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We present a scheme for asymmetric quantum-information splitting, where a sender distributes asym-
metrically a quantum secret (quantum state) to distant partners in a network. The asymmetric distribu-
tion leads to that the partners have different powers to recover the sender’s secret. In other words, their
authorities for getting the secret are hierarchized. In the scheme, the partners do not need to make any
nonlocal operation. The scheme can also be modified to implement threshold-controlled teleportation.
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The combination of information theory and quantum mechan-
ics leads to the advent of quantum-information science [1]. Entan-
glement, one of the most striking features of quantum mechanics,
is the center resource for quantum-information processing. The
extensive applications of quantum entanglement should owe to
its nonlocal correlations. One well-known example is the quantum
teleportation [2,3], which utilizes the nonlocality of the quantum
channel, i.e., a bipartite or multipartite entangled state, to trans-
port an unknown quantum state from one site to another one. In
the original teleportation protocol of Bennett et al. [2], the sender
(Alice) and the receiver (Bob) initially share a maximally entangled
state of two particles. Alice then performs a joint measurement on
her particle of the entangled pair and the particle whose state is to
be teleported. With the measurement outcome transmitted from
Alice via a classical channel, Bob can recover the teleported state
by appropriate local transformations.

Generally, the more particles that can be entangled, the more
clearly nonlocal effects are exhibited [4], and the more useful the
states are for quantum-information processing [5]. In addition,
the usefulness of an entangled state is usually related to its entan-
glement properties [6,7]. Thus exploring and exploiting multipar-
tite entangled states are very important tasks for the ones who
are studying quantum-information theory. It has been attracting
much interest that what classes of multipartite entangled states
are competent for achieving a defined quantum-information-pro-
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cessing task and what they can do. Greenberger–Horne–Zeilinger
(GHZ) states [8] are typical multipartite entangled states. With
the GHZ states, Hillery et al. [9] firstly introduced the concept of
quantum-information splitting (QIS), where a quantum secret
(quantum state) is distributed to two or more distant partners such
that any one of them can recover the secret with the assistance of
the others. QIS can be considered as a generalization of teleporta-
tion, and also called open-destination teleportation or quantum-
state sharing in literature [10,11].

QIS has extensive applications in quantum-information science,
such as creating joint checking accounts containing quantum
money [12], secure distributed quantum computation [13], and
so on. Since the outstanding work of Hillery et al., QIS has been
attracting much attention [14–20], and a scheme has already been
experimentally realized [10]. However, all of these schemes are fo-
cused on the symmetric case where every partner has the same
status, i.e., the same authority for getting the sender’s secret. In
Ref. [21], Gottesman pointed out that a more general QIS scheme
should involve the asymmetry between the powers of the different
participants, and showed that it is possible to construct an access
structure that some subsets of the shares can be combined to
reconstruct the secret quantum state. This case was further studied
later [22,23]. Their idea is based on the theory of quantum error-
correcting codes, and thus nonlocal operations are required.

In this paper, we present a scheme for distributing a quantum
secret to three distant partners asymmetrically. The asymmetric
distribution leads to that the partners have different powers to
recover the sender’s secret. In other words, their authorities for
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getting the secret are hierarchized. In the scheme, the partners do
not need to perform any nonlocal operation.

The quantum channel of our scheme is the four-qubit entangled
state, recently proposed by Yeo and Chua [6],

jvABCDi ¼
1ffiffiffi
2
p j0Aiju0

BCDi þ j1Aiju1
BCDi

� �
; ð1Þ

where

ju0
BCDi ¼

1
2
ðj0B0C0Di

� j0B1C1Di � j1B0C1Di þ j1B1C0DiÞ;

ju1
BCDi ¼

1
2
ðj0B0C1Di

þ j0B1C0Di þ j1B0C0Di þ j1B1C1DiÞ: ð2Þ

The state jvABCDi has many interesting properties and exhibits more
clear nonlocality in some aspects than the counterparts of the well-
known GHZ and W states [6,24]. In addition, it can be easily verified
that at least two single-qubit measurements are required in order to
completely disentangle jvABCDi. Thus such a state has higher persis-
tency of entanglement than a GHZ state which can be completely
disentangled by only one local measurement. This may lead to that
our scheme is more robust against decoherence than the scheme of
Ref. [9].

