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Abstract

We derive exact analytical solutions describing multi-soliton complexes and their interactions on top of a multi-
component background in media with self-focusing or self-defocusing Kerr-like nonlinearities. These results are il-
lustrated by numerical examples which demonstrate soliton collisions and field decomposition between localized and
radiation modes. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The multi-soliton complex (MSC) is a new
concept of modern nonlinear science [1]. If we
think of solitons as elementary particles, then we
can imagine MSCs as combinations of elementary
particles such as atoms. In most cases an atom is
an isolated particle, but it can demonstrate more
complicated behavior. Mathematically speaking, a
MSC is a self-localized state which is a nonlinear
superposition of several fundamental solitons. As
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it is a composite structure, we can expect it to
behave in a more complicated way than a single
fundamental soliton. At the same time, an MSC
can behave as a single particle unless there is a
substantial external perturbation which causes it
to split into its primary constituents.

There are various phenomena in nonlinear
physics which can be treated as MSCs, some of
which are listed in Ref. [1]. Here, we are mainly
interested in optical applications. In fiber optics, an
MSC is a single short pulse formed by a nonlinear
superposition of fundamental solitons trapped in a
common potential well, so that all of them have
the same velocity [2]. The nonlinear superposi-
tion can be either coherent or incoherent, in the
sense that the phases of the separate solitons in
the bunch can be either related or independent.
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The solitons in the group may be bound together,
or at least may stay close to each other, simply
because they have the same initial speed. The latter
happens in the case of integrable systems.

Incoherent solitons in space [3,4] have recently
attracted considerable attention [5], especially after
the first experimental demonstration of their exis-
tence [6]. Incoherent self-trapping in a biased
photorefractive crystal is usually well described by
a set of M coupled nonlinear Schrodinger equa-
tions (NLSEs) with saturable nonlinearities [4].
Moreover, in photorefractive media with a drift
mechanism of nonlinear response, the Kerr-like
nonlinearity is a good model [7]. In the latter case,
the equations become integrable, and this allows
us to obtain solutions analytically. Moreover, the
solution can be considered as a nonlinear super-
position of a certain number of fundamental soli-
tons and radiative waves. This fact allows a simple
qualitative approach to the problem, in addition to
having an exact solution.

The number of solitons in a complex depends
on the nature of physical system, as well as on the
initial conditions. Mathematically speaking, we
will talk about N fundamental solitons all having
the same speed and moving (or resting) as a single
complex. The value of N can be 1 (fundamental
soliton) but can take large values up to infinity.

Elementary particles in nature never exist in
isolation, but are submerged in a fluctuating ra-
diation field. Similarly, MSCs can exist on top of a
background plane wave and, more generally, on
top of an arbitrary number of plane waves prop-
agating in different directions. In this sense, we will
talk about a sea of radiation modes, which can be
stable with respect to modulational perturbations
in both self-focusing and defocusing media [8].
Plane waves can also serve as a basis for the ex-
istence of dark solitons. An incoherent soliton is
an example of an MSC. Solitons embedded in a
sea of radiation modes were first discussed in Refs.
[9,10]. Stable propagation of both dark and bright
spatial optical solitons on an incoherent back-
ground has been observed in recent experiments
[10,11].

In this work we present a class of exact solu-
tions to the coupled set of M equations which
describe symmetric and asymmetric MSCs on a

background which is formed from a nonlinear
superposition of radiation modes. This extends the
results obtained in Refs. [9-11], where stationary
solutions with sech’-type intensity profiles were
presented. Our results also differ from Refs. [12,
13], where the background consisted of a single
mode. Our new exact solution of MSCs in a sea of
radiation modes accounts for an arbitrary number
of both soliton and radiative components.

2. Model equations and their properties

It can be shown [14] that, for photorefractive
media with a drift mechanism of nonlinear re-
sponse, a good approximate model describing the
propagation of M self-trapped mutually incoher-
ent wave packets in a planar waveguide is the set
of NLSEs for a Kerr-type nonlinearity
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where ,, denotes the mith component of the beam,
x 1is the transverse coordinate, z is the coordinate
along the direction of propagation, « is the coef-
ficient representing the strength of nonlinearity,
and On is the change in refractive index profile
created by all the incoherent components in the
light beam. Because the response time of the
nonlinearity is assumed to be long compared with
temporal variations of the relative phases of all the
components, the medium responds to the average
light intensity, and this is just a simple sum of
modal intensities [15]. Then, after defining a new
set of functions u,,(x,z) = /|2, (x,z), we reduce
Eq. (1) to the following set of normalized equa-
tions:

+ adnyy,, =0, (1)

Ou,, 13, e
IE+§ axz JrsumZ|uj| :0 (2)

=1

Here 1 <m < M, M is the number of components,
while s = 41 in a self-focusing medium and s =
—1 in a defocusing material.

