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A compact simplified algorithm for digital detection of the amplitude and phase of the interferometric signal
delivered by a two-wave interferometer with sinusoidal phase modulation is presented. The algorithm consists
of simple mathematical combinations of four frames obtained by integration by a camera of the time-varying
intensity in an interference pattern during the four successive quarters of the modulation period. The algorithm
is invariant by circular permutation of the four image frames. Any set of four consecutive frames can be used for

the calculations, which simplifies the practical implementation of the method. A numerical simulation has been
carried out to evaluate the efficiency of the algorithm for fringe envelope extraction in low-coherence
interferometry. A theoretical analysis of the effect of noise in phase map calculation is conducted. A comparison
with the conventional sinusoidal phase-shifting algorithm is made.

1. Introduction

Phase-shifting interferometry is a powerful means of analyzing
interferograms obtained from interferometric systems [1-4]. Many
phase-shifting algorithms have been developed to measure the optical
wavefront from several interference fringe patterns acquired with an
area camera [5—-16]. Several phase-shifting algorithms have also been
developed for digital fringe envelope detection in white-light scanning
interferometry [17-21]. Combined with a procedure for determining
the position of the fringe envelope peak or associated with phase
measurements, this method enables sample surface topography mea-
surements with theoretically unlimited height range. Tomographic
imaging of semi-transparent samples can also be achieved using
white-light (low-coherence) interferometry. In the technique referred
to as full-field optical coherence microscopy (also termed full-field
optical coherence tomography), tomographic images are usually ob-
tained by extraction of the fringe envelope using phase-shifting
methods [22-26].

In all phase-shifting methods, a phase shift is introduced in the
interferometer and several interferometric images are acquired.
Usually, a temporal phase shift is introduced and the images are
acquired sequentially. Interferometric systems have also been devel-
oped to produce and acquire several phase-shifted images simulta-
neously [27-31]. The most common technique to generate the required
phase shift consists of displacing a reference reflector in the inter-
ferometer using a piezoelectric transducer (PZT). The phase shift can
be obtained by other means such as by changing the polarization state
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of light [32—-34], by using a photoelastic phase modulator [35], or a
spatial light modulator [36].

In the phase-stepping method, the phase is stepped by a known
amount between the acquisitions of the interferometric images. This
method is limited in operation speed by the response time of the phase
modulator to a step-function driving signal, which may be a real
limitation when the phase shift is generated by a mechanical displace-
ment.

In the so-called "integrating-bucket" method, the interferometric
images are acquired while the phase is being shifted continuously. The
bandwidth limitation of stepped phase-shift methods is then signifi-
cantly reduced, enabling higher operation speed. In this method, the
phase is usually shifted linearly in a sawtoothlike manner, and several
integrated interferometric images (or “buckets”) are recorded by the
camera. Phase-shifting interferometry that uses sinusoidal phase
modulation is less usual. An algorithm with sinusoidal phase modula-
tion and four integrating buckets was initially proposed for phase
measurements [7] and applied to surface topographic measurements
[7,37]. This algorithm was extended to fringe envelope detection [35]
and used in full-field optical coherence microscopy [38—40]. More
recently, it was implemented in a line-scanning optical coherence
microscopy system [41], and in spectral-domain optical coherence
tomography for high-speed complex conjugate resolved imaging [42].

The major interest of sinusoidally-modulated phase-shifting inter-
ferometry is the high operation speed that can be reached even with a
mechanically-generated modulation of the phase. This method requires
the synchronization of the phase modulation with the image acquisi-
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tion. In the original and conventional algorithm, the frequency of the
phase modulation is set to one quarter of the image acquisition
frequency, and sequences of four different interferometric images are
acquired continuously. Mathematical combinations of the four ac-
quired images yield images of the phase and the amplitude of the
interferometric signal. The calculations require sequences of four
images in a specific order. A challenging technical problem arises from
the calculations to be done during the continuous image acquisition. If
at least one image from the continuous image flow delivered by the
camera is missed, one has to wait for the next right sequence, i.e. the
sequence with images in the right order. That is what usually happens
due to calculation times, which leads to a reduction of the operation
speed compared to the maximal theoretical speed. Moreover, a method
has to be implemented for the identification of the right sequence of
images to be considered for the calculations.

