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Scattering of electromagnetic (EM) waves by one small (ka<< 1) impedance particle (body) D of arbitrary shape,
embedded in a homogeneous medium, is studied. Physical properties of the particle are described by its boundary
impedance. The problem is of interest because scattering of light by colloidal particles, or by dust in the air is an
example of the scattering theory discussed in this paper. An analytic formula is obtained for the EM field in the far
zone without usage of boundary integral equation. If a monochromatic incident field of frequency w is Eo(X, ®),
then the scattered field v in the zone r: = |x| > a, where a = 0.5diamD is the characteristic size of D, is calculated by

the formulav = [V Ll Q] , where [A, B] is the cross product of two vectors, (Q, ¢;) is the dot product, e;, 1<j<3,
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are orthonormal basis vectors in R3, Qj:= (Q.e;) = — 5Lt (Vx Ey(0)),, over the repeated index
Boundary impedance Qj (Q, J) ol i of ))p P p

summation is understood from Eqgs. (1) to (3), ¢ is the boundary impedance and |S] is the surface area of the
particle, 0D is the origin, the tensor 7j,: = 6;, — S|~ 1 ISM(S)Np(s)dS, where Nj(s) is the j-th component of the

unit normal N(s) to the surface S at the point sE€S, k= w(egtlp) "/ is the wave number.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we propose a theory of electromagnetic (EM) wave
scattering by one small (ka<1, a=0.5diamD) impedance particle
(body) D, embedded in a homogeneous medium which is described
by the constant permittivity >0, permeability to>0 and, possibly,
constant conductivity 0p>0. Although scattering of EM waves by
small bodies has a long history, going back to Rayleigh (1871), see [1],
[16], the result of this paper is new. It might be useful in applications
because light scattering by colloidal particles in a solution, and light
scattering by small dust particles in the air are examples of the
problems to which our theory is applicable. The Mie theory deals with
scattering by a sphere, not necessarily small, and gives the solution to
the scattering problem in terms of the series in spherical harmonics. If
the sphere is small, ka < 1, then the first term in the Mie series yields
the main part of the solution. Our theory is applicable only to small
particles, which can be of arbitrary shapes, and gives the solution
explicitly, not in the form of series in special functions, as in Mie
theory.

Wave scattering problems can be studied theoretically only in the
limiting cases of scattering by small particles, ka <1, or large bodies,
ka>>1, in which case geometrical optics is applicable. This paper deals
with the case ka < 1. Rayleigh (1871) understood that the scattering
by a small body is given mainly by the dipole radiation. For a small
body of arbitrary shape this dipole radiation is determined by the
polarization moment, which is defined by the polarizability tensor.
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For homogeneous bodies of arbitrary shapes analytical formulas,
which allow one to calculate this tensor with any desired accuracy,
were derived in [16]. These bodies were assumed dielectric or
conducting in [16].

In this paper we want to study wave scattering by small
impedance particles. The reason is: we wish to consider subsequently
the EM wave scattering by many small impedance particles with the
objective to develop a method for creating materials with a desired
refraction coefficient by embedding many small impedance particles
into a given material. Such a theory has been developed by the author
for scalar wave scattering, e.g., acoustic wave scattering, in a series of
papers [3-15,17]. The novel physical idea is to reduce solving the
scattering problem to finding some constant vector Q (see formu-
la (26)), rather than a vector function o (see formula (11)) on the
surface of the scatterer. The vector Q is analogous to the total charge
on the surface of the scatterer D, while the function o is analogous to
the surface current density. We assume for simplicity that the
impedance ¢ (see formula (5)) is a constant given in Eq. (24). The
reason for this assumption comes from paper [4], where this
assumption was used in scalar wave scattering theory. The result of
this theory was a recipe for creating materials with a desired
refraction coefficient in acoustics ([12], [13]). The key point is: the
boundary impedance in Eq. (24) grows as a— 0, and allows one to
pass to the limit in the equation for the effective (self-consistent) field
in the medium, obtained by embedding many small impedance
particles into a given medium. Such a theory is briefly summarized in
paper [12], where the equation for the limiting field in the medium is
given. Our aim in this paper is to prepare a way for developing a
similar theory for EM wave scattering by many small impedance
particles embedded in a given material.
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An analytic formula for the electromagnetic field in the region
r:=|x|>a, is derived:
eikr
anr’

