns½ �ds−2∫S Ns;Bσ½ �ds: ð31Þ

We will show in the Appendix that the second term in the right-
hand side of the above equation is equal to −Q plus terms negligible
compared with |Q| as a→0. Thus,

Q = ∫S fe sð Þ;Ns½ �ds; a→0: ð32Þ
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Let us estimate the integral in the right-hand side of Eq. (32).
It follows from Eq. (16) that

Ns; fe½ � = Ns; E0½ �− ζ
iωμ0

Ns; ∇ × E0;Ns½ �½ �: ð33Þ

If E0 tends to a finite limit as a→0, then formula (33) implies that

Ns; fe½ � = O ζð Þ = O
1
aκ

	 

; a→0: ð34Þ

By Lemma 2, the operator (I−A)−1 is bounded, soσ = O
1
aκ

	 

, and

Q = O a2−κ
� �

; a→0; ð35Þ

because the integration over S adds factor O(a2). It will follow from
our arguments that Q does not vanish at almost all points.

The Q can be expressed in terms of E0. If S is a sphere of radius a then

Q = −8πia2−κ

3ωμ0
h ∇ × E0 Oð Þð Þ: ð36Þ

This important formula is derived in Appendix.

The factor
8π
3

appears if D is a ball. Otherwise a tensorial factor τjp
appears:

Qj := Q ; ej
� �

= − iζ jS j
ωμ0

τjp ∇× E0 Oð Þð Þp; ð37Þ

where over repeated index p summation from Eqs. (1) to (3) is
assumed, and

τjp = δjp−bjp; bjp :=
1
jS j ∫S NjNpds; ð38Þ

where δjp is the Kronecker delta, and bjp depends on the shape of S. If S
is a sphere, then bjp = 1

3 δjp. In this case one gets formula (36), where ζ
is assumed to be as in Eq. (24).

From Eqs. (36) and (37) one obtains

E xð Þ = E0 xð Þ− iζ jS j
ωμ0

∇xg x;Oð Þ; τ∇ × E0 Oð Þ½ �: ð39Þ

In the far zone r :=|x|→∞ one has∇xg(x, O)= ikg(x, O)x0+O(r−2),
where x0:=x/r is a unit vector in the direction of x. Consequently, for
r→∞ one can rewrite formula (39) as

E xð Þ = E0 xð Þ− iζ jS j
ωμ0

ik
eikr

r
x0; τ∇ × E0 Oð Þ
h i

: ð40Þ

This field is orthogonal to the radius-vector x in the far zone.

Conclusion. The field E(x) is given by formula (39) in the region r≫a.

3. Proofs of Lemmas

Proof of Lemma 1. From Eq. (4) one derives (the bar stands for
complex conjugate):

∫DR
H ·∇ × E−E ·∇ × H
� �

dx = ∫DR
iωμ0 jH j2−iω�ε0 jE j2
� �

dx;

where DR :=D∩BR, and RN0 is so large that D⊂BR :={x : |x|≤R}.
Recall that∇ · E;H

� �
= H ·∇ × E−E ·∇ × H. Applying the divergence
theorem, using the radiation condition on the sphere SR=∂BR, and
taking real part, one gets

0 = Re∫S E;H
� �

·Nds = ∑Re∫S ζ
−1E−t ·E−t ds;

where Et
− is the limiting value of Et on S from D′, Et=ζ [H, N]. This

relation and assumption (7) imply Et
−=0 on S. Thus, E=H=0 in D.

Lemma 1 is proved. □

Proof of Lemma 2. If σ=Aσ, then the functions

H =
∇ × E
iωμ0

; E xð Þ = ∇ × ∫S g x; tð Þσ tð Þdt

solve Eq. (4) in D, E and H satisfy the radiation condition, and,
condition (5). Thus, E=H=0 in D.Consequently,

0 = ∇ × ∇ × ∫S g x; tð Þσ tð Þdt = grad div−∇2
� �

∫S g x; tð Þσ tð Þdt
= k2∫S g x; tð Þσ tð Þdt; x∈D:

This implies σ(s)=0.Lemma 2 is proved. □

Appendix A

Derivation of the basic Eq. (39)

Boundary condition (10) yields

0 = N E0;N½ �½ �− ζ
iωμ0

∇ × E0;N½ � + N; ∇ × ∫S g s; tð Þσ tð Þdt;N
h ih i

− ζ
iωμ0

∇ × ∇ × ∫S g x; sð Þσ tð Þdt;N
h i

:

Let us denote

fe := N; E0;N½ �½ �− ζ
iωμ0

∇ × E0;N½ �:

One has ∇×∇×=curlcurl=graddiv−Δ, and

∇x ·∫S g x; tð Þσ tð Þdt = −∫S ∇tg x; tð Þ;σ tð Þð Þdt = ∫S g x; tð Þ∇t ·σ tð Þdt = 0;

and

−∇2
x∫S g x; tð Þσ tð Þdt = k2∫S g x; tð Þσ tð Þdt;

because−∇ x
2g(x, t)=k2g(x, t), x≠ t, see Eq. (13). Thus, using Eq. (14),

one gets:

0 = fe + ∫S Ns; ∇sg s; tð Þ;σ tð Þ½ �½ �dt;Ns

h i
+

1
2

σ sð Þ;Ns½ �

+
ζk2

iωμ0
Ns;∫S g s; tð Þσ tð Þdt
h i

:

