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Abstract

A great deal of research has been carried out recently in the field of volume gratings recorded in photopolymer

material. The existence of different models that predict the mechanism of hologram formation inside photopolymers,

has increased the possibilities of an accurate understanding of the processes involved inside photopolymers during the

exposure process. A great deal of experimental research has been done, in order to test the theoretical assumptions.

Nonetheless, there is little quantitative data available about higher harmonics components of the refractive index. This

is due to the fact that, apart from a few works, Kogelnik�s coupled wave theory has been used to fit the temporal

evolution of the diffraction efficiency of the first order. The use of this theory does not allow us to obtain information

about higher orders and consequently about the higher harmonics in the refractive index. In this paper we apply an

algorithm based in the rigorous coupled wave theory to reproduce the angular response curves of the different orders

that propagate inside the hologram. This study will be done for attenuated in depth grating profiles. Experimental data

for the angular responses of the first and second orders, centered at first and second on Bragg angular replay conditions,

will be examined. The experimental data provided will demonstrate that attenuation occurs inside the hologram during

the recording step, most probably because of Beer�s Law. The information provided in this work is significant, since

future theoretical models of grating formation in photopolymers should explain this behaviour.
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1. Introduction

The use of the rigorous coupled wave theory

(RCWT) to explain how the electromagnetic field

propagates inside different periodic structures has
been an important topic in recent years. The

method was first described by Moharam and

Gaylord [1] for use in modelling planar dielectric

gratings. However, since then, Moharam, Gaylord

and their co-workers [2–6] have applied the

RCWT analysis to study many different types of

periodic structures. The RCWT has also been used

by Kamiya [7] to study practical volume holo-
grams. In addition the RCWT has been success-

fully applied to the study of diffractive optical

elements [8] and also of photonic band structures

[9].

The first algorithm proposed by Moharam and

Gaylord [1] encountered some numerical difficul-

ties. The retention of high positive eigenvalues of

the matrix of constant coefficients, describing the
differential equations in the periodic structure,

could lead to numerical instabilities. In addition,

the original algorithm demonstrated poor con-

vergence for TM polarization. This fact led to a

series of papers with the aim of eliminating these

difficulties. The same authors formulated a stable

algorithm presenting no numerical instabilities [6].

This new formulation also allows results for high
thickness to be calculated. As will be seen this is an

important fact when applying the RCWT to pho-

topolymer materials.

Parallel to the improvements in the RCWT

method, the application and models of photo-

polymer materials for the recording of high quality

diffraction elements has also seen important de-

velopments. New theoretical models that permit a
deeper understanding of the mechanism of holo-

gram formation in photopolymer materials have

been proposed. Since the polymerisation driven

diffusion (PDD) model proposed by Zhao et al.

[10] several new models have been presented which

give a clearer understanding of the hologram for-

mation mechanisms in photopolymers [10–19]. For

example, the non-local polymerisation driven dif-
fusion (NPDD) model proposed by Sheridan and

co-workers, explains more experimental facts, such

as the cut-off of diffraction efficiency for high
spatial frequencies. All PDD models predict the

existence of higher harmonics in the refractive in-

dex. Nonetheless, the usual method to check their

validity has been the use of the first order two

wave analytical formula derived by Kogelnik [20].

It has estimated in a recent paper by Wu and
Glytsis [21] that the use of Kogelnik�s theory can

lead to worst case errors as high as 30% in the

value of the first harmonic component of the

refractive index, n1, compared to the RCWT

method.

In a previous paper [22] we have applied the

RCWT method to predict the angular response

curve of the efficiency of the second order, in this
way the higher harmonics in the refractive index

recorded in the photopolymer have been obtained.

It is clear, therefore, that the use of electromag-

netic models allowing for more than two orders, to

obtain information of the mechanisms of holo-

gram formation in photopolymers is necessary.

