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A novel technique is given and implemented to generate correlated phase screens that are used in the study of
laser propagation through turbulent atmosphere. The method can generate random fields with nonzero
expected values and is applied to simulate equally and arbitrary spaced phase screens. In both cases, it proves to
be very computationally efficient.

1. Introduction

Laser propagation through random media has seen extensive
investigation. It has many important applications in the improvement
of image resolution of telescopes, in industry in welding of metals and
in medicine in laser surgery (see for example [1,11,14,20]). One can
observe the significance in the precision of directing lasers through
random media. To this end, lasers are modeled as electromagnetic
waves whose refractive index become altered as they go through a
medium as a cause of temperature and density fluctuations in the
atmosphere. These alterations in turn change the phase of the waves,
which have promoted the idea of dividing the medium into phase
screens indicating where the phase changes. The screens can be
thought of as two or three dimensional layers or slabs. For more
background on laser propagation through random media we recom-
mend [2,11,12,16].

To generate phase screens, many numerical simulation methods
have been proposed. The classical approach is the Monte Carlo
simulation which creates random arrays of phase values in a grid of
sample points that have the same statistics as the turbulence-induced
atmospheric phase. Here we will use Fourier filtering method, which is
based on the Fast Fourier Transform (FFT) of the process with the
requirement that the process be stationary. Similar to our result, Xiao
and Voelz [21] also applied the Fast Fourier Transform technique to
simulate phase screens. They simulated uncorrelated phase screens to
examine the intensity of laser light as it propagates. In addition, Dieker
and Mandjes used this simulation approach in [4] to compute the
discrete Fourier transform of one dimensional fractional Brownian
motion (fBm). Since fBm does not posses the stationary requirement,
the stationary property of its increments given as white noise is used

instead. For two and three dimensions, [22] gives this method for fBm
using the turning band method, which he claims to be faster and more
accurate than the Fourier filtering method; however, we find the
Fourier filtering method more accessible and easier to implement.
Here we provide details to Fourier filtering technique and apply it to
generate two and three dimensional phase screens correlated by
temperature. Our simulation technique has also been applied to a
stationary Gaussian process in [6] and explained in [14]. We extend the
results of [6] by not requiring the mean of the Gaussian random field to
be zero. Chapter 12 of [15] also uses fast Fourier transform and
provides detailed steps for the simulation of important types of spatial
processes such as Gaussian and Markov random fields, point processes,
spatial Wiener processes and Levy fields. Here we have a similar
situation since the temperature at each point of the phase screen is
assumed to be a stationary Gaussian random field. For more general
simulation approaches for turbulence in random media see direct
numerical simulation and large-eddy simulation in chapters 8 and 9 of
[10]. In addition for other classical numerical simulation methods of
phase screens see [7] and the references within.

Most previous work on the study of phase screens has been on
uncorrelated phase screens. If the distance between phase screens is
sufficiently small then the screens are guaranteed to be correlated.
Intuitively it is clear that the correlation between phase screens
increases as they are placed closer to each other. It is assumed that
in the space between phase screens, the phase does not change. For
examples of results based on uncorrelated phase screens see for
example [5,17,18].

Recently some sources have considered correlated phase screens.
Naeh and Katzir in [8] proposed the Sparse Spectrum Harmonic
Augmentation (SSHA) method, which simulates perfectly correlated
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phase screens in an isotropic three-dimensional media. The method
compresses three-dimensional refractive index media to two-dimen-
sional phase screens and for its implementation one needs the discrete
frequency, amplitude, random phase and vector directions. Also [9]
simulated correlated phase screens by calculating the auto-correlation
(correlation between two points on the same screen) and cross-
correlation (correlation between two points on two different phase
screens) of change in phase. In contrast to our approach they do not
take into account the Markov property of the phase screens. However,
similar to our method they use the Fast Fourier transform to convert
delta-correlated random numbers in the spatial domain to the spectral
domain by using the relation between a phase screen with its spectrum
by the Fourier transform pair,

d (k) = / p(r)e2mrk gy (1a)

p(r) = f ® (k) ek (1b)
where @ (k) is the spectrum of the phase fluctuations and p(r) is the
phase screen at r = (x, y). Their simulated phase screens demonstrate
that the larger pockets of air show more correlation, which is also what
we have observed in our simulated phase screens. For the simulation of
correlated phase screens see also [19]. Here we consider correlated
phase screens based on temperature, where the distance between the
screens is measured as a fraction of the integral length scale and is on
the order of meters.