Let us briefly outline some general properties of
Eq. (2). The most remarkable fact is that these
coupled equations are completely integrable by
means of the inverse scattering technique (IST)
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[16-18]. Specifically, any solution can be repre-
sented as a nonlinear superposition of solitary
waves and radiation modes which correspond to the
discrete and continuous parts of the IST spectrum,
respectively.

Every fundamental soliton (labeled j) is charac-
terized by several eigenvalues: (i) a complex wave
number k; = r; +iu;, (ii) a shift in the coordinate
plane (x;,z;), and (iii) a polarization vector p¥)
in the functional space, normalized to unity as
S Py |2 = 1. The simplest bright single-soliton
solution in a self-focusing medium (s = +1) can be
written as:

y(x,z) = p,)) r; sech(p)) €™, 3)

where f, =r(X; — wz), v, = wx; + (17 — 15)%;/2,
and (X;,z;) = (x —x;,z — z;) are the shifted coor-
dinates. We see that the peak soliton intensity and
its inverse width are determined by the real part of
the wave number r;(> 0), while the imaginary part
p,; characterizes the soliton velocity in the trans-
verse direction. Moreover, each fundamental soli-
ton can be ‘“‘spread out” into several incoherent
components, as defined by the polarization vector.

The solution for a single radiation mode, in the
form of a plane wave, can also be characterized by
a similar set of parameters,

U (X, 2) :p;(;{) ry eia/’ (4)

where a; = uX; + (2577 — 117)z;/2. Such a plane
wave exists for either sign of nonlinearity, s = +1,
and it is stable in a self-defocusing medium.
Moreover, an incoherent superposition of a large
number of plane waves can be stable even in the
self-focusing medium, as was shown in Ref. [8]. In
the presence of solitons, the plane waves are dis-
torted, but due to the integrability of the original
equations, the corresponding solutions can be ob-
tained in an explicit form, as we demonstrate in the
following section.

3. Explicit solutions for multi-soliton complexes on
a background

It has been demonstrated in earlier studies
[13,19] that a stationary MSC can only be formed

by incoherently coupled fundamental solitons and
radiation waves which have orthogonal polariza-
tion vectors, i.e. Y. pUpt) = §,,. We restrict our
investigation to this important case. Then, the
mathematical description can be simplified if we
use the rotational symmetry of the functional space
of the original equation (2). Indeed, it is sufficient
to find solutions u; where all the fundamental
nonlinear eigenmodes belong to different compo-
nents, p¥) = §,,, and then the full family of solu-
tions can be determined using the following
transformation:

M
Uy = Zijuja (5)
=1

where the matrix R,; defines a rotation in the
M-dimensional space (characterized by M —1
angles), which preserves the MSC intensity profile
S i = 3, .

As follows from the IST, it is possible to con-
struct the full solution by adding the radiation
modes to bright MSCs. On the other hand, solu-
tions for bright MSCs, having a zero far-field as-
ymptotic in the self-focusing medium (s = +1) can
be found by solving a set of linear equations
[20,21]:

Ms *
ee gy, 1

Yy = —p. 6
m=1 k/+k:*r:+2r_iuj “ ©

where M, is the number of fundamental solitons,
and e; = y;exp (ﬁj + iyj). Here the coefficients y;
define the relative coordinate centers for the fun-
damental solitons. By choosing their values in a
special way, the solutions of Eq. (6) can be pre-
sented in a simple, symmetric form (see Refs.
[19,22] for details).