E(x) = Ey(x) + {V Q}, r>a, (1)

where Eq is the incident field, which satisfies Maxwell's equations in
the absence of the scatterer D, [A, B] = Ax B is the cross product of two
vectors, (Q, ) =Q-¢; is the dot product, {¢;}}—; is the orthonormal
basis in R3,

over the repeated index p summation is understood from Egs. (1)
to (3), ¢ is the boundary impedance, |S| is the surface area of the
particle, the tensor 7j, is defined by the formula

Tip

:=8,— S| [sNi(5)N,(s)ds, 3)
where N;(s) is the j-th component of the unit normal N(s) to the
surface S at the point s€S, k= (&)’ is the wave number, and
O€<Dis the origin. By S? we denote the unit sphere in R>. The boundary
S of the small body D we assume smooth: it is sufficient to assume that
in local coordinates the equation of S is given as x3 = ¢(x1, x2), where
the function ¢ has first derivative satisfying a Hélder condition.

Formulas (1)-(3) are the main results of this paper. The paper is
addressed to experimentalists by the following reason: the assumption,
made in the derivations, that the surface divergence of E vanishes, is not
justified. However, in practice it may be that the formulas (1)-(3) will
be useful. Experimental verification of these formulas is of interest.

The scattering problem is formulated and studied in the next two
Sections and in the Appendix. In this paper we do not try to solve the
boundary integral equation to which the scattering problem is
reduced, but rather find asymptotically exact analytic expression for
the vector Q which defines the behavior of the field at distances much
greater than the size a of the small scatterer. In fact, these distances d
can be very close to the scatterer: if a is sufficiently small then d can be
less than the wavelength X = 27,

2. EM wave scattering by one small impedance particle

Let a small body D, ka<1, a=0.5diamD, k>0 is a wavenumber,
k = 20, A is the wavelength of the incident EM wave, be embedded in
a homogeneous medium with constant parameters ey, Ho. Let
k? = w?eotlo, where o is the frequency. Our arguments remain valid
if one assumes that the medium has a constant conductivity 0p>0. In
this case ¢ is replaced by ¢y + i%2. Denote by S the boundary of D, by
|E, H] = E x H the cross product of two vectors, and by (E, H) =E - H the
dot product of two vectors.

Electromagnetic (EM) wave scattering problem consists of finding
vectors E and H satisfying the Maxwell's equations:

V x E = iopgH, V x H= —ioeE in D' :=R>\D, (4)
the impedance boundary condition:

[N,[E,N]] = ¢[H,Njon S ©)
and the radiation condition:

E=Ey+vp;, H=Hy+ vy, (6)

where {’is the boundary impedance of the particle, Nis the unit normal to
S pointing out of D, Ey, Hp are the incident fields satisfying Eq. (4) in all of
R3, ve=v and vy are the scattered fields. One often assumes that the
incident wave is a plane wave, i.e., Eo=¢e*® ¥ ¢ is a constant vector,

o€ S%isaunit vector, S? is the unit sphere in R3, - £=0,vpand vy satisfy
the radiation condition: r % —ikv) = o(1)asr:=|x| > .