We consider that Alice, Bob, Charlie, and Diana possess particles
A;B;C, and D, respectively. These particles are in the entangled
state jvABCDi. Alice has another particle S which is in the state

jnSi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jkj2
q j0Si þ kj1Sið Þ: ð3Þ

The state of the whole system is

jnSijvABCDi

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ jkj2Þ

q j0S0Aiju0
BCDi þ j0S1Aiju1

BCDi
� �

þ kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ jkj2Þ

q j1S0Aiju0
BCDi þ j1S1Aiju1

BCDi
� �

: ð4Þ

The task is: Alice wants to distribute the state jni to her three part-
ners, i.e., Bob, Charlie, and Diana, such that any one of them can re-
cover the secret state with the assistance of the other two. To this
end, Alice performs a joint measurement on her two particles S
and A in the Bell basis fjW�SAi; jU

�
SAig, and then informs the outcome

to them. The four Bell states are given by

jW�SAi ¼
1ffiffiffi
2
p j0S0Ai � j1S1Aið Þ;

jU�SAi ¼
1ffiffiffi
2
p j0S1Ai � j1S0Aið Þ: ð5Þ

For Alice’s four possible measurement outcomes, jW�SAi or jU�SAi, the
particles held by Bob, Charlie, and Diana collapse into the following
corresponding entangled states:

jw�BCDi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jkj2
q ju0

BCDi � kju1
BCDi

� �
;

j/�BCDi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jkj2
q ju1

BCDi � kju0
BCDi

� �
: ð6Þ

The non-cloning theorem [25] allows only one particle to be in the
state jni, so that any one of Bob, Charlie, and Diana, but not all, can
recover such a state.
In order to recover Alice’s secret state, Bob, Charlie, and Diana
need to cooperate. Before they come to an agreement, their sin-
gle-particle state-density matrices are given by
qBðCÞ ¼
1
2
j0BðCÞih0BðCÞj þ j1BðCÞih1BðCÞj
� �

;

q�D ¼
1
2
j0Dih0Dj þ j1Dih1Djð Þ � i

ImðkÞ
ð1þ jkj2Þ

j1Dih0Dj � j0Dih1Djð Þ; ð7Þ
where qþD corresponds to Alice’s measurement outcomes jWþSAi and
jU�SAi, and q�D corresponds to jW�SAi and jUþSAi. It can be seen that
Bob or Charlie knows nothing about the amplitude and phase of
Alice’s qubit S without the collaboration of the other two partners;
Diana, however, has partial information about both the amplitude
and phase of qubit S as long as receiving Alice’s Bell-state measure-
ment outcome. This case implies that Alice’s quantum secret is dis-
tributed to Bob, Charlie, and Diana asymmetrically. We shall show
that the asymmetric distribution leads to an interesting phenome-
non: for recovering the secret, Bob (Charlie) needs the assistance
of both of the other two partners, i.e., Diana and Charlie (Bob), while
Diana only needs the help of any one of the other two, i.e., Bob or
Charlie.

First, we assume that the three partners agree to let Diana pos-
sess the secret. We rewrite jw�BCDi and j/�BCDi as
jw�BCDi ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jkj2

q j0B0Ci þ j1B1Cið Þ � j0Di � kj1Dið Þ½

� j0B1Ci þ j1B0Cið Þ � j1Di � kj0Dið Þ�

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þ jkj2
� �r jþBþCi j�Di � kjþDið Þ½

þ j�B�Ci jþDi � kj�Dið Þ�;

j/�BCDi ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jkj2

q j0B0Ci þ j1B1Cið Þ½

� j1Di � kj0Dið Þ þ j0B1Ci þ j1B0Cið Þ � j0Di � kj1Dið Þ�

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1þ jkj2
� �r jþBþCi jþDi � kj�Dið Þ½

� j�B�Ci j�Di � kjþDið Þ�; ð8Þ
where j�ji ¼ j0ji � j1ji
� �

=
ffiffiffi
2
p
ðj ¼ B;C;DÞ. Obviously, if Alice and Bob

measure their qubits in the basis fjþi; j�ig, their outcomes are al-
ways correlated, i.e., Bob’s (Charlie’s) outcome can be deduced by
Charlie’s (Bob’s). This implies that the outcome (jþi or j�i) of any
one of them is sufficient to help Diana recover the secret. Indeed,
Diana can reconstruct the state jni on qubit D by appropriate local
operations based on the measurement outcomes of Alice and only
one of Charlie and Bob. The local unitary transformations that Diana
should perform (on qubit D) according to Alice’s measurement out-
comes (on qubits S and A) and Bob’s or Charlie’s measurement out-
comes (on qubit B or C) are given in Table 1, where
rx ¼ j0ih1j þ j1ih0j and rz ¼ j0ih0j � j1ih1j are the usual Pauli oper-
ators, and H is the Hardamard transformation functioning as
Hj0i ¼ jþi and Hj1i ¼ j�i. In can be seen from Eq. (8) that Bob
and Charlie can also choose the measurement basis fj0i; j1ig, but
then Diana needs the collaboration of both of them.

