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a b s t r a c t

We numerically simulate Schrödinger-like paraxial wave equation of a four-waveguide system. The co-
herent tunneling by adiabatic passage in a four-waveguide optical coupler is analyzed by borrowing the
dressed state theory of coherent atom system. We discuss the optical coupling mechanism and coupling
efficiency of light energy in both intuitive and counterintuitive tunneling schemes and analyze the
threshold condition from adiabatic to non-adiabatic regimes in intuitive scheme. The results show that
this coupler can be used as power splitter under certain conditions.
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1. Introduction

Although equations that describe the dynamics in quantum
and classical physics are different, there are many similarities
between quantum and classical physical phenomena [1]. These
analogies have been exploited to mimic microscopic quantum ef-
fect at macroscopic level, including using engineered photonic
structures to mimic Zener tunneling [2] and quantum effects such
as Bloch oscillations [3]; using waveguide directional coupler to
mimic the generation of discrete solitons [4], Aharonov–Bohm
effect [5], Bloch oscillations [6], discrete Talbot effect [7], adiabatic
mode conversion [8,9], Landau–Zener dynamics [10], Stimulated
Raman adiabatic passage (STIRAP) [11,12], to name a few.

As an important tool which can manipulate the quantum
structures, STIRAP is widely used in coherent atomic excitation
[13,14], optical switching [15], quantum information processing
[16], waveguide optics [12,17,18], generation of short terahertz
pulses [19], etc. STIRAP is based on the dark state of the system. In
a three-waveguide optical coupler, the coherent tunneling adia-
batic passage is based on the existence of one dark state[11]; in a
four-waveguide optical coupler, however, this adiabatic passage is
base on the existence of two dark states, which is the linear su-
perposition of the initial and target states. In 2012, Xin–Ding
Zhang group discussed the non-Abelian geometric phase and the
light energy adiabatic passage in a four-waveguide system which
is composed of a central straight waveguide, a similar parabolic
waveguide and two cosine-type waveguides [20]. In 2015, this
group further discussed the Abelian geometric phase in a wave-
guide system which is composed of a central straight waveguide
and three similar parabolic waveguides [21]. But they only dis-
cussed the structure in counterintuitive tunneling scheme, failing
to elaborate on the adiabatic condition, the adiabatic conversion
efficiency versus the distance between the upper and central
waveguide, and the way to obtain adiabatic conversion condition
in intuitive tunneling scheme.

In this paper we discuss a four-waveguide coupler which is
composed of two straight waveguides and two similar parabolic
waveguides. The central and upper waveguide are straight, the left
and right waveguide are similar parabolic. By analogy to the STIRAP
of the four level atoms, the coherent tunneling in a four-waveguide
coupler is studied, progress in theoretical and experimental studies
of multi waveguide array couplers can assure the rationality of the
waveguide characteristic parameters selected in this paper [11,22].
When light is introduced from the left waveguide, the left waveguide
is coupled with the center waveguide before the right one, therefore
creating the intuitive tunneling scheme. On the other hand, when the
right waveguide is coupled with the center waveguide before the left
one, the counterintuitive tunneling scheme is created. By using the
theory of dressed state we analyze the dynamic process of the energy
adiabatic transfer in a four-waveguide coupler, discussing the energy
coupling efficiency and adiabatic conditions in different tunneling
rate scheme. The upper waveguide is straight, so such coupler is
more easily to be manufactured than the structure in reference [21]
and can be used as power splitter under certain conditions.
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2. Theoretical modeling

Waveguide structures are shown in Fig. 1(a). The left waveguide
( L) and the right waveguide (R) are similar parabolic, which are
located in the YZ plane with the central straight waveguide (C), the
upper straight waveguide (U) and the central waveguide in the XZ
plane. Light propagates along the z direction. Direct tunneling
among the left, right and upper channels can be fully ignored
because of their far distance. They can only be coupled with the
intermediate waveguide. The refractive index profile ( )n X Y,w of
the waveguide is the same as in reference [11]. Fig. 1(b) is a section
of the four waveguide coupler in the XY plane. Ωs, Ωp and Ωq are
the tunneling rate between the adjacent waveguide. The four set
of contour lines is the distribution of the refractive index function
in the XY plane of the four waveguides.