For simplicity, we assume in this paper that the impedance ¢ is a
constant, Re ¢>0. One could assume that ¢ is a matrix function 2 x 2

acting on the tangential to S vector fields, such that
Re(gEt,Et) >0 VE'eT, (7)

where T is the set of all tangential to S continuous vector fields such
that DivE‘=0, where Div is the surface divergence, and E is the
tangential component of E. By the tangential to S component E* of a
vector field E the following is understood in this paper:

E' = E—N(E,N) = [N, [E,N]l. (8)

This definition differs from the one used often in the literature, namely,
from the definition E‘=[N, E]. Our definition (8) corresponds to the
geometrical meaning of the tangential component of E and, therefore,
should be used. The impedance boundary condition is written usually as

E = g{HEN},

where ¢ 'is the boundary impedance. If one uses definition (8), then this
condition reduces to Eq. (5), because [[N,[H, N]], N|=[H, N]. The
assumption Re{>0 is physically justified by the fact that this
assumption guarantees the uniqueness of the solution to the boundary
problem in Egs. (4)-(7).

Lemma 1. Problem in Egs. (4)-(7) has at most one solution.
Lemma 1 is proved in the next Section.

Let us note that problem in Egs. (4)-(7) is equivalent to the
problems in Eq. (9), (10), (6), and (7), where

V X E
iy

VxVxE=FKEinD, H= (9)

N, [E,N]] = &[V « E,Njon S. (10)

Thus, we have reduced our problem to finding one vector E(x). If
E(x) is found, then H = Vimjlof, and the pair E and H solves the
Maxwell's equations and satisfies the impedance boundary condition.

Let us look for E of the form

elk\xfy\

(11

E=Ey+ Vx [sgxnodt,  gxy)

Anfx—y|’
where Ej is the incident field, which satisfies Maxwell's equations in
the absence of the scatterer D, t is a point on the surface S, t S, dt is an
element of the area of S, and o(t) is an unknown vector-function on S,
which is tangential to S, ie., N(t)-o(t)=0, where N(t) is the unit
normal to S at the point tES. This E solves Eq. (9) in D for any
continuous o(t), because E, solves Eq. (9) and

Vx VxVx [sgxno)dt =YV x [sgx no(t)dt

12
—V2V x [sg(x,o(t)dt = KV x [sg(x,0o(t)dt, x<D'. (12)

Here we have used the known identity div curlE =0, valid for any
smooth vector field E, and the known formula

—Vg(x,y) = Kg(x,y) + 6(x—y). (13)

The integral _[ s8(x, t)o(t)dt satisfies the radiation condition. Thus,
formula (11) solves problem in Egs. (9), (10), (6), and (7), if o(t) are
chosen so that boundary condition (10) is satisfied.
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Let O€D be a point inside D. To derive an integral equation for
o=0(t), substitute E(x) from Eq. (11) into impedance boundary
condition (10), use the known formula (see, e.g., [2]):

[N, x [sgoe otode] = [oN, 1,800, o0)ide = 7 (14

where the + signs denote the limiting values of the left-hand side of
Eq. (14) as x—s from D, respectively from D’, and get the following
equation:

ot)y=Ao +f, Ao = —2|N,Bo]. (15)

Here A is a linear Fredholm-type integral operator, where the
operator B is defined by formula (21), and f is a continuously
differentiable vector function, defined by formula (16).

Let us find formulas for A and f. Eq. (14) is derived in Appendix and
there the formulas for f and A are obtained.

One has:
f1=2[f(s),N], fe(s):=

Ns, [Eo(s), Ns]]— 7[V x Eg,NgJ. (16)

Boundary condition (10) and formula (14) yield

f(8) + [0(9),N5] + [ [5[Ns, [Vg(s. ), 0(e)]1de. N

(17)
{v x V x [sgx ot )dt,Ns]

x—s = 0.

o

Using the known formula V x V x = graddiv — V2, the relation

Vi Vy 'fsg(x,t =V fs V.g(x,t),o(t))dt

18

= fosg(x,t Dlvo( ydt = 0, (18)
where Div is the surface divergence, and the formula

—Vi [sgx, no(t)dt = K [sg(x.yo(t)dt, XD, (19)

where Eq. (12) was used, one gets from Eq. (17
equation

) the following

—[Ns,0(s)] + 2f,(s) + 2Bo = 0. (20)
Here

Bt = | [5INe,[Vg(s, 0), 0 (O)]]dt, N | + Sioreo [ [s(s. or()de, Ny].
(21)