In this paper, a compact and simple algorithm for both amplitude
and phase measurement of the interferometric signal delivered by a
two-wave interferometer using sinusoidal phase modulation is pre-
sented. Similarly to the conventional sinusoidal phase-shifting algo-
rithm, the algorithm proposed here is based on the combination of four
frames obtained by integration of the time-varying intensity in an
interference pattern during the four successive quarters of the modula-
tion period. However, unlike the conventional algorithm, any sequence
of four successive interferometric images can be considered for the
calculations, regardless of what is the first image of the sequence.
Analytical calculations and numerical simulations are carried out in
this paper to study the performance of the algorithm for digital fringe
envelope detection and phase map measurements. A comparison is
made with the conventional sinusoidal phase-shifting algorithm in
terms of performance.

2. Simplified algorithm

Assuming that monochromatic light is used, the optical intensity at
the output of a two-wave interferometer can be written as

I=I[1 + Veos ()], 1)
where T is the bias (mean) intensity, V the contrast (visibility) of the
interferometric signal (0 < V< 1), and ¢ the optical phase. By
generating a sinusoidal phase modulation in the interferometer, of
amplitude y and period T=2z/w, the optical intensity at the output
varies with time as

I1(O=I {1 + Vcos [¢p+ysin(wt+0)]}, 2
the parameter 0 being determined by the time origin. A photodetector
integrates the time-varying signal I (r)over the four successive quarters
of the modulation period 7. We consider an image sensor as a
photodetector, i.e. a two-dimensional detector array such as a CCD
or CMOS camera. The time-integration of /(i, j, t) is performed in
parallel by all the pixels (i, j) of the camera (frame-transfer and full-
frame camera). The charge storage period of the camera is set to be
one-quarter of the period T of the sinusoidal phase modulation. Four
frames of interferogram are thus recorded. The quantum efficiency of
the detector being 7, at the considered wavelength 1, the four frames
are

pTl4
Ei,':f 1G,j,0dt p=1,2,3, 4.
p (s J)=n - @i, j, dt p 3)

The phase between the modulation and the periodic image acquisi-
tion is determined in this mathematical description by parameter 6.
The calculation of the integral in Eq. (3) can be carried out by writing a
Jacobi—Anger expansion of / () using Bessel functions of the first kind:
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I()/T=1 + Vcos¢ {Jo (w)+2 Z Jor (w)cos[2k (wt+60)]
k=1

}—2Vsin¢

2 S @)sin [Qk+1)(@r1+0)].

k=0 “@
The expression of the four frames can then be written as
EF’ﬂ% [1 + VeosgJy (1//)]+17in
¥
{cosq’) > i) 217{ [—sin(2k0)+sin(2kO+kr) | +sing
k=1
Y JZkH(y/)ZkIH[—cos(2k+1)9—sin((2k+1)0+kﬂ)]},
k=0 (5.2)
E2=ﬂi§ [1 + Vcosgpdy (1//)]+1717VZ
V3
{cosqs > ) i [sin(2k0)—sin (2kO+kr) | +sing
k=1
Z Joier1 (W) L [—cos(2k+1)O+sin((2k+1)O+kn)] },
k=0 2k+1 (5.b)
E3=111_§ [1 + Vcosgpdy (1//)J+171_VZ
¥
{cosqﬁ Z Jo (W) i [—sin(2k0)+sin (2k0+kn) | +sing
k=1
Y st (@) ! [cos(2k+1)6’+sin((2k+1)6’+kﬂ)]},
=0 2k+1 (5.0)
E4=;11_§ [1 + Vcosddy (1//)]+71I_VZ
T
< 1 ) .
{cos¢ Z Jo (W) ﬁ [sin(2k0)—sin (2kO+kn) |+ sing
k=1
> s ) —— [cos(2k+1)9—sin((2k+1)0+kn)]}.
=0 2k+1 5.d)
One can write
2 - .
EI—EZ—;nTIV(I; cos p—1I; sin¢), (6.2)
and
2 - .
E3—E4—;;1TIV (I cos p+1}, singp), (6.b)
with
< 1
L= ), Jur2(w) [sin2(2k+1)0],
IE) 2k+1 (7.2)
and
\- (=Dk .
Ii= ), 1 () [sin(2k+1)0].
lg) * 2k+1 (7.b)
Egs. (6.a) and (6.b) can be rewritten as
V2o .
E—E)y=——nTIV [([,4+1})cos (p+rld)+(T,—1}) sin(p+r/4)], (8.2)
V3 N
V2o .
Es—E,=—nTIV [(I;—1I})cos (p+n/4)+(T +1})sin(p+x/4)]. (8.b)
V3 .