Now, we consider the case that they agree to let Bob possess
Alice’s secret, i.e., recover the state jni. We then rewrite jw�BCDi
and j/�BCDi as



Table 1
The corresponding local operations that Diana should perform for recovering the state
jni, according to Alice’s Bell-state measurement outcomes and Bob’s or Charlie’s
single-qubit measurement outcomes.

Alice’s outcomes Bob’s or Charlie’s outcomes Diana’s operations

jWþi jþi ðj�iÞ rxH ðrzHÞ
jW�i jþi ðj�iÞ rxrzH ðHÞ
jUþi jþi ðj�iÞ H ðrxrzHÞ
jU�i jþi ðj�iÞ rzH ðrxHÞ
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jw�BCDi ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jkj2

q j0Bi � kj1Bið Þj0C0Di½

� j1Bi � kj0Bið Þj0C1Di þ j1Bi � kj0Bið Þ
�j1C0Di � j0Bi � kj1Bið Þj1C1Di�;

j/�BCDi ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jkj2

q j1Bi � kj0Bið Þj0C0Di½

þ j0Bi � kj1Bið Þj0C1Di þ j0Bi � kj1Bið Þ
�j1C0Di þ j1Bi � kj0Bið Þj1C1Di�: ð9Þ
It can be seen that Bob can reconstruct the state jni if and only if
both Charlie and Diana measure their qubits in the basis fj0i; j1ig
and broadcast their outcomes. In other words, Bob needs the help
of both of the other two partners, Charlie and Diana, for recovering
the secret. The corresponding local operations that Bob should
make according to Alice’s Bell-state measurement outcomes and
Charlie’s and Diana’s single-qubit measurement outcomes are given
in Table 2. These results are also applicable to the case where Char-
lie is deputed to recover Alice’s secret because jvABCDi is unchanged
under the permutation of qubits B and C, which indicates that Bob
and Charlie have the same status in the above QIS protocol.

In a word, for recovering the secret state jni, Diana only needs
the assistance of any one of Bob and Charlie, while Bob (Charlie)
needs the help of both Diana and Charlie (Bob). Thus, their author-
ities for getting the secret are hierarchized, and Diana is in a higher
position relative to Bob and Charlie.

The above QIS protocol can also be modified to implement con-
trolled teleportation [3] if we choose Diana as the receiver in ad-
vance. The scheme of Ref. [3] is a (2,2)-threshold controlling
scheme where the achievement of teleportation is conditioned
on the collaboration of both of the two supervisors, while the pres-
ent one is a (1,2)-threshold controlling scheme where one of the
two supervisors (Bob and Charlie) can help Diana successfully re-
cover the teleported state. Very recently, several other types of
ðk, mÞ-threshold-controlled teleportation protocols have also been
proposed [26–28].

As to the physical realization of the above QIS scheme, we
mainly need to consider two points: the preparation of the entan-
gled state jvi and the Bell-state measurement. Recently, several
Table 2
The corresponding local operations that Bob should perform for recovering the state
jni, according to Alice’s Bell-state measurement outcomes and Charlie’s and Diana’s
single-qubit measurement outcomes.

Alice’s outcomes Charlie’s and Diana’s outcomes Bob’s operations

jWþi j0C 0Di ðj0C 1DiÞ I ðrxrzÞ
jWþi j1C 0Di ðj1C 1DiÞ rx ðrzÞ
jW�i j0C 0Di ðj0C 1DiÞ rz ðrxÞ
jW�i j1C 0Di ðj1C 1DiÞ rxrz ðIÞ
jUþi j0C 0Di ðj0C 1DiÞ rx ðrzÞ
jUþi j1C 0Di ðj1C 1DiÞ I ðrxrzÞ
jU�i j0C 0Di ðj0C 1DiÞ rxrz ðIÞ
jU�i j1C 0Di ðj1C 1DiÞ rz ðrxÞ
methods for preparing the state jvi have been proposed [29–32].
In Ref. [29], one of our authors proposed a scheme for generating
the state jvi with a well controllable ion-trap setup [33]. Ref.
[30] showed that a four-photon jvi state can be effectively created
even with conventional photon detectors. Ref. [32] presented a
simple scheme for producing the jvi-type entanglement among
four atoms separately trapped in four distant cavities [34,35], by
emitted-photon interference. Based on the current techniques
[33–36], these schemes are experimentally achievable. In addition,
the Bell-state measurement has be well realized for both atomic
and photonic qubits [37–39]. All these achievements may contrib-
ute to our QIS scheme in physical realization.