The monochromatic light propagating in the waveguide direc-
tional coupler along Z direction can be described by Schrödinger-
like paraxial wave equation [11]

ψ ψ ψℏ∂
∂

= − ℏ ∇ + ( − ( ) − ( ))
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In Eq. (1), λ πℏ = ( )/ 2 is reduced wavelength, ( )V X Y Z, , is spatial
potential distribution function,
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ns is substrate refractive index, ( )n X Y Z, , is the refractive dis-
tribution of four-waveguide directional coupler, ψ 2 denotes the
beam intensity in the coupler.

By introducing new variables, = −x X X0, = −y Y Y0, =z Z ,
after the gauge transformation:
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(a). Schematic of the four-waveguide directional coupler.

(b). Refractive index profile ( , )n X Y of the waveguide and the tunneling pattern between different 

waveguide.

Fig. 1. (a) Schematic of the four-waveguide directional coupler. (b) Refractive index
profile ( )n X Y,w of the waveguide and the tunneling pattern between different
waveguide.
new variables into Eq. (1), we can get:
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if we expand the state vector ϕ ( )x y z, , as the linear super-
position of the basis vector ( )w x y,n .

∑ϕ ω( ) = ( ) ( − ) ( )
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and substitute Eq. (3) into Eq. (2), under the general hypotheses
of nearest-neighbor approximation and weak waveguide coupling,
we get:
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The state vector ( ) = [ ( ) ( ) ( ) ( )]C z C z C z C z C z, , ,L C R U
T is complex

amplitude of light field in four waveguides. ( )C zn
2 indicates the

variation of beam intensity with the propagating distance z in the
four waveguides. Ω ( )zi ( = )i p s q, , is the tunneling rate between
the adjacent waveguide.

Eq. (4) shows the propagation of light in a four-waveguide coupler
system, which is similar to the STIRAP occurring in the interaction
between the three pulsed laser fields and a four-state atomic system.
The Rabi frequency of the pump pulse and Stokes pulse correspond to
the tunneling rate between the adjacent waveguides, when light
comes from the left waveguide in intuitive tunneling scheme (δ < 0),
or in counterintuitive tunneling scheme (δ > 0) . The eigenvalue of the
tunneling rate matrix are: λ λ( ) = ( ) =z z 01 2 , λ Ω( ) = − ( )z z3 0

λ Ω( ) = + ( )z z4 0 , Ω Ω Ω Ω( ) = ( ) + ( ) + ( )z z z zp s q0
2 2 2

. The two
null-eigenvalues are degenerated, STIRAP occurs in these two dark
states.

Defining the distance-dependent mixing angle θ ( )z and φ ( )z as
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In the adiabatic limit, θ ( )d z dz/ and φ ( )d z dz/ are both small, the
non-adiabatic coupling of dark states Φ1 or Φ2 to the dress states
Φ3 or Φ4 can be ignored. If the system is initially in a dark state, it
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always stays in the dark state during the adiabatic process. During
the evolution, the states Φ3 and Φ4 have nothing to do with the
adiabatic process. Distance-dependent state vector ϕ ( )z can be
expressed by degenerated adiabatic (dark) states Φ1 and Φ2. Let us
suppose that the initial state vector ϕ ( )z is either one of the dark
state, ϕ Φ( − ∞) = ( − ∞)a a , =a 1 or 2. At later distance we can
expand the vector ϕ ( )z as:

∑ϕ Φ( ) = ( ) ( ) ( = )
( )

z B z z a b, 1, 2
10

a
b

N

ab b

N is the number of the dark states. φ( ) = [ ( )]B z i zexpab ab are the
elements of a ×2 2 Abelian phase matrix. Substituting this equa-
tion into Schrödinger equation, taking the scalar product with dark
states, because the dark states are orthonormal, we find im-
mediately that ( )B zab obeys the equation

∑( ) = − ( ) ( ) ( = )
( )

d
dz

B z A z B z a b c, , 1, 2
11
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c
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where Φ Φ( ) = ( ) ( )A z z zbc b
d
dz c . Through direct integrating Eq.