If I,=I,=I, the two previous equations simplify. The visibility V and
phase ¢ can then be calculated according to the two following frame
combinations:

(B — Ex)? + (B3 — E)X"*=@N2 T Iy (IT)V, Q)
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and

Eg—E4

: =tan(¢p + 1/4).

E - E; (@ + =k (10)

Egs. (9) and (10) are simpler frame combinations compared to
those published previously for the calculation of the visibility [39],

[(Ey — Ey—Es + B4 + (B — Ep+E3 — B2V, (11
and for the calculation of the phase [7,43],

E, — E,—E; + E4=tan¢.

E; — Eo+E; — Ey 12)

3. Sinusoidal phase modulation parameters

The condition I=T; is fulfilled (see Egs. (7.a) and (7.b)) when the
modulation amplitude y and the synchronization phase 6 satisfy the
following equation:

i 1
k=

T {(=D"* o1 @) [sin 2k + DO + Jagsr (@) [sin (4k + 2)61}
0

1

=0. (13)

The implicit function expressed in Eq. (13) is plotted in Fig. 1(a).
An infinity of couples (y, 8) can be chosen so that I,=I=I. It is
relevant to find the couple (y, ) that maximizes parameter I', so that
the image combination expressed in Eq. (9) to calculate the fringe
visibility reaches its maximum. The variation of I" as a function of @ is
plotted in Fig. 1(b). The maximum of I" (), noted I}, is reached when
0 ~ 0.98. Solving Eq. (13) for 6 ~ 0.98 gives w ~ 2.45 (see Fig. 1(a)).
Then, I=I}=I,,,,~0.405. Those values of the modulation parameters
(w =245, 0 =0.98) are used in the conventional sinusoidal phase-
shifting algorithm [43].

In the conventional sinusoidal phase-shifting algorithm, the four
image frames are different. According to Egs. (9) and (10), one can see
that the image frames have to be identified to make the right
calculations. The sequence of four consecutive image frames must start
always with the proper image, E, or E;. If the first image of the sequence
is E, or E;, the calculations are wrong. In practice, it is not
straightforward to know which is the first image of the sequence. A
method needs to be implemented to identify the right sequence of
images to be considered for the calculations. Moreover, because of the
time required for the calculations to be done during the continuous
image acquisition, images can be missed. Then, one has to wait for the
next right sequence, which reduces the effective operation speed.

The implementation of sinusoidal phase-shifting interferometry
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would be simplified if the mathematical image combinations could be
unchanged by a circular permutation of the image frames. Then, no
matter which is the first image of the sequence. One can see that Egs.
(9) and (10) are not changed by a circular permutation of the images, if
Ei=E; or E,=E,. The condition E=Ej; is satisfied when 6 = —%+p7z, (p
being an integer), whereas the condition E,=E, is satisfied when
0= %+p77:. At least one of the two conditions is therefore always
satisfied if 6 = %+pn’/2. Then, the condition so that I,=I,=I", expressed
in Eq. (13), is fulfilled when the modulation amplitude y satisfies

> D s ) ier ) sin [k + DT} = 0.
=0 (2k+1) (14)
A numerical resolution of Eq. (14) gives w=2.08 Then,

I' = I=0. 369 =~ J,(2. 076). Those values of the modulation parameters
(p = 2.08, 6 = /4 + pmr/2) are considered in the new algorithm
proposed in this paper. The calculation of the amplitude and phase
using Egs. (9) and (10) is then independent of which is the first image
of the sequence.