In this work we implement an algorithm based

on the stable formulation of the RCWT proposed
by Moharam et al. [6] to examine the attenuation

of the refractive index distribution inside photo-

polymer materials of high thickness. Apart from

the work by Blaya et al. [23] none of the diffusion

models consider this attenuation of the profile with

thickness. This work incorporated the effects of the

attenuation in the efficiency curves of the first or-

der by using Uchida�s first order two wave ana-
lytical expressions [24]. In this work we extend the

study to higher orders and will present experi-

mental data of angular responses of the efficiency

of the second order to prove that an attenuated

grating profile is stored in the holograms formed in

PVA/acrylamide based photopolymers.
2. Rigorous coupled wave method for periodic

attenuated profiles

2.1. Rigorous coupled wave equations

In this section the differential equations that

govern the behavior of the different diffracted or-

ders propagating inside a transmission diffraction
grating will be derived using the RCWT formalism

[6]. A more general treatment for the analysis of
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single cascaded anisotropic gratings can be found

in [25].

The profile of the dielectric permittivity will

only be supposed to vary in the x and z directions,

therefore a planar diffraction grating is studied.

The study will also be restricted to the case of
unslanted gratings so the dependence of dielectric

permittivity with x, z will be assumed to be in the

form

eðx; zÞ ¼
X
h

ehðzÞ exp½jhKx�; ð1Þ

K is the modulus of the grating vector, which is

related to the period of the interference fringes, K,
as follows

K ¼ 2p=K: ð2Þ
To include the effect of an attenuated grating

profile recorded in the photopolymer material each

Fourier component of the permittivity will be ex-

pressed as a function of z as

ehðzÞ ¼ eh;0 exp½�az�; ð3Þ
where eh;0 are the initial values (at z ¼ 0) of the

harmonic components of the dielectric permittivity.

In order to apply the RCWT to obtain the ef-

ficiency of the different orders we will study a pe-
riodic structure such as that in Fig. 1. All the

periodic structure (medium 2), the hologram, is
Fig. 1. Holographic grating structure.
supposed to be embedded between two media,

medium 1 and medium 3. The hologram will be

divided in G different sub-gratings of thickness dg
each. The total thickness of the hologram, d, can
be obtained as the sum of the thickness of the

different sub-gratings

d ¼
XG
g¼1

dg; ð4Þ

where G is the number of gratings retained.

Each sub-grating will be supposed to have a
periodic dielectric permittivity of the form

egðxÞ ¼
X
h

eg;h exp½jhKx�; ð5Þ

eg;h is the hth Fourier component of the relative

permittivity in the grating region g, which can be

expressed as

eg;h ¼ e0;h exp

2
4� a

Xg

g0¼1

dg0

3
5: ð6Þ

We will also study the case of TE polarization, so

the waves propagate in the xz plane, with the

electric field polarized in the y direction.

If a unit amplitude plane wave impinges onto
the hologram from medium 1, the electric field in

mediums 1 and 3 can be expressed as:

E1 ¼ exp½�jðkx0xþ kz0zÞ�þ
X
i

Ri exp½�jðkxix� kzi1zÞ�;

ð7Þ

E3 ¼
X
i

Ti expf�j½kxixþ kzi3ðz� dÞ�g; ð8Þ

where kx0 ¼ k0e
1=2
1 sin h, kz0 ¼ k0e

1=2
1 cos h, k0 ¼

2p=k0, h is the angle of incidence in medium 1, k0 is
the free-space wavelength, e1 is the relative per-
mittivity of medium 1, Ri is the amplitude of the

ith order backward-diffracted wave and Ti is the

amplitude of the ith order forward-diffracted

wave. kxi is determined from the Floquet condition

kxi ¼ kx0 � iK; ð9Þ

where the z components of the propagation vec-
tors for the ith orders are

kzil ¼ ðk2el � k2 Þ1=2; l ¼ 1; 3: ð10Þ
0 xi
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To calculate the electric and magnetic field inside

medium 2, Maxwell equations must be solved for

each sub-grating. If Eg and Hg stand for the

electric and magnetic field in the sub-grating g.
Maxwell equations in the sub-grating g are:

$� Eg ¼ �jxl0Hg; ð11Þ

$�Hg ¼ jxe0egðx; zÞEg; ð12Þ

e0 and l0 are the vacuum dielectric permittivity

and magnetic permeability, respectively and x is
the angular optical frequency of the electromag-

netic wave in vacuum.