In order to reveal the basic properties of radi-
ation modes under the presence of an MSC, we
perform a linear analysis, assuming that the wave
amplitudes are vanishingly small and that they do
not contribute to the intensity profile. We note
that Eq. (6) defines an extension of the functional
basis introduced by Kay and Moses [23] to con-
struct reflectionless potentials. The difference is
that in Ref. [23] the k; are real, whereas we per-
formed a similar analysis and found that the re-
sults can be generalized to the case of complex
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wave numbers. Specifically, we derived solutions
for scattered plane waves, or radiation modes be-
longing to the continuous spectrum:

— it = tnZn /2)

In general, we can have an arbitrary number
(M,) of radiation modes, and we assume that they
belong to the components with M; + 1 <m < M, +
M;. Note that solution (7), which is valid in the
limit »,, — 0, reduces to a simple plane-wave pro-
file given by Eq. (4) in the absence of bright
components. When the radiation wave amplitudes
7, are not small, both the radiation modes and the
bright soliton profiles defined by Eq. (6) are dis-
torted according to the nonlinear superposition
principle. In order to find MSC solutions on a
finite background, we extend the approach intro-
duced in Ref. [13]. First, we multiply Eq. (6) by
u;/(k; —ip), add the complex conjugate, and sum
over the fundamental soliton numbers 1 < j < M.
Comparing the resulting expression with Eq. (7),
we obtain the following relation:

M, ” 2 P
j m

S/ e ] (8)
; ki =+ i, Tm

where the subscript m indicates a radiation mode.
The second step is to define the combined rota-
tional-scaling transformation which changes the
nonlinear eigenmode amplitudes while preserving
the total intensity profile up to a constant back-
ground,

I =1 +sl. 9)

Here I is the full intensity of the re-scaled solution
in(x,z), and Iy = Y /50" || is the background
intensity. Then, from Eq. (8) it immediately fol-
lows that the rescaling coefficients for the bright

components should be defined as

Ms+M;

Ul =5+ Y : (10)

J=Ms+1 |k* lluj|

while for the radiation modes we put U, = 1.
Quite remarkably, this procedure can be used for
both signs of nonlinearity (s = +1). The propa-
gation constants should also be modified accord-

ingly, so that the resulting functions satisfy the
original Eq. (2). We finally obtain:

il (x,2) = Uye™™u,,(x, z). (11)

At this point, the derivation of the analytical
solutions for the MSCs existing on top of several
radiation modes is complete, and the component
profiles are defined by Egs. (10) and (11) together
with Eqgs. (6) and (7). All such solutions corre-
spond to multi-parameter families which can be
generated with the help of the rotation transfor-
mation (5).

Let us now extend the analytical results to the
case where the background is composed of a
continuum set of radiation modes, i.e. M, — +oo.
This case corresponds, for example, to spatial
optical solitons excited by an incoherent light
source [9-11]. Then, the plane waves in the back-
ground can be characterized by an angular distri-
bution function, R(u) ( = 0), so that R(u)du is the
wave intensity corresponding to the tangents of
inclination angles in the interval (u,u+ du).
Therefore, the full background intensity is 7, =

I "% R(u) dy, and the scaling coefficients for bright
components are
+oo R
s [T (12)
—0o0 |k;; + 1,LL|

We note that, for a finite number of radiation
modes, the distribution function can be written as
R(u) = Zj”‘;fﬁl 26(u 1), and then expression
(12) reduces to Eq (10).

The above results are valid for both self-focus-
ing (s = +1) and self-defocusing (s = —1) media.
As follows from Eq. (9), the qualitative difference
is that, in the former case we have bright com-
plexes on a constant background while in the latter

case dark dips are formed.

4. Interaction properties of multi-soliton complexes

The general analytical solutions can be used to
obtain some important characteristics in a simple
form. In particular, we can use the fact that the
outcome of a soliton collision, in terms of total
intensity, is not affected by the presence of the
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background. Therefore, according to earlier results
[19], the interactions of MSCs are characterized by
translational shifts of fundamental solitons after
the collision, and these are given by

Zf k+k*
Jjm

k — ke |

Here the summation involves the fundamental
solitons which feature in the collisions with the
soliton number j. When the colliding soliton
number m comes from the right (i.e. has a larger x
coordinate before the impact), we put fj, = +1
while we set f},, = —1 when it comes from the left.
The shifts differ for each soliton in an MSC. As a
result, the intensity profile of an MSC changes
after collisions.

(13)

5. Modulation of background components

According to the general relation (9), the in-
tensity profile is uniquely determined by the ei-
genvalues of the bright fundamental solitons and
the background intensity 7, but does not depend
on the angular distribution of radiation waves.
However, the total intensity of the soliton com-
ponents,

& 2, 2
I, = § |Um| ‘”m|
m=1

and the intensity of the radiation modes,

Ms

[r - ]b - Z(lUm|

m=1

)l (14)

both depend on the scaling coefficients U,, defined
in Eq. (12). As follows from Eq. (14), each fun-
damental soliton creates a hole in the background,
and the corresponding modulation depth is pro-
portional to the bright—dark coupling coefficient,
given by the value (|U,|* — s). Quite interestingly,
the radiation mode profiles are the same in self-
focusing and self-defocusing media, provided the
distribution function and soliton eigenvalues re-
main unchanged.