4. Fringe envelope detection

Computer simulation has been carried out to investigate the
performance of the new sinusoidal phase-shifting algorithm for fringe
envelope extraction. We considered in the simulation an interference
pattern as can be produced by a two-beam interferometer with two
plane mirrors illuminated with broadband light. The spectral power
distribution was supposed to be Gaussian shaped, centered at a
wavenumber oy, with width at 1/e of Ac = 0.60,.The interference
pattern consists of a few straight interference fringes. The sinusoidal
modulation of the phase causes an oscillation of the fringes in the
direction orthogonal to them (x direction). The integration of the
oscillating interference pattern over the fours quarters of the modula-
tion period gives four image frames, (E,E,.E; E;), as shown in
Fig. 2(a). The modulation parameters are y =y, =2.08 and
0 = Oy=n/4. As expected from the mathematical description presented
above, then E,=FE,. The amplitude image (the fringe envelope),
calculated using the image combination expressed in Eq. (9), is shown
in Fig. 2(b). Intensity profiles along the x direction in the four image
frames and in the amplitude image (black line) are shown in Fig. 2(c). A
circular permutation of the four image frames has no effect on the
calculated fringe envelope.

For comparison, simulation was also done using the conventional
sinusoidal phase-shifting algorithm (y = 2.45 and 6 = 0.98). Results are
presented in Fig. 3. The four interferometric image frames are then all
different. A circular permutation of the frames for the calculation of the
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Fig. 1. Parameters of the sinusoidal phase modulation. (a) Plot of y versus 6 so that I;=I;,=I". (b) Plot of I" versus 8 (I; =1, =1T).
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Fig. 2. Simulation of fringe envelope detection using the new sinusoidal phase-shifting algorithm, with y = 2.08 and 6 = z/4. (a) The 4 interferometric image frames (Fx=E4). (b) The

. (¢) Intensity profiles, along the x direction, from the four image frames and from the amplitude image (black line).

The calculated amplitude image is invariant under a circular permutation of the image frames.

amplitude image changes the result, leading to a degraded extraction of
the fringe envelope when the first image of the sequence is not the right
one (see Fig. 3(d) and (e)).

The fringe envelopes extracted with the new and the conventional
sinusoidal phase-shifting algorithms are compared in Fig. 4. They have
a very similar shape. As expected, the signal is higher with the
conventional algorithm, since the modulation parameters correspond
then to a maximization of I'(y, 0)-. The signal powers, using both
algorithms, can be compared by integration of the extracted fringe
envelopes over the x coordinate. The ratio of the extracted powers is
1.10, which corresponds to the ratio 7I;,,,/I.

5. Phase measurement

A theoretical study of the performance of phase measurement
achieved with the new sinusoidal phase-shifting algorithm is provided
in this section. This study is based on the theoretical descriptions
reported in [7,43]. Analytical calculations are carried out to establish
an expression of the sensitivity and accuracy of phase measurements,
taken into account the presence of additive noise and the uncertainties
in the modulation parameters. A comparison is made with the
conventional sinusoidal phase-shifting algorithm.

5.1. Sensitivity of phase measurement

The influence of additive noise is considered in the calculation of
the optical phase ¢, using the sinusoidal phase-shifting algorithms.
Each of the four frames is assumed to have a Gaussian additive noise
vi=123.4 With the following properties (the angular brackets denote a

time average):

(0)=0, (v’)=0%  (vivy), =0 (15)

Because of noise, an error ¢ appears in the calculation of the phase
¢ using Eq. (10). We propose to establish expressions for the mean and
the mean square of error €, using the analytical method reported in
[7,43]. In presence of additive noise, the phase ¢'=¢ + r/4 satisfies the
following equation:

(B3 +v3) = (B4 + vy)

