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Abstract

We address the robustness of quadratic solitons with periodic non-conservative perturbations. We ®nd the evolution

equations for guiding-center solitons under conditions for second-harmonic generation in the presence of periodic

multi-band loss and gain. Under proper conditions, a robust guiding-center soliton formation is revealed. Ó 2000

Elsevier Science B.V. All rights reserved.
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Multi-color optical soliton formation mediated
by cascading of quadratic non-linearities has been
demonstrated experimentally during the last few
years in a variety of geometries and frequency-
mixing processes, in settings for spatial, temporal
and spatio-temporal trapping of light [1±4]. Soliton
signals exist in particular in the process of second-
harmonic generation (SHG) that is addressed here,
where solitons form in waveguides and in bulk
crystals by the mutual trapping between the fun-
damental frequency (FF) and second-harmonic
waves. Multi-dimensional soliton families exist
above a threshold light intensity for all values of
the phase mismatch between the waves, and most
of such solitons have been shown to be dynamically
stable under propagation with the equations that
model the ideal light evolution under conditions of
focused and pulsed SHG. Adiabatic soliton decay

and ampli®cation in the presence of weak loss or
gain, have been also studied [5±9].

In this letter we address the robustness of qua-
dratic solitons against strong, but periodic non-
conservative perturbations. To start the program
we consider soliton formation in the presence
of multi-frequency losses and large, but rapidly
varying periodic gain. Our goal is to derive the
corresponding guiding-center evolution equations
and to expose the robustness of the existing soli-
tons under proper conditions. We believe that the
results reported bear a generic fundamental inter-
est to the robustness of quadratic soliton forma-
tion in structures with periodic non-conservative
perturbations. Moreover, they might ®nd direct
applications in reduced models of multi-color laser
systems with intracavity frequency generation, in-
cluding self-frequency doubling schemes, operat-
ing in the solitonic regime [10±13].

Here the focus is on solitons formed in one-
dimensional structures under conditions for non-
critical type I SHG, but the analysis can be
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extended to di�erent physical settings. The evolu-
tion of the slowly varying envelopes of the light
waves in the presence of multi-frequency band loss
and periodic gain can be described by the reduced
equations [14]

i
oa1

on
ÿ a1

2

o2a1

os2
� a�1 a2 exp�ÿibn� � iC1�n�a1; �1�

i
oa2

on
ÿ a2

2

o2a2

os2
� a2

1 exp�ibn� � iC2�n�a2; �2�

where a1 and a2 are the normalized amplitudes of
the FF and second-harmonic (SH) waves. In the
case of spatial solitons, a1 � ÿ1, and a2 � ÿk1=
k2 ' ÿ0:5, where km, with m � 1; 2 are the linear
wave numbers at both frequencies. In the case of
temporal solitons, am stand for the ratio between
the group-velocity dispersions existing at both
frequencies. The transverse and longitudinal co-
ordinates are normalized to the beam or pulse
width and to the di�raction or dispersion length at
the FF, respectively. Under typical experimental
conditions suitable for quadratic soliton genera-
tion, with di�raction or dispersion lengths of a few
mm, n in the range 0±10 corresponds to a few cm.
The parameter b is the scaled phase mismatch, and
Cm�n� stand for periodic gain and loss. Let Cm�n� �
C�0�m � Rm�n�, where C0

m are the average gain or loss
at the FF and SH frequencies, and Rm�n� are pe-
riodic functions, with period L� 1, and zero
mean.