However, there are some key differences be-
tween solitons in self-focusing and self-defocusing
media. In the former case, a modulation of the

background is compensated by the bright com-
ponents having larger amplitudes (since |U,|* > s,
and s = +1). On the other hand, in a self-defo-
cusing medium, a dark soliton creates an effective
waveguide, which in turn can trap bright compo-
nents. Such a self-trapping mechanism results in
the limitation of the minimum dark soliton width.
This happens because the maximum intensity
contrast is limited by the value of the background
intensity. As a matter of fact, the limitation can
be even stricter, since the maximum modulation
depth, .# = max, (I, —I)/I, < 1, cannot always
reach the value of 1. Then, according to Eq. (3),
the characteristic width corresponding to one
fundamental soliton cannot exceed the value
(%Ib)fl/ *. The actual limit is determined by solv-
ing the existence conditions, which follow from the
requirement for the right-hand side of Eq. (12) to
be nonnegative, since, by definition, |U,,|* > 0. It is
interesting to note that these conditions involve
only the individual wave numbers of fundamental
solitons, and they are automatically satisfied for
interacting solitons forming MSCs.

Finally, we note that the radiation modes are
characterized by a nontrivial phase modulation.
For practical applications, it is especially impor-
tant to know the phase jump, or the additional
phase shift which appears due to the presence of
bright fundamental solitons. Using Eqgs. (6) and
(7), we find the following relation:

cidl) ﬁ ip — ko,
itk

where ¢ is the phase jump, and u defines the in-
clination angle of the radiation mode. Then, the
phase jump can be found as a sum over the phase
shifts associated with individual fundamental soli-
tons,

30 = Y- a1 = > 2arctan (). (19

We see that the absolute values of the individual
phase shifts are limited to =. However, the total
phase jump can become larger than #if M > 1, i.e.
if the MSC is composed of several fundamental
solitons.
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6. General results for a Gaussian angular distribu-
tion

Let us now analyze the features of the bright—
dark decomposition for a Gaussian-type angular
distribution,

1 e /P
p\/T ’
where p > 0 is the characteristic angular width.
Since the integral in Eq. (12) cannot be expressed
in elementary functions for arbitrary p, we first
consider the limiting cases. Specifically, for a
narrow angular distribution, i.e. p < 1, we have
(|Un)> =) = I/ (72 4 1), while for p>> 1 (and

R(w) = Iy (16)
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Fig. 1. (a) Total intensity profiles for multi-soliton complexes,
and the corresponding decomposition between (b) bright and
(c) dark components in a self-focusing medium. Each MSC
consists of three fundamental solitons with r, =2, 3, 4; the
MSC on the right is stationary (g, = 0), while the MSC on the
left has a positive velocity (p, = 3). Angular width of back-
ground distribution is p = 1, and 7, = 40.

p > p,) we obtain (|U,|> —s) ~ I/T/(pry) — 0.
Therefore, we expect that, for a fixed background
intensity /,, the modulation of the radiation waves
should be reduced (i) for wider angular distribu-
tions, i.e. larger p, and (ii) for MSCs having higher
velocities |u,,|.

On the other hand, since the phase jump de-
pends on the radiation mode wave number g, the
excitation of solitons can be more difficult in cases
of wider angular spectra of radiation modes, i.e.
larger p. Additionally, for a moving MSC, i.e.
when p, = const # 0, the dependence ¢(u) be-
comes asymmetric unless R(y — u,) = R(w,, — 1).

7. Bright multi-soliton complex in a self-focusing
medium

For a self-focusing nonlinearity (s = +1),
MSCs exist in the form of bright localized waves
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Fig. 2. Intensity distributions for p =7 in a self-focusing me-
dium. Parameters and notation are the same as in Fig. 1.
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Fig. 3. Interaction of two multi-soliton complexes existing on a multi-component background in a self-focusing medium. Input profile

corresponds to Fig. 1.

having higher intensity than the background, as
follows from Eq. (9). Examples of the total in-
tensity profiles and the bright-dark mode decom-
position are shown in Figs. 1 and 2 for different
values of p. The MSC on the right has zero ve-
locity (with the corresponding u, = 0), while the
other MSC (on the left) has a positive velocity;
thus in the latter case, the corresponding back-
ground modulation is smaller, as predicted in
Section 6.