In sub-grating g, the tangential electric (y

component) and magnetic (x component) fields

may be expressed as:

Eg;y ¼
X
i

Sg;yiðzÞ expð�jkxixÞ; ð13Þ

Hg;x ¼ �j
e0
l0

� �1=2 X
i

Ug;xiðzÞ expð�jkxixÞ: ð14Þ

By substituting Eqs. (13) and (14) and Eq. (5) into

Maxwell�s equations the following set of coupled

equations can be derived:

oSg;yi
oz

¼ k0Ug;xi; ð15Þ

oUg;xi

oz
¼ k2xi

k0

� �
Sg;yi � k0

X
p

eg;ði�pÞSg;yp: ð16Þ

The amplitudes Sg;yi and Ug;xi, can be obtained af-

ter solving Eqs. (15) and (16) by using the for-
malism in [6].

Eqs. (15) and (16) can be reduced to a set of

second order coupled wave equations, which in

matrix form can be expressed as

½o2Sg;y=o2ðz0Þ2� ¼ ½Ag�½Sg;y �; ð17Þ
where z0 ¼ k0z.

Sg;y is a column vector with the ith row being

Sg;yi and Ag is a matrix which can be obtained in

the form

Ag ¼ K2
g;x � Eg; ð18Þ

where Eg is the matrix formed by the permittivity

harmonic components, with the i; p element being
equal to eg;ði�pÞ and Kg;x is a diagonal matrix, with

the ith diagonal elements being equal to kg;xi=k0.
The solutions of Eq. (17) are expressed in terms

of the eigenvalues and eigenvectors of matrix Ag:

Sg;yiðzÞ¼
Xn

m¼1

wg;i;m cþg;m exp

2
4

8<
: � k0qg;m z

0
@ �

Xg�1

g0¼1

dg0

1
A
3
5

þ c�g;m exp k0qg;m z

0
@

2
4 �

Xg

g0¼1

dg0

1
A
3
5
9=
;; ð19Þ

Ug;xiðzÞ¼
Xn

m¼1

vg;i;m

8<
:�cþg;m exp

2
4� k0qg;m z

0
@ �

Xg�1

g0¼1

dg0

1
A
3
5

þ c�g;m exp k0qg;m z

0
@

2
4 �

Xg

g0¼1

dg0

1
A
3
5
9=
;: ð20Þ

If Wg is the matrix composed of the eigenvectors of

matrix Ag, Qg is a diagonal matrix composed of the

positive square root of the eigenvalues of the ma-
trix Ag and Vg is the matrix Vg ¼ WgQg. The

quantities wg;i;m and vg;i;m represent the ith row mth

column elements of matrixes Wg and Vg, respec-
tively, whereas qg;m is the mth element in the di-

agonal of matrix Qg.

In order to obtain the values of the 2� N ar-

bitrary constants in each subgrating, where N is

the number of orders retained, the boundary
conditions for the electric and magnetic field must

be imposed:

1. At the first boundary between the first medium

and the first sub-grating; z ¼ 0; Phase matching

tangential E gives

di0 þ Ri ¼
Xn

m¼1

wg;i;m

� ½cþ1;m þ c�1;m expð�k0qg;md1Þ�; ð21Þ

and for tangential H:

jdi0½kx0 � k1;ziRi�=k0

¼
Xn

m¼1

v1;i;m½cþ1;m � c�1;m expð�k0q1;md1Þ�: ð22Þ

2. At the boundaries between two different sub-
gratings (interface ðg � 1Þ � g), z ¼

Pg�1

g0¼1 dg0 .
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Tangential E:

Xn

m¼1

wg�1;i;m½cþg�1;m expð�k0qg;mdg�1Þ þ c�g�1;m�

¼
Xn

m¼1

wg;i;m½cþg;m þ c�g;m expð�k0qg;mdg�1Þ�:

ð23Þ

Tangential H:

Xn

m¼1

vg�1;i;m½cþg�1;m expð�k0qg;mdg�1Þ � c�g�1;m�

¼
Xn

m¼1

vg;i;m½cþg;m � c�g;m expð�k0qg;mdg�1Þ�:

ð24Þ

3. Finally phase matching E and H at the last

boundary between the grating structure (me-

dium 2) and medium 3; z ¼
PG

g0¼1 dg0 ¼ d:

Xn

m¼1

wG;i;m½cþG;m expð�k0qG;mdGÞ þ c�G;m� ¼ Ti;

ð25Þ

Xn

m¼1

vG;i;m½cþG;m expð�k0qg;mdGÞ � c�G;m�

¼ jðk2;zi=k0ÞTi: ð26Þ

The diffraction efficiencies for the different or-

ders are expressed as:

DEri ¼ RiR�
iRe

k1;zi
kz0

� �
; ð27Þ

DEti ¼ TiT �
i Re

k3zi
kz0

� �
: ð28Þ

Eqs. (21)–(26) form a set of equations with an equal

number of unknowns. Therefore the values of co-

efficients c�g;m and cþg;m for each subgrating can be

determined, and from Eq. (25) the values of the
transmitted wave amplitudes in medium can also be

calculated. Nonetheless, if typical inversion matrix

algorithms are used to solve the set of Eqs. (21)–(26)

of constant coefficients, numerical unstabilities

emerge as a consequence of zero elements in theEqs.

(21)–(26) due to high positive eigenvalues. There-

fore, in the next section,wepropose anothermethod
to solve the problem only taking into account the

transmitted waves inside the periodic medium.
2.2. Method of solution based on transmitted waves

through the grating structure

The basis of the method consists in supposing

that each sub-grating can be studied independently,

applying the RCWTmethod to each and neglecting

all reflected orders, the transmitted waves gener-

ated after passing each sub-grating enter in the next

sub-grating. Thus, the possible reflected waves

coming back to a grating due to the next one are
disregarded. It is important to notice that this is a

quite good approximation for volume unslanted

gratings assuming there are no abrupt changes of

refractive index inside the grating, which is ac-

ceptable in the case we are studying. It should be

said that the method proposed was tested with the

RCWT method (no attenuation assumed) with

three, five and seven orders, also 3, 5 and 7 layers
were used, and the results were consistent.

The electric field incident on subgrating g can

be expressed as

Eg�1 ¼
X
i

Tg�1;i exp

8<
:� j kxix

2
4 þ kgzi z

0
@ �

Xg�1

g0¼1

dg0

1
A
3
5
9=
;;

ð29Þ

while the electric field that emerges from grating g

is

Eg ¼
X
i

Tg;i exp

8<
:� j kxix

2
4 þ kgzi z

0
@ �

Xg

g0¼1

dg0

1
A
3
5
9=
;:

ð30Þ
Now matching the tangential components of the
electric field at z ¼

Pg�1

g0¼1 dg0 gives

Tg�1;i ¼
Xn

m¼1

wg;i;m½cþg;m þ c�g;m expð�k0qg;mdg�1Þ�:

ð31Þ
At the interface z ¼

Pg
g0¼1 dg0

Tangential E:

Xn

m¼1

wg;i;m½cþg;m expð�k0qg;mdgÞ þ c�g;m� ¼ Tg;i: ð32Þ
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Tangential H:

Xn

m¼1

vg;i;m½cþg;m expð�k0qg;mdgÞ � c�g;m�

¼ jðkgþ1;zi=k0ÞTg;i; ð33Þ

where

kg;zi ¼ ðk20eg;0 � k2xiÞ
1=2

: ð34Þ
The algorithm used will be described as follows:

1. c�1;m and cþ1;m are calculated in the first subgrat-

ing, g ¼ 1:

By eliminating Ri from Eqs. (21) and (22) the

following equation in terms of the 2� N unknown

constants c�1;m and cþ1;m in the first sub-grating can

be obtained

jdi0½kx0 þ k1;zi�=k0

¼
Xn

m¼1

½v1;i;m þ jðk1;zi=k0Þw1;i;m�cþ1;m

þ ½�v1;i;m þ jðk1;zi=k0Þw1;i;m�c�1;m
� expð�k0q1;md1Þ�: ð35Þ

Also by eliminating T1;i from Eqs. (32) and (33)

the following equation can be obtained

0 ¼
Xn

m¼1

½�v1;i;m þ jðk1;zi=k0Þw1;i;m�cþ1;m expð�k0q1;md1Þ

þ ½v1;i;m þ jðk1;zi=k0Þw1;i;m�c�1;m�: ð36Þ

Eqs. (35) and (36) form a set of 2� N equations
with 2� N unknowns and the values of c�1;m and

cþ1;m are calculated. By using Eq. (32) the values of

T1;i are calculated.

2. Once the values of T1;i are known, these can be

used in Eq. (31). With the aid of Eqs. (32) and

(33) the values of c�2;m and cþ2;m can also be calcu-

lated and finally with the aid of Eq. (32), the

values of T2;i are calculated.
3. The procedure of step 2 is repeated for the dif-

ferent subgratings and finally with the aid of

Eq. (26) the values of Ti obtained.
3. Numerical results

In this section, numerical results for the angular
responses of the different diffracted orders that
propagate in holograms with attenuated profiles

are presented. To make the theoretical simulations

a gratings with a spatial frequency of 500 lines/mm

was studied. In order to make the theoretical sim-

ulations as realistic as possible the grating was as-

sumed to be embedded between air and glass. The
average refractive indices chosen for the theoretical

simulations were: na ¼ 1, np ¼ 1:59 and nv ¼ 1:53
for air, polymer and glass, respectively. The

wavelength used in the simulations was of 633 nm

in air. Since we were interested in diffraction effi-

ciencies measured in air the calculated diffraction

efficiencies were multiplied by appropriated Fres-

nel coefficients in order to take into account the
interface glass–air, so the diffraction efficiencies

measured in air were finally calculated. The num-

ber of orders retained in the calculations was of 21:

0, � 1, � 2, � 3,. . ., although it is important to say

that there were no difference observed if only seven

orders are used for the thickness used in the sim-

ulations, 80 lm. For such high thickness also the

RCWT method for a grating without attenuation
was proved to converge rapidly for a few orders

assumed. The study was also done for the different

Bragg conditions, and the angular responses of the

efficiency of the different orders centered at each ith

on-Bragg replay angular condition were calculated.

In order to find the angles of the different orders

the so called impact parameter, P , was used [26].

The impact parameter, P , describes whether the
hologram is reconstructed in the first, second,

third, etc., on-Bragg replay angle condition, P
taking the values 1, 2, 3, etc. In the unslanted case

the impact parameter is defined as

P ¼ 2b
K

sinðh0Þ; ð37Þ

where b is the propagation constant inside the

medium and h0 is the angle of the incidence wave
inside the medium.

It is common in holography to express the

profile recorded in the grating in terms of the re-

fractive index. For this study we suppose that a

profile of the form

nðzÞ ¼ n0 þ n1ðzÞ cos½Kx� þ n2ðzÞ cos½2Kx�
þ n3ðzÞ cos½3Kx�; ð38Þ

was stored in the grating, where
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niðzÞ ¼ ni;0 expð�azÞ for i ¼ 1; 2; 3: ð39Þ
It is easy to relate the harmonic components of

the refractive index to the Fourier components of

the dielectric permittivity of Eq. (1), provided that

n1 � n0.In this case

e�i ¼ n0ni for i ¼ 1; 2; 3: ð40Þ
Fig. 2 shows the efficiencies of the ith orders for
i ¼ 0, � 1, � 2 and )3 as a function of the angle in

air for different values of a and for an unslanted

transmission diffraction grating of spatial fre-

quency 500 lines/mm. All the angular responses

are centered at the first on-Bragg replay angular

condition (P ¼ 1). The values used in the theoret-

ical calculations were a thickness of 80 lm and the

amplitudes of the three harmonic components of
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Fig. 2. Efficiency of orders: 0, � 1, � 2, )3 as a function of the angle,