To derive the evolution equations of the guid-
ing-center solitons in the presence of the periodic
gain, we ®rst use the approach originally intro-
duced by Mollenauer et al. for the case of Kerr
solitons propagating in optical ®bers [15]. Let
A1 � a1 and A2 � a2 exp�ÿibn�. The explicit peri-
odic gain can be removed from Eqs. (1) and (2) by
making the transformations Am�n; s� � Um�n; s�
exp�R n

0
Rm�n0�dn0�. Substitution in Eqs. (1) and (2)

leads to the evolution equations
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2
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i
oU2

on
ÿ a2

2

o2U2
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�4�

where the resulting longitudinally varying non-
linear coe�cients write

�2�n� � exp

Z n

0

R2�n0�dn0
� �

; �5�

�3�n� � exp
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0

�2R1�n0�
�

ÿ R2�n0��dn0
�
: �6�

To proceed further one now assumes that the
wave evolution over a period of the map is mostly
dictated by the gain and loss, which are responsi-
ble for fast amplitude oscillations of the ®elds Am,
in addition to the residual e�ects induced by the
non-linearity. Therefore, Um vary slowly over a
period of the map, so that one can average Eqs. (3)
and (4) to approximately get

i
oU1
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ÿ a1

2

o2U1

os2
ÿ iC�0�1 U1 � g2U �1 U2 ' 0; �7�

i
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where

g2;3 � h�2;3�n�i � 1

L

Z L

0

�2;3�n�dn; �9�

are the averaged non-linear coe�cients over a pe-
riod of the map. Therefore, the evolution equa-
tions for the slowly varying averaged ®elds
Um;0�n; s�, de®ned as

Um;0�n; s� � exp

Z n

0

Rm�n0�dn0
� �� �

Um�n; s�; �10�

write
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�12�
where g � g2g3=g

2
1, with g1 � h�1�n�i, and

�1�n� � exp

Z n

0

R1�n0�dn0
� �

: �13�

One thus concludes that under the conditions
where the approximations used to derive Eqs. (11)
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and (12) hold, the guiding-center solitons are given
by those existing without gain and loss when C�0�m �
0 [16,17], or otherwise with compensated gain and
loss [18,19], but with properly renormalized am-
plitudes. To expose the value and dependencies of
the renormalization coe�cient g, consider the il-
lustrative map Rm�n� � Gm H�n�, where H�n� is the
Heaviside function

H�n� � ÿ1; nL < n < �n� 1=2�L;
1; �n� 1=2�L < n < �n� 1�L:

�
�14�

Substitution in the above expressions and per-
forming all the averages yields

g � F �G2L=2�F ��2G1 ÿ G2�L=2�
F 2�G1L=2� ; �15�

where

F �l� � 1ÿ exp�ÿl�
l

: �16�

Of particular interest are the weak maps with
l� 1, corresponding to GmL� 1. In such cases,
one might expand Eq. (15) in powers of the cor-
responding parameters to get, at order L2

g ' 1� �G1 ÿ G2�2L2

48
: �17�

Note that when G1 � G2, Eq. (15) gives g � 1,
regardless the value of the map period L. How-
ever, this does not mean that the guiding-center
evolution is given by Eqs. (11) and (12) with g � 1
at all orders of L, because the derivation of Eqs.
(11) and (12), hence the governing equations
themselves, are only intended to hold when L� 1.
To elucidate the applicability limits of Eqs. (11)
and (12), it is worth deriving the guiding-center
evolution equations using more mathematically
systematic approaches [20,21]. Next we outline the
outcome of the asymptotic expansion method de-
veloped by Kivshar and coworkers for similar
problems but for Kerr solitons [21]. Such ap-
proach has been recently employed to obtain
guiding-center evolution equations of light signals
propagating in quasi-phase-matched quadratic
structures [22,23].

