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Bell’s inequalities
II: Logical loophole in their interpretation
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Abstract

Assumed data streams from a delayed choice gedanken experiment must satisfy a Bell’s identity independently of locality
assumptions. The violation of Bell’s inequality by assumed correlations of identical form among these data streams implies
that they cannot all result from statistically equivalent variables of a homogeneous process. This is consistent with both the
requirements of arithmetic and distinctions between commuting and noncommuting observables in quantum mechanics.
Neglect of these distinctions implies a logical loophole in the conventional interpretation of Bell’s inequalities. Published by
Elsevier Science B.V.
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w x ŽThe companion paper Part I 1 a preliminary
version of material in this paper was presented in

w x.Ref. 2 presents a derivation of Bell’s inequality
w x3–10 in which it is shown to be dependent on
purely arithmetic assumptions plus the concept of
limits. It is here suggested that its derivation from
such simple assumptions provides an explanation of
the fact that the same result has been derived from a
number of different suppositions in the literature.
The physical and statistical assumptions that have
been folded into previous derivations at various points
are largely extraneous, although this is not apparent
until the same result is obtained without them.
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w xBell’s inequalities, Part I 1 considered the ques-
tion of how experiments can violate Bell’s inequa-
lities, and showed that for the finite data that cha-
racterizes all experiments, Bell’s inequalities is an
identity in both the three-correlation and four-corre-
lation cases. These identities may be violated if it is
not noticed that data for two correlations determines
the third in the three-correlation case, and that data
for three correlations determines the fourth in the
four-correlation case. The computation of these cor-
relations from over-determined data sets in multiple

Žruns without data matching as required by all
.derivations known to the author breaks the link

between initial assumptions and their derived logical
consequences, and thus leads to possible violation of

Žthe inequalities. If a statement violates the assump-
tions of a derivation, it may not be concluded,

0030-4018r99r$ - see front matter Published by Elsevier Science B.V.
Ž .PII: S0030-4018 99 00418-6



( )L. SicarOptics Communications 170 1999 61–6662

thereby, that it must either agree or disagree with the
.conclusions.

w xPart I 1 treats requirements for consistency with
the derivation where all correlations are computed
from data independently of theoretical models for the
correlations. By contrast, the present paper considers
Bell’s gedanken experiment in which the correlation
² :ab is measured or assumed to be known, and the
other correlations are constructed from theoretical
reasoning. This involves more subtle arguments than

w xthose given in Part I 1 , but these must be consid-
ered in the context of the widely held belief that
quantum mechanics violates Bell’s inequalities. The
situation is logically different in the three correlation
and four correlation cases, and they will be treated
separately. This is because the issue of nonlocality
plays a different role in the two cases.

In this paper, Bell’s identity and Bell’s inequality
will be applied first to a delayed choice gedanken
experiment for which three variables are appropriate,
whether or not instantaneous nonlocal influences are
assumed, and which would therefore yield data satis-
fying Bell’s identity. Bell’s inequality must then be
satisfied by theoretically derived correlations among
the variables as a consistency condition with arith-
metic. The violation of this consistency condition
leads to the identification of a widely used but
unexamined hidden assumption in the usual applica-
tion of Bell’s inequalities: that correlations among
the observables may be considered individually, and
all have the same cosine of angular difference form.

w xHowever, in Part I 1 it has been shown already that
one of the correlations is arithmetically dependent on
the data of the others, thus violating the basis for the
assumption. The present paper extends this result by
a consideration of the gedanken experiment interpre-
tation of Bell’s inequalities. In this case, commuta-
tion of some observables and noncommutation of

Ž .others the quantum viewpoint and the conditional
dependence of the unperformed measurements on

Ž .those actually performed the hidden variables view
both undermine the equivalence assumption. This

Žissue has rarely been considered this was noted,
w x.however, in Ref. 11 in the interpretation of Bell’s

inequalities, and its omission amounts to an impor-
tant logical loophole in the conventional treatment.

w xThe basic facts derived in Part I 1 for Bell’s
original equality are the following. Assume that there

are three lists of numbers, each of length N, with
each number restricted to the values "1. The lists
are denoted a, b, and bX and their respective mem-
bers by a , b , and bX, is1 . . . N. Then, Bell’si i i

identity holds:

N N N
X Xa b rNy a b rN F1y b b rN. 1Ž .Ý Ý Ýi i i i i i

is1 is1 is1

Ž .Since the truth of 1 is independent of N, the limits
N™` may be taken, assuming that they exist in
some sense for the numerical sequences used, and
each numerical average may be replaced by a corre-
sponding ensemble average. If the standard bracket
notation for ensemble average is used, one arrives at

w xthe original form for Bell’s inequality 3 :

<² : ² X: < ² X:ab y ab F1y bb 2Ž .
Ž .Inequality 2 must be carefully distinguished from

Ž .precursor identity 1 , as to both meaning and use.
Ž .While identity 1 cannot be violated by any finite

Ž .sets of "1’s, whether random or nonrandom, 2 is
not an identity in formulas that may be inserted into
it, and hence may be violated by derived but theoret-
ically inconsistent equations for limits of averages.