Crossmultiply this byNs from the left and use the relationNs·σ(s)=
0, to obtain

0 = Ns; fe½ � + Ns; ∫S Ns; ∇sg s; tð Þ;σ tð Þ½ �½ �dt;Ns

h ih i
+

1
2
σ sð Þ

−ζmiω�0 Ns; Ns;∫S g s; tð Þσ tð Þdt
h ih i

:
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Note that

Ns; ∫S Ns; ∇sg s; tð Þ;σ tð Þ½ �½ �dt;Ns

h ih i
= ∫S Ns; ∇sg s; tð Þ;σ tð Þ½ �½ �dt

− Ns;Ns½ �∫S Ns; ∇sg s; tð Þ;σ tð Þ½ �dtð Þ
= ∫S Ns; ∇sg s; tð Þ;σ tð Þ½ �½ �dt:;

Consequently,

σ tð Þ = 2 fe sð Þ;Ns½ � + 2ζiω�0 Ns; Ns;∫S g s; tð Þσ tð Þdt
h ih i

−2∫S Ns; ∇sg s; tð Þ;σ tð Þ½ �½ �dt := Aσ + f ;

which is Eq. (14), and f :=2[fe(s), Ns], which is Eq. (15).
Denote

Q := ∫Sσ sð Þds:

One has

∫S Ns; E0 sð Þ;Ns½ �½ �;Ns½ �ds = ∫S E0 sð Þ;Ns½ �ds = −∫D∇x × E0dx:

The term ∫D ∇ x×E0dx=O(a3) is negligible compared with the
terms of order O(a2). Let us estimate the terms of the order O(a2). One
has

∫S ∇ × E0;Ns½ �;Ns½ �ds = − ∫S∇ × E0ds−∫S Ns ∇ × E0;Nsð Þds
� �

= −∫S∇ × E0ds +
4πa2

3
∇ × E0 Oð Þ

= −8πa2

3
∇ × E0 Oð Þ; a→0:

Here we have used the formulas

∫S∇ × E0ds = 4πa2∇ × E0 Oð Þ 1 + o 1ð Þð Þ; a→0;

and

∫S Ni sð ÞNj sð Þds = 4πa2

3
δij;

where S is a sphere of radius a, {Ni(s)}i=1
3 are Cartesian components of

the outer unit normal to the sphere S at a point s∈S, and δij=0 if i≠ j,
δii=1.

Thus, if S is a sphere of radius a, one has

Q = 0:5∫S f sð Þds = − 8πi
3ωμ0

ζa2∇ × E0 Oð Þ = O a2−κ
� �

; a→0 ð41Þ

provided that ζ = h
aκ ; 0bκb1:

If S is an arbitrary surface, then we define the tensor

τjp := δjp jS j−1∫S Nj sð ÞNp sð Þds; ð42Þ

where |S| is the surface area of S, and formula (41) takes the form

Q = 0:5∫S f sð Þds = − iζ jS j
ωμ0

τ ∇ × E0 Oð Þð Þ; ð43Þ

or, with Q j :=(Q, ej),

Q j = − iζ jS j
ωμ0

τjp ∇× E0 Oð Þð Þp; 1≤ j≤ 3; ð44Þ

where summation is understood over index p.
Let us now show that the term∫ SAσds contributes the term−Q, so

Q = 0:5∫S f sð Þds 1 + o 1ð Þð Þ; a→0: ð45Þ

This term was not taken into account in [15]. One has

−2∫S ds∫S Ns; ∇sg s; tð Þ;σ tð Þ½ �½ �dt

= −2∫S ds∫S dt ∇sg s; tð Þ Ns;σ tð Þð Þ−σ tð Þ ∂g s; tð Þ
∂Ns

	 

dt

= −2∫S ds∫S dt∇sg s; tð Þ Ns;σ tð Þð Þ + ∫Sσ tð Þdt2∫S ds
∂g s; tð Þ
∂Ns

:

Since

2∫S ds
∂g s; tð Þ
∂Ns

= −2∫D dxk
2g x; tð Þ−1;

one gets

I := ∫S dtσ tð Þ2∫S ds
∂g s; tð Þ
∂Ns

= −∫Sσ tð Þdt−2k2∫S dtσ tð Þ∫D dxg x; tð Þ:

Therefore

I := −Q + I1;

where the term I1 is negligible compared with Q, because

∫D dxg x; tð Þ = O a2
� �

; a→0; x∈D:

Consequently, I1 is negligible compared with I as a→0.
If ∫S|σ(t)|dtb∞ and Q=∫Sσ(t)dt≠0, then

j∫Sσ tð Þdt j≫ j∫S dtσ tð Þ∫D dxg x; tð Þ j ;

because |∫Ddxg(x, t)|=O(a2) if x∈D. If ka≪1, then the fields E0 and
∇×E0 change negligibly at the distances of order a, and Q is
proportional to a2− κ∇×E0(O) on the surface S, and therefore Q≠0
at all points at which ∇×E0(O) does not vanish.

One has

j−2∫S ds∫S dt∇sg s; tð Þ Ns;σ tð Þð Þ j≪ j∫Sσ tð Þdt j = jQ j ;

because |(Ns, σ(t))|=O(|s− t|) as |s− t|→0.
Therefore,

Q = 0:5∫S f tð Þdt = − 8πi
3ωμ0

ζa2∇ × E0 Oð Þ; a→0: ð46Þ

This yields the following formula, which is a particular case of (39)
when S is a sphere:

E xð Þ = E0 xð Þ− 8πi
3ωμ0

ζa2 ∇g x;Oð Þ;∇ × E0 Oð Þ½ �; a→0; ð47Þ

when |x−O|≫a.
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