Take cross product of Ny with the left-hand side of Eq. (20) and use
the formulas N; - 0(s) =0, f: =f(s) : = 2[fe(s), Ns], and

[N, [N, 0 (s)]] = —01(s), (22)

to get from Eq. (20) Eq. (15):
0(s) = 2[fe(s),Ns]—

where Ao= —2[N;, Bo]. The operator A is linear and compact in the
space C(S), so that Eq. (23) is of Fredholm type. Therefore, Eq. (23) is
solvable for any f& T if the homogeneous version of Eq. (23) has only
the trivial solution 0= 0. In this case the solution o'to Eq. (23) is of the
order of the right-hand side f, that is, O(a™ ") as a—0, see
formula (16). Moreover, it follows from Eq. (23) that the main term
of the asymptotics of 0 as a— 0 does not depend on s€S. The role of
the assumption concerning the surface divergence-free vector field o
is interesting to verify by numerical simulation of the theory,
proposed in this paper.

2IN,,Bo] : = Ao + f, (23)

Lemma 2. Assume that o is a smooth tangential vector-field on S, and
o(s)=Ao. Then 0=0.

Lemma 2 is proved in the next Section.
We assume that

= (24)

where Re h>0 and K€[0,1) is a constant.
Let us write Eq. (11) as

E(x) = Eg(x) + [V,g(x,0),Q] + V x fs(g(x, t)—g(x,0))o(t)ydt, (25)
where
Q:= [so(t)dt. (26)

The central physical idea of the theory, developed in this paper, is
simple: one can neglect the second sum in Eq. (25) compared with the
first sum, if ka << 1. Consequently, the scattering problem is solved if one
vector Q is found, rather than an unknown function o(t), which is
usually found numerically by the boundary integral equations (BIE)
method. The reason for the second sum in Eq. (25) to be negligible,
compared with the first one, is explained by the estimates, given below.
In these estimates the smallness of the body is used essentially: even if
one is in the far zone, i.e,, § <1, one cannot conclude that estimate (29)
holds unless one assumes that ka << 1. Thus, the second sum in Eq. (25)
cannot be neglected in the far zone if the condition ka < 1 does not hold.

Since 0= 0(a™ "), one has Q= 0(a® ~*). We want to prove that the
second sum in Eq. (25) is negligible compared with the first one. This
proof is based on several estimates.

We assume in these estimates that a— 0, and d:=|x —O|>a.
Under these assumptions one has

Ji1:=1V,&(x.0).Q]| <0<max{dl2 g})o(az’“), 27)

= |V x [s(g(x.t)—g(x,0))0(t)dt| <a0 (max{é,’j}) O(aH),

(28)

a—0. (29)

= O(max{d,lm})—»O, i o(1),

These estimates show that one may neglect the second sum in
Eq. (25), and write

E(x) = Eo(x) + [Vxg(x,0),Q] (30)

with an error that tends to zero as a— 0 under our assumptions.
Note that the assumption |x| > ka?, describing far zone, is satisfied
for d=0(a) if ka<< 1. Thus, formula (30) is applicable in a wide region.
Let us estimate Q asymptotically, as a— 0.
Integrate Eq. (22) over S to get

Q = 2[f,(s). NyJds—2 [ §[N;, Bolds. (31)

We will show in the Appendix that the second term in the right-
hand side of the above equation is equal to — Q plus terms negligible
compared with |Q| as a— 0. Thus,

Q = [5lf.(s),Njlds,  a—0. (32)
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Let us estimate the integral in the right-hand side of Eq. (32).
It follows from Eq. (16) that

INo i) = [N, Eol— -5 [N, [V x B, Ny 33)

Ho

If Eq tends to a finite limit as a — 0, then formula (33) implies that
1
[Ny,f.] = 0(§) = O<g>, a—0. (34)
By Lemma 2, the operator (I—A) ™ ! is bounded, soo = O <l> ,and
aK

Q= o(aH), a—0, (35)
because the integration over S adds factor O(a?). It will follow from
our arguments that Q does not vanish at almost all points.
The Q can be expressed in terms of Ey. If S is a sphere of radius a then
8mia®*

e=- 3ou,

h(V x Ey(0)). (36)

This important formula is derived in Appendix.