In conclusion, we have proposed a QIS protocol with a particular
four-partite entangled state as the quantum channel, where the
three partners, i.e., Bob, Charlie, and Diana, have different author-
ities for getting Alice’s (the sender) quantum secret. Diana only
needs the assistance of any one of the other two partners, Bob
and Charlie, for recovering the secret; while Bob (Charlie) needs
the help of both of the other two partners, Diana and Charlie
(Bob). That is, Diana has a larger authority than Bob and Charlie
to possess the final secret. In other words, their authorities are
hierarchized, and Diana is in a higher position relative to Bob
and Charlie. The security checking for the quantum channel is
the same as that of Ref. [40]. The presented QIS scheme is experi-
mentally achievable with state-of-the-art. Our scheme can also be
modified to implement (1,2)-threshold-controlled teleportation.

The hierarchical QIS may be very interesting in view of the reli-
ability of the partners in quantum communication and the access
controlling in architecture of quantum computer, and should be
more useful than the symmetric QIS in practice. Let us take a sim-
ple example that a dealer in Berlin wants to have an action taken
on her behalf in Beijing. She has three partners who can carry it
out for her, but she knows that some of them are dishonest and
does not know whom they are. She cannot simply send a message
to one of them, because the dishonest ones will try to sabotage the
action, but she knows that if all of them carry it out together, the
honest ones will keep the dishonest ones from doing any damage.
Then she can encode the message in a quantum state (quantum se-
cret) and distribute it among them through the generalized tele-
portation protocol discussed above. The partner who is the most
reliable will be distributed a larger part of information. As a conse-
quence, the most reliable partner can recover the secret with the
cooperation of subset of the other ones, but the other ones cannot
get the secret without the participation of the most reliable one.

It is worth pointing out that a more general hierarchical QIS
scheme should involve more than three parties. However, it will
be much more complicated and cannot be obtained by directly
generalizing the above scheme. In fact, there are many types of
hierarchies for the case where more than three parties are in-
volved, and each one of them will relate to the construction of a
special structure of multipartite entangled state. Let us take an
example of the simplest case where the hierarchy only involves
two ranks, i.e., only one of the parties is in a higher position and
the other ones have the same status. Then we need to construct
a multipartite entangled state in which at least one particle is dif-
ferent from the other ones, however, these ones are fully symmet-
rical and are equivalent to each other under permutation. As to a
more general case where the hierarchy has a tree-like structure,
the related entanglement channel will have a much more compli-
cated configuration. The physical generation of the complicated
many-party entangled states is also temporarily difficult. Thus
one will need to make further efforts. In principle, however, these
states could be constructed. Here, we just present a possible idea as
follows. For clarity and simplicity, we also consider the simplest
case where only one party has a larger authority than the other
ones to possess the final secret. With loss of generality, we assume
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that Alice’s nþ 1 partners are {Bob,Charlie1,Charlie2, . . . ,Charlien},
and Bob has a larger power than charlies to recover Alice’s quan-
tum secret. Then the entanglement channel can be written as

jwiABC1 ���Cn
¼ 1ffiffiffi

2
p j0iAj/

0iBC1 ���Cn
þ j1iAj/

1iBC1 ���Cn

� �
; ð10Þ

where j/0iBC1 ���Cn
and j/1iBC1 ���Cn

need satisfying the following condi-
tions: (1) when Bob is chosen to possess Alice’s secret state of Eq.
(3),

1ffiffiffiffiffiffiffiffiffiffi
1þjkj2
p j/0iBC1 ���Cn

�kj/1iBC1 ���Cn

� �
1ffiffiffiffiffiffiffiffiffiffi

1þjkj2
p j/1iBC1 ���Cn

�kj/0iBC1 ���Cn

� �
9>=
>; ���������������������!local measurements are performed in subset of fCjg

corresponding operations are made in B
jniB;

ð11Þ

(2) when one of Charlies, e.g., Charlie1, is chosen to possess the final
secret,

1ffiffiffiffiffiffiffiffiffiffi
1þjkj2
p j/0iBC1 ���Cn

�kj/1iBC1 ���Cn

� �
1ffiffiffiffiffiffiffiffiffiffi

1þjkj2
p j/1iBC1 ���Cn

�kj/0iBC1 ���Cn

� �
9>=
>; ���������������������!local measurements are performed in fB;Cj ;j–1g

corresponding operations are made in C1

jniC1
;

1ffiffiffiffiffiffiffiffiffiffi
1þjkj2
p j/0iBC1 ���Cn

�kj/1iBC1 ���Cn

� �
1ffiffiffiffiffiffiffiffiffiffi

1þjkj2
p j/1iBC1 ���Cn

�kj/0iBC1 ���Cn

� �
9>=
>; ���������������������!local measurements are performed in fCj ;j–1g

corresponding operations are made in C1

jErroriC1
;

ð12Þ

where jErroriC1
denotes a wrong state differing from jniC1

. In the
same vein, the tree-structure many-party entangled states may also
be possible to be constructed in theory. The multipartite entangled
states involving more than four parties are under intensive research
[26,41,42], and thus we believe that these states can be successfully
constructed in the future.
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