A collision between two MSC:s is illustrated in
Fig. 3. This example corresponds to the initial
conditions shown in Fig. 1. A remarkable fact is
that the total intensity profile does not depend on
the value of p, provided that [, is preserved. The
intensity profile for the collision will be the same
for other values of p or for other distribution
functions. In these examples, the MSC actually has
an intensity which is relatively small compared
with the background level.

Note that the shape of each MSC changes after
a collision, for the reasons discussed in Section 4.

In particular, a symmetric MSC becomes asym-
metric after a collision (see also Ref. [19]). The
presence of radiation does not influence this pro-
cess. Another feature of a collision is that the lat-
eral shift of the MSCs is relatively large. For
example, it can easily be seen on the scale of Fig. 3.
In contrast to single solitons, MSCs experience
larger shifts in collisions, due to the multiple
contributions from all the constituent fundamental
solitons.

8. Dark solitons in self-defocusing medium

To describe MSCs on a background in a self-
defocusing medium (s = —1), we first have to de-
termine the existence conditions, as outlined in
Section 5. Considering the case of the Gaussian
distribution given by Eq. (16), we find that, for
a narrow angular spectrum, in the lowest-order
approximation, the existence condition is 72 +
12 < I. Therefore, the minimum soliton width,
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Fig. 4. Grey shading marks existence regions in the parameter
space of fundamental soliton eigenvalues (7., 1,,). The angular
distribution function is given by Eq. (16) with /;, = 40 and (a)
p =1 or (b) p="7. Dashed lines correspond to the case of a
single component background, when p — 0.

which is of order r,,', can be achieved if the soliton
velocity is zero. In the other limit where p > 1 and
p > u,, we have r, <Iy\/n/p, i.e. the minimum
width increases linearly with an increase in p.
Numerically calculated existence regions are
shown in Fig. 4 for two values of p in Eq. (16). The
figure clearly shows that the existence region is
very similar to that in the case of a single com-
ponent radiation field when p is relatively small.
However, the existence regions become visibly
different when p is large.

The minimum soliton width 7' versus p is
shown in Fig. 5. This result shows that the distri-
bution function for the radiation field influences
the properties of an MSC, namely it changes the
limiting parameters for the existence of an MSC,
although the intensity profile of the MSC is not
directly influenced by the properties of the radia-
tion field.

Fig. 6 shows an example of intensity distribu-
tion for the case of a self-defocusing medium (i.e.

1

0.4 :

Minimal soliton width

0 5 10 15 20

Fig. 5. Dependence of the minimum characteristic soliton width
on the parameter p for the angular distribution function of
radiation waves given by Eq. (16) with 7, = 40.
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Fig. 6. Intensity distributions in a self-defocusing medium.
Parameters and notation are the same as in Fig. 1.

dark MSCs on a background). We have chosen the
soliton eigenvalues to be the same as in Figs. 1 and
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Fig. 7. Interaction of two multi-soliton complexes existing on a multi-component background in a self-defocusing medium. Input

profile corresponds to Fig. 6.

3. According to our general expression (9), the
total intensity profiles in self-defocusing and self-
focusing media are “‘mirror-images’’ relative to the
level of the background. Even the radiation mode
intensities coincide in these two cases, cf. Figs. 1(c)
and 6(c). However, the bright component intensi-
ties are different, as is clearly seen in Figs. 1(b) and
6(b). This is a manifestation of the nontrivial na-
ture of the nonlinear superposition of the solitons
and the background components.

Fig. 7 shows the collision of two MSCs on a
background. Again, we can see that the nonsta-
tionary intensity profile created by the soliton in-
teraction during collision is the “mirror image” of
that for bright MSCs in a self-focusing medium, as
shown in Fig. 3. The symmetry relation is mathe-
matically exact. Correspondingly, the lateral shift
is also governed by the same rules as those for a
bright MSC.

An important consequence is that the change of
refractive index induced by incoherent MSCs has

exactly the same pattern in cases of self-focusing
and self-defocusing media with Kerr-type nonlin-
earity. This remarkable fact can be used to design
linear multi-mode waveguides and X-junctions
with special properties. Moreover, the MSCs are
controlled by many parameters (fundamental soli-
ton eigenvalues), and therefore a wider variety of
requirements can be satisfied in comparison with
X-junctions formed by a collision of two solitons.