Ž .Of course, if the ensemble averages in 2 are liter-
Ž .ally the limits of the averages in 1 , then they must

Ž . Ž .automatically satisfy 2 . Inequality 2 thus provides
a constraint that functions representing theoretically
computed ensemble averages must satisfy for inter-
nal consistency with any data sets that could possibly
exist or be imagined. This is entirely apart from the
question of whether they accurately describe the
results of experiments. These relationships seem not
to have been stated previously and are central to the
analysis that follows.

Ž .In applying 2 to observations, three variables
must be logically identified from a physical situation.
In the measurement of spin components of two

Žspin-1r2 particles in a singlet state flying apart Fig.
.1 , the apparatus is assumed to be run in a delayed

choice mode with angular settings of Stern–Gerlach
magnets made on the fly. It is assumed here that the
measurement at a is completed before that at b or bX

has begun, so that causal effects resulting from
apparatus settings can only travel from a to b or bX

but not from b to a. The a and b measuring devices
are separated by a distance large compared to that
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Fig. 1. Schematic Stern–Gerlach apparatus. Arrows a, b, indicate
magnetic field directions encountered by pairs of particles emitted
in opposite directions by the source. Distances from source to
measuring devices are shown unequal to allow a-direction mea-
surement to be performed first. At each encounter with a magnetic
field, the particle is deflected in one of two directions depending

Ž . Xon whether its spin is q1 or y1 half . The direction b indicates
an alternative direction of b for which data would result if that

X Ždirection were selected. Similarly, an alternative a direction not
.shown could be considered.

which light can traverse in the time between mea-
surements.

For a given orientation of the magnet a, the
magnet b may also be imagined to be in a second,
different orientation, bX, thus resulting in a different
stream of data for the same sequence of hidden

Ž .variables used to determine b and a . This data-
stream is unacquired however, since the magnet
producing the field orientation corresponding to b,
being a classical macroscopic object, can only have
one angular position at a time. As a result, no actual
experiment can be performed with this apparatus that

Ž .tests the complete inequality 2 , since only one pair
of values for a and b can be obtained per particle
pair. The outputs of variables a, b, and bX can be

Žmeasured in neither a single experiment this would
.not be possible classically either nor in a sequence

of experiments, as would be possible classically if
the initial conditions and assumed hidden variables
were known and controlled.

w xIn Bell’s prescription 3 , a and b are measured
² :allowing the correlation ab to be computed, and

the other correlations are inferred from theoretical
reasoning based on the assumption that they are

Žfunctions of hidden variables. Bell’s definition of
correlation is the negative of that used here. Bell
assumed, in fact, that all variables were based on the

.same hidden variable readout function. Bell’s in-
sight resides in the fact that while the variables a, b,
and bX are not all measurable from one particle pair

Ž .using the classical experimental apparatus in Fig. 1,
their values could all be predicted classically for two

successive experiments as a function of fixed initial
conditions, hidden variables, and different apparatus
settings even though infinite precision might be nec-
essary in a chaotic situation. Thus, all the correla-
tions could be computed for this apparatus, for suc-
cessive classical experiments and appropriate ensem-
ble averaging, even though they do not exist at the
same time for a single apparatus setting.

Under the conditions of the delayed choice
gedanken experiment described, readout values at b
and bX would be affected if a nonlocal influence on
them due to a was assumed, but three data streams
would still result. Three data streams would also
result if no nonlocal influence was assumed. Thus, in
either case, Bell’s identity for three experimental
correlations would be satisfied by the three finite
length data streams. This result, somewhat different
from the four correlation case, is the motivation for
considering the three correlation case.

Thus, once hidden variables in the above sense
are assumed to exist, the only question is what form

Ž .the correlations in 2 take. It is well known experi-
mentally and from quantum mechanics that for the
two data streams a and b produced by detector

Ž . Ž . ² : w Ž .orientations u a and u b , ab sycos u b y
Ž .xu a . Owing apparently to the symmetry of the

² X:apparatus, the additional correlations ab and
² X:bb of unknown and unacquired readouts have
been widely assumed to be given by the same cosine
of angular differences equation, i.e. the same func-

² :tion as ab . This assignment of correlation func-
tions is assumed to result from quantum mechanics.