(11), we get the form, where is the distance-ordered product.
For a two-state system the simple formula can be get after the
calculation
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[21]. The output terminal of the four-waveguide optical coupler is
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Considering dark state Φ1 and Φ2, if the initial state lies in the
dark state Φ1, the beam intensity can be only transferred between
the left and right waveguide. And if the initial state lies in dark
state Φ2, the beam intensity can be transferred among the left,
right and upper waveguide. In either case the distribution of light
energy is small in the middle waveguide.
3. Coherent tunneling by adiabatic process

3.1. Counterintuitive tunneling scheme

If the incident light comes from the left waveguide in the
counterintuitive tunneling scheme, Ωs precedes Ωp. Since the
upper waveguide U is parallel to the central waveguide C , the
tunneling rate Ω Ω( ) =zq q is constant. The tunneling rate Ω ( )zp and
Ω ( )zs can be written as [20]:
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The left and right channel distance relative to the propagating
distance z has the form:
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= μd 8.2 mmin is the nearest distance between the curving and
straight waveguide. Substituting the expression ( )d z into Eq. (15)
and taking into account the beam propagating in coupler with the
relationship ω ω ω= =C R L, we get the Gaussian forms:

Ω Ω δ Ω Ω Ω

Ω δ

( ) = [ − ( − ) ] ( ) = ( )

= [ − ( + ) ] ( )

z z L z z

z L

exp / ; ;

exp / 16

p q s

s

p
2 2

q

2 2

δ2 is the distance along the z direction between the points
which is the shortest distance from the left and right waveguides
to the central one. L is the width of the tunneling rate Ω ( )z .

To determine the mixing angle θ ( )z and φ ( )z , we use the Eqs.
(6) and (7). As the initial values θ ( − ∞) ≈ 0 and φ π( − ∞) ≈ /2, the
dark states have the components Φ ( − ∞) = ( )1, 0, 0, 0 T

1 and
Φ ( − ∞) = ( )0, 0, 1, 0 T

2 . The state vector ϕ Φ( − ∞) = 1, With the
increase of the coupling distance, at any position in the waveguide
coupler, From Eqs. (10) and (12), we get ϕ γ θ( ) = ( +z cos cos

γ φ θ γ θ γ φ θ γ) + ( − + ) −C Csin sin sin cos sin sin sin cos sinL R

φCcos ,U after the interaction θ π( + ∞) ≈ /2, φ π( + ∞) ≈ /2.
ϕ γ γ( + ∞) = −C Csin cosf L f R. According to Eq. (8), we can

obtain the light intensity in four waveguides as (∞)=IL γsin f
2 ,

(∞) =I 0C , γ(∞) =I cosR f
2 , (∞) =I 0U . If the upper waveguide is far

from the central one, then Ωq is less than Ωp and Ωs. The light
power is transferred to the right channel via the adiabatic process.
Through numerical calculation of the Eq. (2), we get the gray-scale
plot of light transmission in coupler along the direction of light
propagation in the counterintuitive tunneling scheme. It is shown
in Fig. 2(a). In Eq. (2) the 2D index profile ( )n x y,w is the form [11]

( ) ≈ + Δ − + + ( )⎜ ⎟ ⎜ ⎟
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2 2
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where the substrate refractive index =n 1.5218s , the peck index
change Δ =n 0.0148,

( ) = [ (( + ) ) − (( − ) )] [ ( )]g x erf x w D erf x w D erf w D/ / / 2 / ,x x x

( ) = − ( − )f y erf y D1 / y , the waveguide width w2 , Dx and Dy are
diffusion lengths in x and y direction respectively. Eq. (2) shows
that the similar parabolic waveguide appears to be straight by
introducing new variables x and y [10]. Fig. 2(a) only shows the
laws of light propagation in couplers, and does not represent the
spatial structure of waveguides. Fig. 2(b) is the fractional beam
intensity trapped in the four-waveguide directional coupler versus
the propagation distance of light, and the small graph in Fig. 2(b) is
the behavior of the tunneling rates along the directional coupler.
Here Ωs precedes Ωp, but Ωp precedes Ωs in the intuitive tunneling
scheme, when other parameters are the same, except for δ .