= o) — (Ba b 00)” (16)
which can be written as
, , (3 — vy) -]
t +e)=t. 1+ 1+ )
an(@+e)=tan(@ )[ (B3 — E4)][ (B — Ez)] a7

The noise being assumed smaller than the detected signal, Eq. (17)
can be approximated by

, , (01 —v2) | (3 —0)) 1 —02)> (01— )
tan (@' +¢)~t 1- + -
an@re) aw)[ (B — Ey)  (Es— Ey) (B - E)° (B - Ey)

(03 — vy) ]
(Es—Ey) | (18)
and
2 v 2| A @1 =02) 3=y (0 = 0p)?
(P re)tan (P )[1 2(E1 —E) (Es—E» (- E)?
(03 —v)* W1 —0) (03— 00 ]
(B; — Es)*  (Ey— E») (E3— Ey) (19)
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Fig. 3. Simulation of fringe envelope detection using the conventional sinusoidal phase-shifting algorithm (y = 2.45 and 6 = 0.98). (a) The 4 interferometric image frames (E,5,E3, E4),
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Averaging the two previous equations yields
sing P d & (tan?(¢'+€) yxtan®(¢p)3 1 + 20'2[ 3 >+ ! 2] .
(B1 — E2)” (Es— Eg) (21)
(tan(@-+e) )tan(@)| 1+ —22—

an(§'+e) )tan(§ (B - E)? | (20) On the other hand, Taylor expansions at the second order with &

give
and tan(¢p'+&)~tan ¢’ +(1 + tan2¢p)e+ tang’ (1 + tan?¢)')e2, (22)

and
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Fig. 4. Comparison of the fringe envelope extracted with the new (plain line) and the
conventional (dashed line) sinusoidal phase-shifting algorithms.

tan?(¢'+¢e)~tan? ¢p'+2 tan ¢’ (1 + tan? ') e+(1 + tan? ') (1 + 3tan®¢') €.
(23)
Solving Egs. (22) and (23) for ¢ and €2, and averaging, yields

(e)~—sing cos @' (1 + sin? ') +cos® ¢’ (1 + 2sin? ') ( tan(¢p'+¢))—sin ¢’
cos® ¢'{ tan®(¢p'+¢) ) 24)

and

(%y~cos? @' [tan? ' —2 tan ¢ tan (¢'+€) ) +({ tan?(¢'+¢) )]. (25)

Substituting Egs. (20) and (21) into Egs. (24) and (25) leads to

ISP | cos?¢ _ sin? ¢
(e)=207sinl cos [(E1 “E (E- EM]’ 26)
and

N9 2 ane2 A i b 1 1
(e*)=20" cos* ¢’ sin* ¢ [(El - E2)2+(E3 R ] @7)

Using Eqgs. (8.a) and (8.b), the two previous equations can be
rewritten as

2 2 41
(6)=0? i Sin cos ¢/[[(ra + Tj)cos ;’0 " (fra “Tysing T
sin? ¢’
(I — T)cos ¢ + (I, + I})sin M]’ (28)
and
7?2 2 1
(= v <08 s W[[(ra T hyeosd + (I — Lysing P
1
(I, — Ti)cos ¢ + (I, + msindff]' (29)

One can see that if I,=I;,=I" - which is the case in the conventional
sinusoidal phase-shifting algorithm and in the new algorithm pre-
sented in this paper - (¢)=0 for any value of the phase ¢. The presence
of additive noise does not introduce any offset in the mean value of the
measured phase. However, additive noise generates a noise in the
measured phase, characterized by a variance

(9)=0

V3
QIyTIvV)?’ (30)

If one consider a phase map with values uniformly distributed
between 0 and 2z, the average number of photoelectrons collected by a
pixel of the array detector (CCD or CMOS), for each of the four image
frames, is (see Eq. (5.2)—(5.d))
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E=nIT/4. (31)

On the other hand, the collected photoelectrons ordinarily exhibit a
Poisson distribution and have a square root relationship between signal
and noise, which implies

o=\J¢. (32)
Combining Egs. (30)—(32) yields
eIl B R
“ (SF) vJE (33)

According to Eq. (33), the standard deviation of the noise in the
measured phase is determined by the fringe visibility V, the number of
collected photoelectrons &, and the modulation parameters through
coefficient I'. Compared with the conventional sinusoidal phase-shift-
ing algorithm [7,43], the simplified algorithm proposed in this paper
has a slightly increased sensitivity to additive noise, given by the ratio
[ Ty=1.10[43].

