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a b s t r a c t

In a previous work, Optics Communications 284 (2011) 2460–2465, we considered a dielectric medium

with an anti-reflection coating and a spatially uniform index of refraction illuminated at normal

incidence by a quasimonochromatic field. Using the continuity equations for the electromagnetic

energy density and the Gordon momentum density, we constructed a traceless, symmetric energy–

momentum tensor for the closed system. In this work, we relax the condition of a uniform index of

refraction and consider a dielectric medium with a spatially varying index of refraction that is

independent of time, which essentially represents a mechanically rigid dielectric medium due to

external constraints. Using continuity equations for energy density and for Gordon momentum density,

we construct a symmetric energy–momentum matrix, whose four-divergence is equal to a generalized

Helmholtz force density four-vector. Assuming that the energy–momentum matrix has tensor

transformation properties under a symmetry group of space–time coordinate transformations, we

derive the global conservation laws for the total energy, momentum, and angular momentum.

Published by Elsevier B.V.
1. Introduction

Starting with the hydrodynamic continuity equation, Umov
[1] obtained an expression for energy continuity in a continuous
spatial flow of an electromagnetic field in 1874 [2–4]. A decade
later, Poynting [2] derived a similar energy continuity equation as
a general theorem of the macroscopic Maxwell equations. Poynt-
ing’s theorem is generally preferred because it can be derived
directly from the macroscopic Maxwell equations
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of classical continuum electrodynamics. Here, the Maxwell equations
are written in Heaviside–Lorentz units for a nonmagnetic linear
medium in the absence of free charges and currents. We have
B.V.

: þ1 256 842 2507.
assumed that the index of refraction, n¼ nðrÞ, depends on position,
occupies a finite region of three-dimensional space, and is indepen-
dent of time. Poynting’s theorem can be derived by subtracting the
scalar product of the Maxwell–Amp�ere law, Eq. (1.1), with E from the
scalar product of Faraday’s law, Eq. (1.2), with B to obtain
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Upon application of a vector identity and the definition of the energy
density
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Þ ð1:6Þ

the preceding equation becomes Poynting’s theorem
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þr � cðE� BÞ ¼ 0 ð1:7Þ

and defines Poynting’s energy flux vector SP ¼ cðE� BÞ.
In a previous work [5], we considered a dielectric medium

with an index of refraction that was time-independent, spatially
uniform, and covered with a thin gradient-index antireflection
coating. For this case, we showed that the energy
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and the Gordon [6] momentum
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are the conserved electromagnetic quantities with integration
performed over all space s. We constructed the corresponding
traceless, symmetric energy–momentum tensor, whose four-
divergence provided the continuity equations for the energy and
momentum densities of the closed system. This result incorpo-
rated a condition ofrn=n51=l corresponding to unimpeded flow
in the absence of external forces.

In the current work, we consider the case of an inhomoge-
neous dielectric medium in which the condition rn=n51=l no
longer holds. The assumption that the index of refraction is
independent of time necessarily implies that the dielectric med-
ium is mechanically rigid [7] and that no momentum is trans-
ferred to the dielectric medium. In other words, at each spatial
point, there is effectively an external field that acts as a constraint
that holds the dielectric in place. Therefore, the system that we
are considering is not a closed system and the continuity
equations and global conservation equations will reflect this
feature. The external field that acts as a constraint is not a field
that we impose, instead it arises as a result of the way in which
we arrange terms in the continuity equations. We construct the
energy and momentum continuity equations and find that the
spatial gradient of the refractive index appears in the continuity
equations in a generalized Helmholtz force density. This general-
ized Helmholtz force density is a spatial and time-varying field
that provides the constraint for the dielectric medium to be
mechanically rigid. We then write the continuity equation as a
four-divergence of a symmetric energy–momentum matrix.
Assuming that the energy–momentum matrix has tensor trans-
formation properties under a symmetry group of space–time
coordinate transformations, we apply the four-dimensional diver-
gence theorem to derive global conservation laws for the total
energy, momentum, and angular momentum.
2. Energy and momentum continuity equations

The energy–momentum tensor is a concise way to represent the
local continuity of energy and momentum of a field. While simple in
concept, the form of the energy–momentum tensor for the electro-
magnetic field in a dielectric has been at the center of the century-
long Abraham–Minkowski controversy [8]. The tensor that was
proposed by Minkowski [9] in 1908 is not diagonally symmetric,
a fact that is adverse to conservation of angular momentum [10].
Abraham [11] subsequently proposed a symmetric tensor at the
expense of a phenomenological force. The disagreeable properties of
the Minkowski and Abraham energy–momentum tensors are man-
ifestations of underlying conservation issues: neither the Minkowski
momentum nor the Abraham momentum is conserved. In this
section, we derive the energy and momentum continuity equations
for an inhomogeneous dielectric and construct the corresponding
tensor continuity equation and energy–momentum tensor. In the
following section, we will obtain the globally conserved
quantities—the total energy, the total momentum, and the total
angular momentum system, from the energy momentum tensor.