The factor 8 appears if D is a ball. Otherwise a tensorial factor 7j,
appears:

ic|s|
Oy

Q:= (Q, e].) =_ 7jp(V x Eg(0)),, (37)
where over repeated index p summation from Eqs. (1) to (3) is

assumed, and

51'17

—b

jp» by 1=

1
i = 5l [sN;Nds, (38)

where 6, is the Kronecker delta, and bj, depends on the shape of S. If S
isa sphere, then by, = i 8jp- In this case one gets formula (36), where ¢
is assumed to be as in Eq. (24).

From Egs. (36) and (37) one obtains

E(x) = Eo(x)—igmlTsol[ng(& 0), 7V x Ey(0)]. (39)

In the far zone r: = |x| — « one has V,g(x, 0) = ikg(x, 0)x° + 0(r~2),
where x°: =x/r is a unit vector in the direction of x. Consequently, for
r— o one can rewrite formula (39) as

l§|5| zkr
r

() = Eolx)— ik

X0, 7V x Ey(0)]. (40)

This field is orthogonal to the radius-vector x in the far zone.

Conclusion. The field E(x) is given by formula (39) in the region r> a.

3. Proofs of Lemmas

Proof of Lemma 1. From Eq. (4) one derives (the bar stands for
complex conjugate):

o (H -V x E—E -V x H)dx = [}, (iop,|H|* —ioegq |E|* )dx
A ) .

where Dg:=DNBg, and R>0 is so large that DCBg:={x:|x|<R}.
RecallthatV - [E,H] = H -V x E—E -V x H. Applying the divergence

theorem, using the radiation condition on the sphere Sp = 0B, and
taking real part, one gets

0 = Re[[E,H| -Nds = > Re [T 'E; -E, ds,

where E; is the limiting value of E* on S from D’, E'= ¢ [H, N]. This
relation and assumption (7) imply E; =0 on S. Thus, E=H=0 in D.
Lemma 1 is proved. d

Proof of Lemma 2. If 0= Ao, then the functions

V X E

H= =
iopty

E(x) =V x [sg(x.tyo(t)dt

solve Eq. (4) in D, E and H satisfy the radiation condition, and,
condition (5). Thus, E=H=0 in D.Consequently,

0=VxVx J-Sg(x., tHo(t)dt = <grad div—V2>f5g(x, to(t)dt
= I [sg(x,o(t)dt, xED.

This implies o(s) =0.Lemma 2 is proved. dJ

Appendix A
Derivation of the basic Eq. (39)

Boundary condition (10) yields

0= [N[EO,N]]—&[V x Eg,N) + [N, [V x fsg(s, o(t)de, N |

g

o [v x V x [sg(x.s)o(b)dt, N].

Let us denote

fe = [Nv [EON”_&[V X EO’N]‘

One has V x V x = curlcurl = graddiv — A, and

Y - [sgx o)dt = — [5(Vgx.t),0(t)dt = [sg(x, )Y -o(t)dt =0,

and
—V: [sgx, o (t)dt = K [sg(x, io(tdt,

=Ikg(x,t),x#t, see Eq. (13). Thus, using Eq. (14),

because — V2g(x, t)

one gets:

[fsINe. [Vg(s.0. (0]t N] + 3 [05). N

* %[ . Jsgts, t)o(t)dt].