Because Ωq is smaller than Ωp and Ωs, φ π( − ∞) ≈ /2,
φ π( + ∞) ≈ /2. Through numerical simulations of the Eq. (14), we
can get the accumulated Abelian geometric phase after light pro-
pagating along z direction, as shown in Fig. 3, it indicates that at
the output planes the Abelian geometric phase γ π≈ 0.15f , so

γ(∞) = ≈I sin 0.21L f
2 , γ(∞) = ≈I cos 0.79R f

2 , as indicated in Fig. 2.
When the upper waveguide is far from the central one, Ω ≈ 0q ,

Abelian geometric phase γ ≈ 0, and ϕ θ θ( ) = −z C Ccos sinL R. Then
light transfers between the left and right channel. When the upper
waveguide is close to the central one, Ωq is bigger than Ωp and Ωs.
Fig. 3 shows that under the case of γ π≈ /2f ,

γ(∞) = =I sin 1L f
2 , γ(∞) = =I cos 0R f

2 , light energy will be located in
the left channel.



Fig. 2. (a) Grey-scale plot of beam intensity evolution in a four-waveguide directional coupler for counterintuitive tunneling rate, calculation parameters:
Δ =n 0.0148, = μD 4.6 mx , = μD 4.1 my , = μw 2.5 m, λ = 980nm. (b) Fractional beam intensity evolution in a four-waveguide directional coupler for counterintuitive tunneling
rate.

Fig. 3. Accumulated geometric phase γ π/ versus z L/ .
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3.2. Intuitive tunneling scheme

For the intuitive tunneling scheme, Ωp precedes Ωs, the initial values
at the input plane θ π( − ∞) = /2,φ π( − ∞) = /2, the components of
the dark state Φ ( − ∞) = ( − )0, 0, 1, 0 T

1 , Φ ( − ∞) = ( )1, 0, 0, 0 T
2 , the

state vector ϕ Φ( − ∞) = 2. With the increasing of the propagation
distance, Ωs and Ωp increase at the beginning and then decreases. After
the coupling interaction, θ ( + ∞) ≈ 0,φ π( + ∞) ≈ /2, the state is as:
Φ (∞) = ( )1, 0, 0, 0 T

1 and Φ (∞) = ( )0, 0, 1, 0 T
2 . From Eqs. (10) and

(13), we get ϕ γ γ(∞) = − +C Csin cosf L f R. At the output terminal of
the four-waveguide optical coupler, the light intensity in four channels
are: γ(∞) =I sinL f

2 , (∞) =I 0C , γ(∞) =I cosR f
2 , (∞) =I 0U . If the upper

waveguide is far from the central one, then Ωq is smaller than Ωp

and Ωs. Fig. 3 shows that the geometric phase γ π≈ − 0.15f , so

γ(∞) = ≈I sin 0.21L f
2 , γ(∞) = ≈I cos 0.79R f

2 . The results are same to
the counterintuitive tunneling scheme. Through numerical calculation
of the Eq. (2), we get the gray-scale plot of light transfer in the coupler
along the direction of propagation in the intuitive tunneling scheme.
They show in Fig. 4(a), which other parameters of the waveguide are
the same with counterintuitive tunneling scheme, except for
δ = − 5mm. Fig. 4(b) is the fractional beam intensity evolution versus
propagation distance.

When light is at any position in the waveguide coupler, we get

ϕ γ θ γ φ θ

γ θ γ φ θ γ φ

( ) = ( − + )

+ ( + ) −

z C

C C

sin cos cos sin sin

sin sin cos sin cos cos cos ,

L

R U

In the middle of the coupler, Ωq is smaller than Ωp and Ωs, so φmiddle

and γmiddle are both small, γ φ=I cos cosU
2 2 , as shown in Fig. 4.

In the intuitive tunneling scheme, when upper channel is close
to central one, Ωq is bigger than Ωp and Ωs. Fig. 3 shows γ π≈ − /2f ,

at the output plane of the coupler γ(∞) = =I sin 1L f
2 ,

γ(∞) = =I cos 0R f
2 , and light intensity still lies in left channel,

which has the same results with the counterintuitive tunneling
scheme.