9. Conclusions

In conclusion, we have obtained an exact so-
lution for multi-soliton complexes on top of a
multi-component background composed of radia-
tion waves in Kerr-type nonlinear media. We have
identified similarities and differences between
bright and dark MSCs which exist in self-focusing
and self-defocusing media, respectively. In partic-
ular, we have found that the intensity profiles in
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these two cases are “‘mirror-images” relative to the
level of the background, and that they depend only
on the eigenvalues of the fundamental solitons.
For example, the reshaping of MSCs after colli-
sions is determined by the lateral shifts of the
fundamental solitons and is not affected by back-
ground components. On the other hand, the width
of dark solitons has a minimum, and this value
depends strongly on the angular distribution of the
radiation waves. We have derived analytical esti-
mates of the key soliton characteristics for the case
of a Gaussian angular distribution of radiation
waves, and presented numerical examples illus-
trating the principal features of bright and dark
MSCs.

Acknowledgements

The authors are members of the Australian
Photonics Co-operative Research Centre (APC-
RC). One of the authors (NNA) gratefully ac-
knowledges the support of a foreign research grant
(N62649-01-1-0002) from the US AROFE.

References

[1] N. Akhmediev, A. Ankiewicz, Chaos 10 (2000) 600.

[2] A. Hasegawa, Opt. Lett. 5 (1980) 416.

[3] D.N. Christodoulides, T.H. Coskun, R.I. Joseph, Opt.
Lett. 22 (1997) 1080.

[4] D.N. Christodoulides, T.H. Coskun, M. Mitchell, M.
Segev, Phys. Rev. Lett. 78 (1997) 646.

[5] M. Segev, G. Stegeman, Phys. Today 51 (8) (1998) 42.

[6] M. Mitchell, Z. Chen, M. Shih, M. Segev, Phys. Rev. Lett.
77 (1996) 490.

[7] D.N. Christodoulides, S.R. Singh, M.I. Carvalho, M.
Segev, Appl. Phys. Lett. 68 (1996) 1763.

[8] M. Soljacic, M. Segev, T. Coskun, D.N. Christodoulides,
A. Vishwanath, Phys. Rev. Lett. 84 (2000) 467.

[9] D.N. Christodoulides, T.H. Coskun, M. Mitchell, Z. Chen,
M. Segev, Phys. Rev. Lett. 80 (1998) 5113.

[10] Z. Chen, M. Mitchell, M. Segev, T.H. Coskun, D.N.
Christodoulides, Science 280 (1998) 889.

[11] T.H. Coskun, D.N. Christodoulides, Y.-R. Kim, Z. Chen,
M. Soljacic, M. Segev, Phys. Rev. Lett. 84 (2000)
2374.

[12] N. Akhmediev, A. Ankiewicz, Phys. Rev. Lett. 82 (1999)
2661.

[13] A.A. Sukhorukov, N.N. Akhmediev, Phys. Rev. E 61
(2000) 5893.

[14] D.N. Christodoulides, et al., Phys. Rev. E 63 (2001)
035601(R).

[15] A.W. Snyder, J. Love, Optical Waveguide Theory, Chap-
man & Hall, London, 1983, p. 439.

[16] S.V. Manakov, Zh. Eksp. Teor. Fiz. 65 (1973) 505 [Sov.
Phys. JETP 38 (1974) 248].

[17] V.E. Zakharov A.B. Shabat, Zh. Eksp. Teor. Fiz. 61 (1971)
118 [Sov. Phys. JETP 34 (1972) 62].

[18] V.S. Gerdjikov P.P. Kulish, Zapiski LOMI 131 (1983) 34
(in Russian).

[19] A.A. Sukhorukov, N.N. Akhmediev, Phys. Rev. Lett. 83
(1999) 4736.

[20] Y. Nogami, C.S. Warke, Phys. Lett. 59A (1976) 251.

[21] C.S. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura,
Comm. Pure Appl. Math. 27 (1974) 97.

[22] A. Ankiewicz, W. Krélikowski, N.N. Akhmediev, Phys.
Rev. E 59 (1999) 6079.

[23] I. Kay, H.E. Moses, J. Appl. Phys. 27 (1956) 1503.