The optical phase ¢ being related to the optical path difference 2z in
the interferometer by ¢=4zz/1, the rms noise for phase-based topo-
graphic measurements is given, according to Eq. (33), by

8z=A(321,V ). (34)

For example, with a fringe visibility of V = 0.8 and using a camera
with a well capacity of & = 10°, the rms noise can reach ~1/3000.

5.2. Accuracy of phase measurements

We propose to evaluate the accuracy of the phase measurement
achieved with the new sinusoidal phase-shifting algorithm, using the
analytical method reported in [43]. We consider that the accuracy is
limited by the uncertainties in the modulation parameters (y, ). When
the parameters deviate from the nominal values y; ~2.08 and
190=%+p7t/2 (p being an integer), an error 8¢ occurs in the phase
calculated using Eq. (10). We have then

E3 - E4

B S tan(p+/4 + 8¢)).

E_E an(¢+r ) 35)
At first order with 8¢, we can write

E3 - E4 2

——— =tz +2/4)+d3p[1 + ta +7/4)].

E—E an(¢p+n/4)+8¢ [ an*(¢p+n/4)] 36)

According to Eq. (8.a) and (8.b), for arbitrary values of the
modulation parameters, the phase ¢ is related to the image combina-
tion by

Es—Ey_ (L, — I) + (I + T)tan(p + n/4)
E—-E I+ 1)+ I — L)tan(p + n/4)’

(37)

where I, and I, are no longer necessarily equal. Combining Egs. (36)
and (37), assuming that I ~I}, the error in the calculated phase can be
expressed as

L, -1,
Sp=
/ [12 + 17))[
A mean value of the error (independent of ¢) can be obtained

considering phase values uniformly distributed between 0 and 27z over
the measured optical wavefront:

]sin(2¢).

1+tan®(¢p + r/4) I, + 1,

1—tan®(¢p + m/4) ]:_(1; -
(38)

(1 2y
5= — / 82 ()dp| =—
7 ( 27 o D= ($) ¢) 7
The mean error 8¢ is a function of the modulation parameters. It
has a non-zero value when I #I;,. The first order Taylor expansion of
8¢ (w, 0) in the neighborhood of y = yyand 6 = 6,,

Ii -1

Lo+ 1

(39)
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5 (v, 0)=Aw[@] +A0(%] ,

W -0 vo-90 (40)
can be found numerically. We obtain
[841~10. 31Ap—0. 48A4). (41)

An upper limit of the error in the measured optical phase is
therefore

[55|<0. 31 |Ap|+0. 48 |Ad. (42)

Considering an uncertainty on the amplitude modulation of
|Ay|=1% and on the synchronization phase of [A|=10"2 rad, the error
in the measured phase is less than 10~? rad. Converted into distance
measurements, this corresponds to an uncertainty of ~4/1000. Similar
performance is obtained with the conventional sinusoidal phase-
shifting algorithm [37,43].

6. Conclusion

A compact algorithm for digital detection of both the amplitude and
phase of the interferometric signal delivered by a two-wave inter-
ferometer with sinusoidal phase modulation was presented. The
algorithm consists of two simple mathematical combinations of four
frames obtained by integration by an area camera of the time-varying
intensity in an interference pattern during the four quarters of the
modulation period. This algorithm has similar performance than the
conventional sinusoidal phase-shifting algorithm. It has the advantage
of being invariant by circular permutation of the four image frames.
Any set of four consecutive frames can therefore be used for the
calculations, which significantly simplifies the practical implementa-
tion of sinusoidal phase-shifting interferometry. The algorithm will be
implemented in our research group in a full-field optical coherence
microscopy system for real-time imaging at maximized speed.
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