If there is no upper channel, the fractional light power trans-
ferred among left, central and right channels, finally the light is
trapped in the central one [11]. But in our four-waveguide coupler
scheme, the upper waveguide acts as an auxiliary waveguide. It is
able to realize the adiabatic transferring of light energy. In the first
step, the light transfers from the left channel to the upper one, in
which the tunneling rate Ωq is similar to Stokes pulses and the
tunneling rate Ωp is similar to pump pulses. Then in a second step,
the light transfers from the upper channel to the right one, but this
process is not STIRAP. For the four waveguide coupler system,
regardless of the counterintuitive or intuitive scheme, using the
parameters we choose, nearly 80% energy of light is located in the
right channel and 20% energy of light is in the left channel ulti-
mately. Completely energy transferred from left to right channel
can take place in counterintuitive scheme while in intuitive
scheme complete energy transferred can not occur. This result is
different from the three waveguide coupler.

3.3. Coupling efficiency

In the counterintuitive tunneling scheme (δ = 5mm), when the



Fig. 4. (a) Grey-scale plot of beam intensity evolution in a four-waveguide directional coupler for intuitive tunneling rate. (b) Fractional beam intensity evolution in a four-
waveguide directional coupler for intuitive tunneling rate.
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distance between left, right and upper waveguide and the central
one is changed from far to near, the tunneling rates among the
waveguides increase from zero. Fig. 5 shows the variation of the
beam intensity in right channel with the tunneling rate. And the
eight curves from top to bottom indicate that the tunneling rate
between the upper and central waveguides increases from zero. As
the distance between the waveguides decreases, the tunneling
rate increases, and vice versa. From Fig. 5 we can see that if the
distance between the upper and central channel is fixed, and the
distance of the left, right channel to the central one reduces, the
Fig. 5. Beam intensity in right waveguide versus tunneling rate for counterintuitive
scheme. Different tunneling rate Ωq represents the different distance between the
upper and central waveguides, the abscissa indicates the tunneling rate between
the left (right) and middle waveguides. As the distance between the waveguides
decreases, the tunneling rate increases, and vice versa.
beam intensity in right channel enhances and its coupling effi-
ciency increases. If the distance from the left, right channel to the
central one is fixed, and the distance between the upper and
central channel decreases, the beam intensity in right channel is
weakened and its coupling efficiency decreases. In the case Ω =0q ,
there is only one nondegenerate dark state, and the adiabatic
process is proportional to Ω−e Lq , where Ω Lq is the effective tun-
neling rate area. Finally the light power in the left waveguide is
completely transferred to the right one, in the case Ω >0q , there are
two degenerate dark states, the light power evolution is extremely
different, when the upper channel is close to the central one, and
the adiabatic process is not proportional to Ω−e Lq anymore.

In the intuitive tunneling scheme ( δ = − 5mm) and adiabatic
limit, changing the distance between the channels in the same
way, we find that the variety of the coupling efficiency is the same
as in the counterintuitive tunneling scheme. In order to carry out
comparative analysis, we plot the beam intensity in right wave-
guide versus tunneling rate for both counterintuitive and intuitive
tunneling schemes in one picture, as shown in Fig. 6.

When Ω ≥0.7q , whether in the intuitive tunneling scheme
(δ = − mm5 ) or the counterintuitive tunneling scheme (δ = 5mm),
the beam intensity in right waveguide and the coupling efficiency
is the same. But when Ω <0.7q , coherent tunneling by adiabatic
process can take place in counterintuitive tunneling scheme, while
in intuitive tunneling scheme, the adiabatic conditions are de-
stroyed, so the evolution is not adiabatic.

In Fig. 6, the three intersecting points formed by the dashed
line and three solid lines (Ω ≥ 0.7q ) indicate that the coupling ef-
ficiency of the right waveguide is 50%, since Ω ≥ 0.7q the tunneling
process is adiabatic. As long as we select the value of the tunneling
rate corresponding to the crossing points, for example
Ω Ω= = 1.9p s , Ω = 1.0q . In the adiabatic limit, either the counter-
intuitive or intuitive tunneling scheme, the light energy in the left
and right waveguides is half of the total energy, so such four-
waveguide optical coupler can be used as a power splitter. Of



Fig. 6. Variation of the beam intensity in right waveguide with tunneling rate for
counterintuitive and intuitive schemes. When Ω = 0.6q , the solid line corresponds
to counterintuitive scheme, the dotted line refers to intuitive scheme. When
Ω = 0.7q , 1.0 and 1.2, the solid and dotted curve coincide with each other, the two
schemes are indistinguishable.
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course, in addition to the above three intersecting points, there are
a lot of potential intersection points can be selected if we change
the value of the tunneling rate Ωp, Ωs and Ωq, the counterintuitive
coupling structure has more parameters to select compared with
the intuitive scheme, for the counterintuitive scheme, when

Ω≤ <0 0.7q , the adiabatic process can still occur.