0=/f, +

Cross multiply this by N; from the left and use the relation N - o(s) =
0, to obtain

Vg5 0, 00N | + 20(s)

0= [Ns-fe] + [ s [_[S 2

— o [Ns, {Ns, [sgts. t)o(t)dt” .
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Note that

[Ne, [ fsING, sgsr a(O))deN,|| = [5INs, [Vag(s, ), o(0)]de
— [Ny NgJ [ (N5, [V g(s. ), o(£)]dE)
= [§INy, [Vg(s, t), o(0)]lde.,

Consequently,

o(t) = 2[f.(s) N] + 2Ciode, {NS, [Ns, [sgts. t)a(t)dtH
=2, [Vg(s.t),0(0)]ldt : = Ao + f,

which is Eq. (14), and f: = 2[f.(s), Ns], which is Eq. (15).

Denote
Q:= fso(s)ds

One has
JSlINg. [Eo(s). NyJJ. Nylds = [5[Eq(s).NiJds = — [V, x Eqdix.

The term ,[D V «x Egdx=0(a>) is negligible compared with the
terms of order O(a?). Let us estimate the terms of the order O(a?). One
has
[S[V x Eg,NgJ,NjJds = — (vaXEOds [sNo(V x Eg.N, )ds)

= — [V x Eyds + 43 V x Ey(0)

S%V x Ey(0),  a—0.

Here we have used the formulas

[sV x Eyds = 4na®V x Ey(0)(1 + o(1)),  a—0,

and

2

4ma”
JsNi(sIN;(s)ds = =5

where S is a sphere of radius a, {N;(s)}?— ; are Cartesian components of
the outer unit normal to the sphere S ata point s€S, and 6; =0if i #J,
5,’,’ =1.

Thus, if S is a sphere of radius a, one has

8m

Q =05[sf(s)ds = — §a V x Ey(0) = o(a”), a—0 (41)
provided that { = I, O<k<1.

If S is an arbitrary surface, then we define the tensor
Tip = 8IS [sNj(S)N, (s)ds, (42)

where || is the surface area of S, and formula (41) takes the form

Q = 0.5[sf(s)ds = 1§\S| T(V x Ey(0)), (43)
or, with Q;: =(Q, ¢;),
Q= —%ij(VXEO(O))W 1<j<3, (44)

where summation is understood over index p.

Let us now show that the term _f sAaods contributes the term — Q, so
Q = 05[sf(s)ds(1 + o(1)),  a—0. (45)
This term was not taken into account in [15]. One has
—Zfs dsjS V,.g(s,t),
= -2 dsjsdt (ng(s, £)(N,, o(t))—0(t) aga(N )>dt

og(s,t
= —2[sds [5dtV,g(s. (N, o(0)) + [so(t)de2 [sds %(Ni )

o(t)]de

Since

g(s,t) _ 2
2fsds N~ —2[pdxk’g(x,0)—1,
one gets

= —[so(t)yde—2i [sdtor(t) [ dxg(x, b).

I:= fs dto(t)zj-sdsa%(:] )

Therefore
[:=-Q+ L,

where the term [; is negligible compared with Q, because

_[D dxg(x,t) = O(az), a—0, xED.
Consequently, I; is negligible compared with I as a— 0.
If [slo(t)|dt<e and Q= [so(t)dt# 0, then

| [so(tydt|>| [sdto(t) [, dxg(x,0)],

because |fDdxg(x, t)|=0(a?) if xD. If ka< 1, then the fields Ey and
V xEy change negligibly at the distances of order a, and Q is
proportional to a® "V x Ey(0) on the surface S, and therefore Q#0
at all points at which V x Eg(0) does not vanish.
One has
| —2[sds[sdtVg(s, t)(N;, o) | < | [so(t)dt| = Q]
because |(Ns, o(t))|
Therefore,

=0(|s—t]) as |s—t|—0.

8mi

Q= 05[sf(0dr = — 5 §a V x Ey(0), a—0. (46)

This yields the following formula, which is a particular case of (39)
when S is a sphere:

8mi
3w,

E(x) = Eq(x)— §a [V&(x,0),V x Eg(0)],  a—0, (47)

when [x —0|>a.
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