Starting from the Maxwell equations (1.1)–(1.4), we use the
continuity of the electromagnetic energy density and the Gordon
momentum to obtain a symmetric stress–energy tensor. We
begin with the temporal derivatives of the energy density and
the Gordon momentum density,
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The Gordon momentum in Eq. (2.2) has been scaled by c so that
the equations are in the same units. Next, we apply the vector
identity

r � ðcaÞ ¼rc� aþcr � a ð2:3Þ

to Faraday’s law and write the macroscopic Maxwell equations,
Eqs. (1.1) and (1.2), as
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The variant forms of Maxwell’s equations, Eqs. (2.4) and (2.5), are
mathematically equivalent to the original versions, Eqs. (1.1) and
(1.2), respectively. Substituting the Maxwell equations, Eqs. (2.4)
and (2.5), into Eqs. (2.1) and (2.2), we produce the energy
continuity equation
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and the (Gordon) momentum continuity equation
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Here, we have used Eq. (1.3) and the definition of the Maxwell
stress tensor [10,12]

Wij ¼ ð�nEinEj�BiBjþ
1
2ðnE � nEþB � BÞdijÞ ð2:8Þ

We can write the energy continuity equation, Eq. (2.6), and
momentum continuity equation, Eq. (2.7), as the matrix differ-
ential equation

@bTab
¼ f a ð2:9Þ

with summation over repeated indices. The quantities that appear
in Eq. (2.9) are a four-divergence operator
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and a generalized force density four-vector

f a ¼ ðrn � ðE� BÞ,�fHÞ ð2:12Þ

where

fH ¼�nE2rnþ2nEðE�rnÞþn2Eðr � EÞ ð2:13Þ

Using Eq. (1.3), the last two terms on the right side of Eq. (2.13)
cancel, so that

fH ¼�nE2rn ð2:14Þ

in the absence of free charges.
The array in Eq. (2.11) appears to have the properties of an

energy–momentum tensor. By construction, the operator defined
in Eq. (2.10) applied to the rows of the array in Eq. (2.11)
generates continuity equations for the electromagnetic energy
and the momentum. The same operation applied to the columns

@aTab
¼ f b ð2:15Þ

generates the same continuity equations by symmetry

Tab
¼ Tba

ð2:16Þ
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The array has a vanishing trace

Ta
a ¼ 0 ð2:17Þ

corresponding to massless particles [10,12].
The new feature of this result is the appearance of the four-

vector f a in the continuity equation (2.9). The appearance of the
four-vector f a in the divergence of the stress energy tensor in Eq.
(2.9) is a result of the fact that the system is not closed. When the
gradient of the index of refraction is non-zero, there is a back-
action on the field altering its spatial properties, so the field does
not experience ‘‘unimpeded flow’’. It is possible to define an
effective stress–energy tensor that takes into account the back-
action on the field by introducing

@atab ¼ f b ð2:18Þ

The continuity of energy and momentum can then be expressed
by

@aðT
ab
þtabÞ ¼ 0 ð2:19Þ

where the tensor tab contains the influence of the inhomogeneity
of the material and is zero for homogeneous dielectrics.
3. Global conservation equations

If we assume that Tab transforms as a tensor under some
symmetry group of space–time coordinate transformations, then
we can apply the four-dimensional divergence theorem to obtain
global conservation equations. Integrating Eq. (2.9) over a four-
volume, dO¼ cdt d3x� cdt dv (where t ¼ t=n), between hypersur-
faces [10] of constant time at t1 ¼ t1=n and t2 ¼ t2=n, we have

Z t 2

t 1

@bTa0 cdt dv¼
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t 1

f acdt dv ð3:1Þ

where the integrals over dv¼ d3x are three-dimensional volume
integrals over the volume containing the field. Applying the four-
divergence theorem results inZ
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When a¼ 1,2,3, Eq. (3.2) reduces to

Gðt2Þ�Gðt1Þ ¼

Z
E2rn dt dv ð3:3Þ

where GðtÞ is the Gordon momentum at time t, and the time
integration is between t¼ t1 and t¼ t2. Eq. (3.3) shows that the
Gordon momentum of the field is not constant, i.e., there is a
source or sink of momentum provided by the external constraint
field fH . For the case a¼ 0, Eq. (3.2) givesZ
ðreðt2Þ�reðt1ÞÞ dv¼

Z
rn

n
� ðE� BÞ dt dv ð3:4Þ

where re is given by Eq. (1.6). The left side of Eq. (3.4) is the
difference in total energy at two different times, Uðt2Þ�Uðt1Þ. We
see that a non-zero spatial gradient in the index means that the
field can gain or lose energy. The results given in Eqs. (3.3) and
(3.4) assume that the matrix Tab in Eq. (2.9) transforms as a tensor
under some symmetry group of space–time coordinate transfor-
mations. Note that when rn¼ 0, Eqs. (3.3) and (3.4) show that
the Gordon momentum GðtÞ and the energy U(t) are constants.