Ž .For certain values of the three angles, 2 is then
violated.

The failure of the assigned correlations to satisfy
Ž .2 indicates either that the assumed alternate data
cannot exist, or if it does exist, that the assumption
that all variables and their correlations are equivalent
is flawed. It is important to realize that it is not
readout functions per se, in the sense of Bell, that are
prohibited, since any literal values whatsoever for bX

may be used in conjunction with real data for a and
b having a cosinusoidal correlation without violating

Ž . Ž .identity 1 and, if the limits exist, inequality 2 .
However, the other two correlations cannot then

² :have the same cosine form as ab , and for the
present delayed choice experiment this follows
whether or not measurements of a are assumed to
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influence b and bX. Thus, correlations among the
performed and unperformed measurements cannot all
have the same cosine form, if hidden variables exist
at all.

However, in addition to violating the mathemati-
Ž .cal consistency condition 2 , the assumption of

equivalent variables violates quantum mechanics,
since the quantum mechanical operators correspond-
ing to spin measurements at b and bX for the same
particle don’t commute, while those at a and b,
measurements on two different particles do com-
mute. The real measurements are thus on a different
statistical footing from the imaginary ones, and the
correlations among the variables surely cannot all be
assumed to be given by the same function in the
absence of proof that this is the case. Noncommuting
observables occupy an entirely different place in
conventional quantum mechanics to commuting ob-

Ž .servables see virtually any quantum mechanics text ,
and hidden variables, if assumed to exist, must dupli-
cate such statistical properties as quantum mechanics

Žspecifies note also the related fact of classical me-
chanics that two perpendicular components of angu-
lar momentum cannot be simultaneous canonical

. w xmomenta 12 .
Ultimately, due to the fact of noncommutation,

the correlations required for insertion in inequality
Ž .2 are not really computable from quantum mechan-
ics, and require a specific hidden variables theory for

w x Xevaluation. Bell indicated 13 that b was to be
considered as a possible alternative setting of b
under the condition of identical hidden variable val-

Žues. This is equivalent to performing the experiment
again under identical conditions and with alternate

X .setting b . But once a specific value for b is ob-
tained, the range of values of any hidden variables
leading to that value is partially limited, so that any
values at alternative setting bX are conditionally de-
pendent on it. Thus from the hidden variables view-
point, the correlations should not be considered to be
equivalent.

It seems to be believed that noncommutation is a
property of the quantum world only. However, sim-
ple reflection indicates that this belief is unjustified,
and one can find numerous instances in which alter-
native orderings of classical operations produce dif-
ferent results. A well known example is that finite
rotations of solid objects in three dimensions do not

commute. In addition, the implications of noncom-
muting operations for stochastic processes have not
been explored and made a part of classical physics as
they have quantum mechanics.

The reasoning for the four-correlation inequality
is similar to that for three correlations but with some

w xdifferences. It was shown in Part I 1 that for four
streams of data of length N restricted to "1, Bell’s
identity is

N N1 1
Xa b q a bÝ Ýi i i iN Nis1 is1

N N1 1
X X Xq a b y a b F2 3Ž .Ý Ýi i i iN Nis1 is1

and Bell’s inequality is:

<² : ² X: < <² X : ² X X: <ab q ab q a b y a b F2 4Ž .
Ž . Ž .Comments following 2 above apply to 4 as well.

It is not an identity but a consistency condition on
the functions of which it is composed in order that

Ž .they represent correlations among any four infinite
lists of "1’s that could possibly exist.

If a delayed choice gedanken experiment is con-
sidered for two detector positions on the A side and

Ž .two on the B side see Fig. 1 , four data streams
result if locality is assumed, and six if nonlocal
effects are assumed. The later assumption is thus
inconsistent with the use of Bell’s identity for four
correlations. This assumption is not logically re-
quired, however. It was considered in the three-cor-
relation case to illustrate in a graphic way that the
assumption of the statistical equivalence of variables
is sufficient in and of itself to cause a Bell’s inequal-
ity violation independently of whether or not the
nonlocality assumption is made. In the four-variable
case, which does require the assumption of locality
to obtain four data streams, violation of Bell’s in-
equality by the correlations then depends on the
correlation equivalence assumption. If that assump-
tion is flawed, violation of Bell’s inequality no longer
has the same paradoxical implications.

w xIt has been shown in Part I 1 that the correlation
equivalence assumption is numerically unjustified in
the four-correlation case, since data for three correla-
tions determine the fourth. Related reasoning applies
to the gedanken experiment also. Definite values of
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a and b constrain the values of assumed underlying
hidden random variables that in turn determine aX

and bX. Consequently, as discussed in the three-corre-
lation case, the probability of obtaining particular
values of aX and bX must be conditional on the values
of a and b, and the forms of the correlations may
thereby be affected.