Assuming perfect periodicity of the functions
Rm�n� as above, one can express the periodic gain
and all ®elds as Fourier series of the form

Rm�n� �
X
n6�0

dm;n exp�inkn�; �18�

Am�n; s� �
X

n

Um;n�n; s� exp�inkn�; �19�

where k � 2p=L, and the Fourier coe�cients
Um;n�n; s� vary with n much slower than the corre-
sponding carrier exp�inkn�. For the map (14) con-
sidered here one has

dm;2n � 0; dm;�2n�1� � 2Gm

ip�2n� 1� : �20�

Assuming the ampli®cation maps to vary rap-
idly over a di�raction/dispersion length, i.e. L� 1,
so that the spatial frequency k is large enough, one
can expand the harmonic amplitudes Um;n 6�0, as
power series of 1=k. Namely,

Um;n6�0 �
X
m>0

F �m�m;n

km : �21�

Substitution in the governing equations and
matching leading-order contributions leads to

F �1�m;n � ÿi
dm;n

n
Um;0: �22�

The guiding-center evolution is obtained by solv-
ing recursively for the higher-order contributions
F �m>1�

m;n and substituting the corresponding expres-
sions in the evolution equations for the average
®elds Um;0. At second order one gets

nF �2�1;n � i
oF �1�1;n

on
ÿ a1

2

o2F �1�1;n

os2
� U �1;0 F �1�2;n

� U2;0 F �1��1;ÿn ÿ i
X

m6�0;n

d1;nÿm F �1�1;m; �23�

nF �2�2;n � i
oF �1�2;n

on
ÿ a2

2

o2F �1�2;n

os2
� 2U1;0 F �1�1;n

ÿ bF �1�2;n ÿ i
X

m6�0;n

d2;nÿm F �1�2;m: �24�

Substituting the expressions (22)±(24) into the
evolution equations for the average ®elds Um;0, and
using the values of the Fourier coe�cients given by
Eq. (20) to sum up all the resulting numerical se-
ries, one ®nds that all terms of order 1=k vanish
because of the assumed perfect periodicity of the
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map, and that at order 1=k2 one exactly ®nds Eqs.
(11) and (12), with Eq. (17).

Eqs. (11), (12) and (17) are the central result of
this paper. First, they reveal that when G1 � G2, at
order L2 the guiding-center evolution equations are
identical to those without the periodic gain, re-
gardless the value of the amplitudes Gm. This is a
remarkable result, that emphasizes the robustness
of quadratic solitons with the type of perturba-
tions considered. Second, the typical values of the
gain coe�cient that is obtained in erbium-doped
lithium niobate or potassium titanyl phosphate
around the third telecommunication window cen-
tered at 1.55 lm fall in the range 0±2 dB/cm [10±
12,24,25]. In the case of spatial solitons, this yields
values of the normalized gain coe�cient of the
order of Gm � 10ÿ1 [8]. With such values and let-
ting L � 10ÿ1, one always obtains negligible cor-
rections of the order of �gÿ 1� � 10ÿ5.

To con®rm that under proper conditions (11)
and (12) hold, we solved Eqs. (1) and (2) numeri-
cally using a standard split step Fourier scheme,
for a variety of di�erent input conditions and
ampli®cation maps. Fig. 1 shows typical examples
of the outcome, when C�0�m � 0. The plots corre-

spond to the phase mismatch b � 3, but analogous
results were obtained for other values. To em-
phasize that guiding-center solitons form with gi-
gantic values of the gain±loss amplitude, provided
that the period of the map is small enough so that
the guiding-center approach is justi®ed, we display
results for a map with G1 � 20, G2 � 0 and
L � 0:2. Fig. 1(a) and (b) shows the propagation
of a guiding-center soliton excited by the input
Am�0� � ~Am�0�=qm, where ~Am�0� are the correspond-
ing stationary solitons existing without gain and
loss with energy ¯ow ~I � ~I1 � ~I2 �

R �j ~A1j2�
j ~A2j2�ds � 30 [16,17], while q1 � �g2g3�1=2

, and
q2 � g2, are the renormalization factors dictated
by Eqs. (7) and (8). For the map considered one
has q1 � 0:5, so that in the renormalized input the
FF energy is enhanced by a factor of four. Fig. 1(c)
and (d) shows the excitation of a guiding-center
soliton in the same map but with only FF input
light carrying the same energy ¯ow as above in
the Gaussian shape A1�0� � �2=p�1=4 I1=2