In recent years, there is intense interest in angular momentum
carried by the electromagnetic field, see the recent review and
references cited therein [13,14]. However, the angular momen-
tum carried by the electromagnetic field in a dielectric environ-
ment is no less unsettled than the linear momentum case [15].
We can define the four-tensor of angular momentum density in
terms of our energy–momentum tensor as [10]

mabg ¼
1

c
ðxaTgb

�xbTga
Þ ¼ �mbag ð3:5Þ

Continuity of angular momentum is given by

@gmabg ¼
1

c
ðxaf b�xbf aÞ ð3:6Þ

The divergence of mabg is not zero, thereby indicating that there is
a source or sink of angular momentum density, due to the
gradient of the index of refraction.

Once again, we assume that there exists a symmetry group of
space–time coordinate transformations, so that mabg is a tensor.
As above, we can then use the four-divergence theorem to obtainZ
ðmab0ðt2Þ�mab0ðt1ÞÞ dv¼

Z
1

n
ðxaf b�xbf aÞ dt dv ð3:7Þ

where the time integral is between the two times t1 and t2 and
where the volume integral dv is over the portion of three-
dimensional space containing the field and includes the region
where nðrÞ41. When a and b take values i,j¼ 1,2,3, we have

mij0ðtÞ ¼ xif j
�xjf i

ð3:8Þ

where fi are the components defined in Eq. (2.14). Eq. (3.7) gives
the change in total angular momentum of the field, DM, between
times t1 and t2, and can be written as

DM¼

Z
ðmðt2Þ�mðt1ÞÞ dv¼

Z
E2
ðr�rnÞ dt dv ð3:9Þ

where the mðtÞ is the angular momentum density at position r at
time t, defined by

mðtÞ ¼ r� gGðtÞ ð3:10Þ

and is defined in terms of the Gordon momentum density

gGðtÞ ¼ nE� B=c ð3:11Þ

Eq. (3.9) shows that when r�rn is non-zero, then the total
angular momentum of the field (as expressed through the angular
momentum density) can change. Once again, we remind the
reader that we have assumed the index of refraction as isotropic,
constant in time, but varying in position. Eq. (3.9) essentially
shows that a particular spatial distribution of r�rn can lead to
a back-action on the field that can alter the field angular
momentum. Indeed this has been exploited in a number of recent
experiments [13].
4. Summary

In a previous work, we considered a dielectric medium with an
index of refraction that was time-independent and spatially
uniform, and the dielectric was covered with a thin gradient-
index antireflection coating [5]. We found that the total energy
and the Gordon momentum were conserved quantities (constant
in time). In this work we have relaxed these conditions to include
a dielectric medium that has a spatially varying index of refrac-
tion that is constant in time. The fact that the index of refraction
is constant in time essentially means that the dielectric medium
is mechanically rigid and subject to an external constraint. This
constraint means that we are not dealing with a closed system.
Using the continuity equations for energy density and momen-
tum density, we derived a symmetric energy–momentum tensor
for the electromagnetic field. Due to the fact that the system is
not closed, the divergence of the stress–energy tensor is not zero,
but equal to a generalized Helmholtz force vector that represents
the constraint. Similarly, the divergence of the angular momen-
tum density is not zero due to the external constraint of a time
independent index of refraction. We found that the total energy,
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Gordon momentum, and total angular momentum are not con-
served because of the external constraint on time independence
of the index of refraction. However, the time dependence of the
total energy, Gordon momentum, and total angular momentum is
related to the constraint, which is proportional to the gradient of
the index of refraction.

The case of an abrupt transition in the refractive index is
particularly interesting. Using the Fresnel relations, one can show
that the Gordon momentum is conserved, but only if a momen-
tum of twice the reflected momentum is imputed to the material.
In the current work, however, the index of refraction is held
constant in time by rigidly attaching the dielectric to a fixed
support and no momentum is transferred to the material. There-
fore, we cannot treat problems in which the magnitude of the
gradient of the refractive index is so large as to generate
significant reflections and radiation pressure.

Finally, we note that time t has been renormalized to t ¼ t=nðrÞ
in the intermediate steps used to obtain the symmetric energy–
momentum tensor and its continuity relation given by its four-
divergence in Eq. (2.9). However, the final conservation laws of
total energy, total momentum and total angular momentum,
given by Eqs. (3.4), (3.3), and (3.9), respectively, are expressed
in terms of the unrenormalized time t.
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