3.4. Further discussion of adiabatic conditions

When the incident light is from the left waveguide and the
tunneling rate Ω = 0q , then the coupler turned into a three-wa-
veguide structure, the coherent tunneling process can occur in
counterintuitive tunneling scheme while this is not the case in
intuitive tunneling scheme. When Ω > 0q and it is small, for
counterintuitive tunneling scheme, the initial state vector
ϕ Φ( − ∞) = 1, the energy transferring process is determined by
θ′( )z , but for intuitive tunneling scheme and the initial state vector
ϕ Φ( − ∞) = 2, the energy transferring process is determined by
θ′( )z and φ′( )z together. If the tunneling rate is small, and φ′( )z is
big, the adiabatic conditions cannot be met. The light energy os-
cillates rapidly in the left, central and right channels, as the tun-
neling rate Ωq gets bigger, φ′( )z becomes smaller and the adiabatic
condition is again satisfied. Then the adiabatic transfer process is
carried out.

Under the adiabatic condition, according to the Eqs. (8), (10) and
(12), In both the counterintuitive and intuitive tunneling schemes,
we can get the same results: γ(∞) =I sinL f

2 , (∞) =I 0C ,

γ(∞) =I cosR f
2 , (∞) =I 0U , note that the light power in central wa-

veguide (C) is small during the tunneling process, we should have
the same light power in the left (L) and right (R) waveguides in both
schemes, in the counterintuitive scheme adiabatic process can al-
ways occur owing to the small θ′( )z , therefore when the light en-
ergy in right waveguide is different, the adiabatic condition is no
longer valid for intuitive scheme, see Fig. 6, for Ω ≥ 0.7q , the light
power in right channel is same for two schemes, the solid and
dotted curve coincide with each other, however, when Ω < 0.7q ,
with the decrease of the tunneling rate Ωp, two cases give different
results. difference of the light intensity in right waveguide gets
bigger and bigger in two schemes, the solid line and the dotted line
begin to grow apart, for the counterintuitive scheme, the solid line
has a monotonic dependence of the light power in right waveguide
on the tunneling rate, see Fig. 5, but for the intuitive scheme the
dotted line has the oscillation characteristic, the smaller the tun-
neling rate Ωq is, the more obvious the oscillation is, Ω = 0.7q is the
threshold from adiabatic to non-adiabatic domains. So for the four-
waveguide directional coupler, the adiabatic conditions are different
in the intuitive and counterintuitive tunneling scheme. This con-
dition is stricter in the former, as besides θ′( ) ≈z 0, φ′( ) ≈z 0, we
need to add a constrained condition: Ω ≥0.7q .
4. Conclusion

In this paper, based on the analogue between the coherent
tunneling theory in a four-waveguide optical coupler and the in-
teraction theory between light and atoms, we analyze the co-
herent adiabatic process in the four-waveguide coupler using the
theory of dressed state. The results show that the transfer of light
between the waveguides depends on the Abelian geometric phase
in parameter space and has nothing to do with the dynamics of the
system, Under the adiabatic condition, by analyzing the numerical
simulation results of the Schrödinger-like paraxial wave equation,
we find that in both counterintuitive and intuitive tunneling
schemes, if the tunneling rate parameters are identical, although
the adiabatic transferring process of light energy is not the same,
as shown in Figs. 2 and 4, the energy is eventually coupled to the
right channel and the coupling efficiency is the same, the energy
coupling efficiency of the adiabatic transferring process is in-
dependent of the energy coupling mechanism. In the adiabatic
limit, if the coupling efficiency of the right waveguide is equal to
50%, in both of the schemes this coupler can be used as a beam
splitter. As the upper waveguide is straight, such scheme is more
feasible in designing quantum logic gates and optical switches,

The adiabatic condition is different in the two schemes, in
counterintuitive tunneling scheme, adiabatic tunneling process
can always be brought about, while in intuitive tunneling scheme,
it can only be brought about under certain conditions.
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