1 exp�ÿs2�.
Here I1 � ~I1=q2

1. Fig. 2 shows the detailed evolu-
tion of the ®eld amplitudes in the case shown in
Fig. 1(a) and (b). Because of the large excursions
of the amplitudes, the actual evolution di�ers

Fig. 1. Typical evolution of guiding-center quadratic solitons in structures with rapidly varying periodic gain. In (a, b): The input is a

renormalized stationary soliton solution. In (c, d): The input contains only FF light with a Gaussian shape. (a, c): Evolution of the FF;

(b, d): Evolution of the SH. Conditions: b � 3, ~I � 30, G1 � 20, G2 � 0, L � 0:2.
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slightly from that predicted by Eqs. (11) and (12).
Such departures are responsible, e.g., of the small
resonance peaks appearing in the Fourier spectra
of the FF and SH evolving signals, as shown in
Fig. 3.

When C�0�m 6� 0, but the net loss at one frequency
is compensated for by the presence of a net gain at
the other frequency band, the system (11) and (12)
allows stationary soliton solutions [18,19], which
are chirped. However, an interesting result re-

vealed by the guiding-center evolution Eqs. (11)
and (12) is that, in the absence of a net gain or loss
(i.e., C�0�m � 0), on average the guiding-center
quadratic solitons are chirpless. Accordingly, in
contrast to what is found with solitons in other
periodic systems, e.g., with dispersion-managed
solitons propagating in optical ®bers [26], one
concludes that with chirpless input conditions the
guiding-center quadratic solitons with periodic
gain are best excited when the ®rst domain has the
whole nominal length. The outcome of our nu-
merical simulations con®rms that such is indeed
the case, as shown in Fig. 4. The plot shows the
evolution over a period of the map of the quanti-
ties

Cm�n� � i

4

R
s�AmA�m;s ÿ A�mAm;s�dsR

s2jAmj2 ds
; �25�

where Am;s stands for oAm=os. The evolution dis-
played corresponds to a guiding-center soliton
similar to that shown in Fig. 1(a) and (b), but for
G1 � G2 � 10.

Analogous results than those shown above were
obtained for a variety of values of the phase mis-
match b, the input energy ¯ow I, the signal shape,
and the map amplitude. Naturally, this is so pro-
vided that the input conditions, the gain ampli-
tude, and the period L make a guiding-center

Fig. 2. Detail of the evolution of the peak amplitudes of the

signals displayed in Fig. 1(a) and (b), over the ®rst ®ve periods

of the map.

Fig. 3. Fourier spectra of the FF and SH signals displayed in

Fig. 1(a) and (b), at n � 40.

Fig. 4. Typical evolution of the integral chirp of the guiding-

center solitons over a period of the map. The plot shows the

evolution from n � 19:8 to n � 20. Conditions: b � 3, ~I � 30,

G1 � 10, G2 � 10, L � 0:2. The input is the corresponding

renormalized stationary soliton solution.
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approach justi®ed [20,21]. Otherwise, e.g., when
the map period L, the gain rate Gm or the input
soliton energy ¯ow I are too large, the guiding-
center evolution fails, yielding a totally new
scenario. In particular, under such conditions
resonance phenomena that make the wave prop-
agation unstable can occur. Fig. 5 shows a typical
example. The plot shows the unstable evolution
of the renormalized solution with ~I � 30 in a
map with G1 � 2, with L � 1.

In conclusion, the evolution equations for guid-
ing-center quadratic solitons propagating in struc-
tures with multi-frequency losses and rapidly
varying periodic gain have been presented. Under
proper conditions, robust multi-color quadratic
soliton formation has been revealed. Results might
®nd applications to reduced models of multi-color
laser systems with intracavity frequency generation,
including self-frequency doubling schemes, oper-
ating in the solitonic regime. Extension of the
analysis to general maps that include the details of
the laser structures, including the pump light±mat-
ter interaction [10±12,24,25], is worth investigating.
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