values of the attenuation constant a: 0.00, 0.01, 0.02 lm�1, for a spa
the refractive index were: n1;0 ¼ 0:004, n2;0 ¼ n1;0=
8, n3;0 ¼ n1;0=20. These values were assumed for all

the theoretical diffraction gratings studied pre-

sented here. The reason of using this value of n2;0
was in that it has been recently estimated [22] that
the ratio between the second and first harmonic

components of the refractive index of n2=n1 � 7 is

stored in a PVA/acrylamide photopolymer. In all

the cases it is clear that the effect of an attenuated

profile is to decrease the efficiencies of the different

orders propagating in the hologram. An attenua-

tion of the lateral lobes to the main one is also

observed in the case of the first and zero order.
This can be observed more clearly in Fig. 3 where

the efficiency of the first order as a function of the

angle of incidence is presented, the efficiency is
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shown in logarithm scale. The effect of the atten-

uation is to smooth the diffraction efficiency curve.

This effect is well-known, Uchida for instance [24],

explained it using analytical solutions of the dif-

fraction efficiency of the first order obtained from
a two coupled wave method.

Fig. 4 shows the efficiencies of the ith orders for

i ¼ 0, � 1, � 2, )3 as a function of the angle in air

for different values of a and for a transmission

diffraction grating with a spatial frequency of 500

lines/mm. The angular responses centered at the

second Bragg angular replay condition (P ¼ 2).

Fig. 5 shows the efficiency of the second order in
logarithmic scale as a function of the angle of in-
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cidence. Again, the effect of the attenuation in the

different harmonic components of the refractive

index was to smooth the off-Bragg curve.

In Fig. 6 the efficiencies of the ith orders for i ¼ 0,

� 1, � 2, )3 are represented as a function of the

angle in air for different values of a and for a
transmission diffraction grating with a spatial fre-

quency of 500 lines/mm.The angular responseswere

centered at the third Bragg angular replay condition

(P ¼ 3). Fig. 7 presents the efficiency of the third

order in logarithm scale. Clearly the same effects

observed in previous cases, is observed. Nonethe-

less, there exist a higher number of lateral lobes to

the main one for the efficiency of the third order if
compared to the efficiency of the first order. This is

due to the fact that the angular selectivity is reduced
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whenever the angular responses are centered at

higher Bragg angular replay conditions.
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Fig. 8. Efficiency of order +1 as a function of the angle, cen-

tered at first on-Bragg angular replay condition a transmission

grating recorded on PVA/acrylamide photopolymer with a

spatial frequency of 1125 lines/mm and a thickness of 68 lm.

The number of layers was 50.
4. Experimental results

In this section we will present the experimental

results observed in PVA/acrylamide based photo-

polymers. The holograms were recorded in PVA/

acrylamide photopolymer material using an Argon

laser of wavelength 514 nm. The intensity was of 6
mW/cm2. The beams impinged on the material

symmetric to the normal to the recording material,

with a beam ratio of 1:1, so unslanted transmission

gratings were recorded with V ¼ 1. The gratings

were recorded with two different spatial frequen-

cies: 545 and 1125 lines/mm. The thickness of the

holograms was varied, so as to observe the effects

of the attenuation for varying thickness gratings.
To prepare the material a method similar to that

described in other papers was used [27–29]. A

polymerisation solution was prepared using poly-

vinylalcohol 18-88 (PVA) provided by Fluka as a

binder, acrylamide (AA) as monomer and yel-

lowish eosin as dye.

In order to obtain the attenuated refractive in-

dex profile we firstly obtained the refractive index
modulation as if the grating did not have any at-

tenuation, n1eff

n1eff ¼ arcsin½ðge=ðge þ teÞÞ1=2�
k cos h0

pd
; ð41Þ
where ge and te are the experimentally measured

efficiencies of the first and zero order, respectively.

The value of ge was normalized by the sum (geteÞ in
order to correct for losses during reconstruction.