The reasoning from quantum mechanics is differ-
ent but related, and yields conclusions harmonious
with the above. While a and b commute, a and aX

do not, and b and bX do not. The statistics of hidden
variable models must duplicate those of quantum
mechanics by definition. Thus, reasoning based on
the requirements of quantum mechanics, probability
considerations, and arithmetic is consistent in indi-
cating that the correlations of the four variables
should not be assumed to be functionally the same.
This indicates a reason for Bell’s inequality violation
that has been largely unconsidered previously. As
indicated, however, a specific hidden variables the-
ory is necessary to evaluate all the correlations used
in the four correlation inequality in the sense of Bell.
The conclusions drawn in the present work are con-

w xsistent with that of Ref. 14 , i.e. that a joint probabil-
ity density function for all variables in the inequality
must exist for Bell’s inequality to be valid.

The assumption that all correlations in Bell’s
inequalities are equivalent, reduces the generality of
hidden variables models that may be considered.
This may be seen by using the conventional termi-
nology of stochastic processes to express the impli-
cations of Bell’s inequality violation. Consider a
process such as a random rectangular wave with
values equal to q1 or y1, as shown in Fig. 2, but
with otherwise unspecified statistical properties. The
schematic waveform shown is a member of an en-
semble of waveforms with parameters controlled by

Fig. 2. Single realization of a hypothetical random, quantized,
waveform from a homogeneous process sampled at x , x , and1 2

x for each realization.3

some unspecified probability distribution. Suppose
that the process is homogeneous in the spatial coor-
dinate x, i.e. wide sense stationary in that coordi-
nate. Then, by definition, values of the waveform
may be read out simultaneously at locations x , x ,1 2

and x for each of N realizations, and the correla-3
Ž . Ž . Ž .tions C x yx , C x yx , and C x yx may3 2 2 1 3 1

then be calculated from these data sets for the en-
semble of realizations as N™`. The correlations so

Ž .computed are given by the same function C x
evaluated at different values of its argument, and this
function may also be evaluated using a separate run
for each value of its argument. The data streams at
locations x , x , and x for N realizations of the1 2 3

Ž .process must satisfy Bell’s identity 1 , and their
Ž .correlations must satisfy Bell’s inequality 2 . How-

ever, if the correlations are cosines, then Bell’s
Ž .inequality 2 will be violated. Thus, it follows that a

process quantized to "1 with correlation given by
the cosine of coordinate differences cannot be repre-
sented by a homogeneous process. However, homo-
geneous processes represent a subset of those classi-

w xfied in books on random processes 15,16 .
The lack of examination of the assumption of

statistical equivalence of the correlations among the
variables amounts to a previously unidentified logi-
cal loophole in the interpretations of Bell’s inequali-
ties. The analysis of the three-correlation case, in
particular, lends support to the conclusion that nonlo-
cality is not necessarily implicated as the reason for
violation of Bell’s inequalities. The result in the
four-correlation case is not as strong, since the as-
sumption of locality is now required, but once the
assumption of statistical equivalence of correlations
is removed, no paradoxical violation of the inequali-
ties necessarily follows. Further, the example of Part

w xI 1 , Fig. 2 shows the case of an experiment for
which four variables may be explicitly measured for
a single particle pair, leading to satisfaction of Bell’s
inequalities. The computed correlations do not all
have the same functional form and are not in general
zero.

Ultimately, only a subset of random variables
models for quantum correlations appear to be ex-
cluded by Bell’s inequalities violation. These results
leave open the question of whether or not the nega-
tive cosine correlation of spin measurements for
particles in the singlet state implies an intrinsically
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nonlocal model for reasons other than those tied to
Bell’s inequality violation. However, Bell knew, in
spite of the example of Bohmian mechanics, that his
failure to find a local model for this correlation was
not proof that one could not exist. It was in an
attempt to prove such non-existence that he con-
structed his inequalities. It is worth noting, in this
regard, that a model has recently been demonstrated

w xby Steiner 17 in which the necessary nonlocal
information transmitted to simulate the cosine corre-
lation is only 1.48 bits. No lower limit has been
proven in conjunction with this demonstration.
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