The first order of the refractive index obtained
by this way can be considered as an average over

the entire thickness as

n1eff ¼
1

d

Z d

0

n1;0 expð�azÞdz: ð42Þ

So finally it is easy to obtain the value of n1;0
related to the values of a and the effective first

order of the refractive index n1eff

n1;0 ¼ n1eff
ad

1� expð�adÞ : ð43Þ

Fig. 8 shows the efficiency of the first order as a

function of the reconstruction angle, centered at

the first on-Bragg angular replay condition for a

transmission diffraction grating with a spatial fre-

quency of 1125 lines/mm. The parameters used for

the theoretical simulations of Figs. 8–11 are pre-

sented in Table 1. The dots represent the experi-

mental data, whereas the continuous line
represents the theoretical simulation. As noted in

Section 3 the effect of an attenuated grating is to

smooth the off-Bragg responses, in particular the

adjacent lobes to the main one are slightly raised if

compared to a typical simulation for the diffrac-

tion efficiency without attenuation in the refractive

index profile. This effect is more critical in Fig. 9



0.000

0.005

0.010

0.015

17.0 18.0 19.0 20.0 21.0 22.0 23.0
angle (degrees)

ef
fic

ie
nc

y 
of

 o
rd

er
 +

2

experimental

theoretical

Fig. 10. Efficiency of order +2 as a function of the angle,

centered at first on-Bragg angular replay condition a trans-

mission grating recorded on PVA/acrylamide photopolymer

with a spatial frequency of 545 lines/mm and a thickness of 117

lm. The number of layers was 50.
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Fig. 11. Efficiency of order +2 as a function of the angle,

centered at first on-Bragg angular replay condition a trans-

mission grating recorded on PVA/acrylamide photopolymer

with a spatial frequency of 545 lines/mm and a thickness of 160

lm. The number of layers was 50.

Table 1

Values of parameters a, n1;0, n2;0, d used in the theoretical

simulations for transmission diffraction gratings recorded on

PVA/acrylamide photopolymers

Fig. 8 Fig. 9 Fig. 10 Fig. 11

n1;0 0.0062 0.0013 0.0037 0.0031

n2;0 0 0 0.0006 0.0006

d ðlm) 68 750 117 160

a ðlm�1) 0.020 0.005 0.018 0.016
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Fig. 9. Efficiency of order +1 as a function of the angle, cen-

tered at first on-Bragg angular replay condition a transmission

grating recorded on PVA/acrylamide photopolymer with a

spatial frequency of 1125 lines/mm and a thickness of 750 lm.

The number of layers was 70.
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where the efficiency of the first order as a function

of the reconstruction angle, centered at the first

on-Bragg replay angle condition is presented. The

grating presented in this figure has the same spatial

frequency as that of Fig. 8, but a higher thickness.
The thickness of this grating was of 750 lm. The

effect of an attenuated grating for this high thick-

ness grating was a clear smoothing of the off-Bragg

response curve, so the lateral sidelobe nulls (ze-

roes) have practically disappeared.

Figs. 10 and 11 present the efficiency of the

second order as a function of the reconstruction

angle for two diffraction gratings recorded with a
spatial frequency of 545 lines/mm. The angular

response was centered at the second on-Bragg re-

play angular condition. The gratings have different

thickness, that of Fig. 10 presented a thickness of
117 lm, whereas the diffraction grating of Fig. 11

presented a higher thickness, 160 lm. In both cases

there is good agreement between the theory and

the experiment. It is also interesting to comment

that in both cases a second harmonic component

of the refractive index was stored in the hologram.

The ratio of the second to the first harmonic

component of the refractive index was found to be
of �1/7 in both cases.
5. Conclusions

The effects of an attenuated grating profile on

the angular responses of the efficiency of the dif-
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ferent orders that propagate inside the hologram

have been presented. In general the smoothing in

the off-Bragg response curves demonstrated by

Uchida for the first order has also found in the

higher orders. The experimental data presented for

the angular responses of the first and also of the
second order centered at first and second on-Bragg

angular replay condition, demonstrated that an

attenuated refractive index profile is stored in

volume gratings recorded in PVA/acrylamide

photopolymer materials. This attenuation in the

profile must be taken into account in models that

attempt to explain the mechanism of hologram

formation in photopolymer materials.
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