This article is organized as follows. Section 2 describes our new
approach to Fourier filtering method. The application of this technique
to generate correlated phase screens is given in Section 3. In Section 4,
we analytically examine the effects of Markov property on estimating
temperature at a fixed point on a phase screen along the path, knowing
the temperature at this point on the screen before it. Then in Section 5,
we provide an algorithm based on the new Fourier filtering method
given in Section 2, that can be used to generate phase screens with
Markov property. Section 6 provides a description on our numerical
results along with our figures illustrating our simulations. We conclude
with Section 7 with a summary of our results. All of our findings can be
applied to two and three dimensional phase screens. Without loss of
generality, we focus on three dimensional screens and note that the
results can be easily modified to two dimensional screens without
requiring changes to the techniques.

2. Fourier filtering method

In this section we present a new approach to the Fourier filtering
method. Suppose we have a real-valued stationary isotropic Gaussian
random field X (x) with x = (x, y, z) and domain being a three dimen-
sional finite lattice, denoted as D. In addition, suppose we are given
that for all x € D,

EX) =0, (2a)
EX?) = 6 < 0, (2b)
with autocorrelation,

fr) = EX(®)X ) = EX XX (X — 1)) (20

where x and x’ are two position vectors and Irl = Ix — x’| is the distance
between them. Autocorrelation is a function of Irl, which we assume to
be continuous and positive definite so that by Bochner's theorem (see
Pg. 303 of [13]), its Fourier transform, 7, is real and positive.

By the zero mean assumption on X, we have, for a vector, k in the
Fourier space,

0 = FIEC)](K) = E(FIX1(K) = EX (K)). (3)

As an application of the convolution theorem for Fourier transforms we
have,
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f 7 (Klydx = F[[E(/ X (%)X (x — r)dx)]
D D
- IE(?’(/ X (X)X (x — r)dx)] —EX K)-X (k)
D

)
so that,
EX ®)-X (k)

f (k) =
dX (5)

D

where we have used the Fubini's theorem repeatedly since by applying
Cauchy—Schwartz inequality, we have X (x)X(x —r) € L'. For the
simplicity of notation, we take into account the finite assumption on
D and let u (D)= /D dx < oo be the Lebesgue measure of D.

Since X (x) is a real-valued Gaussian random field, then its Fourier
transform, X (k):=U (k) + iV (k), is also Gaussian and by Cramer's
theorem (see Theorem 6.19 of [3]), U and V are independent
Gaussian random variables. Let U (k) ~ N (4, (k), o£(k)) and
V(K) ~ N (4, (k), 67 (k)). Since by assumption, X has mean zero and
variance, 62 < oo then,

EX (k) =0, (6a)
(k) = p, (k) = 0.

Let 52(k) denote the variance of X (k) then, we have, using the
independence property of U (k) and V (k),

(6b)

ER KX ®) = EQ K + V() = EUK) + EVK) + oK)

+o2(K) = plk) + pu2 k) + 52 (k) = 52(k) 7)
so by Eq. (5) we have,
p(D)F (k) = EX &)X (k) = & (K) ®

giving, X (k) ~ N (0, u((D))f (kD)) + iN (0, u(D)f (kl)) and f being po-
sitive definite makes 7 real and positive assuring that the variance is
real and positive.

Now assume we are given a real-valued Gaussian random field,
X (x) with the same properties as in the previous case with the
exception that [E(X (x)) = g(x), where g is a given real function. With
the same equalities as in (3), we obtain,

EX () = & k). Q)

Using the Gaussian distribution for the Fourier transform of X as in the

previous case, we have g (k) = u,(k) + iu, (k) and by (5) and similar to

),

p(D)f (Kl = EX K)-X (k) = 120 + py (&) + 32 (k) =18 K + 52 (k)

(10$)
so that
X () ~ N (Re(Z (k). u(D)f (KI) — 1g (K)P)
+iN (Im (8 (K)), u(D)f (k) — 1g (K)P)

To confirm the positivity of u (D)f (Kl) — 18 (K)I?, observe that,

g WP = IEX )P = [EUK)) + IEV K)P = EU K) + E(V (k)
<E@K) + EV2(K) = EX KX (K) = p(D)f (Kl) 1n

thus, limiting the choice of g.

3. Generation of temperature values on a fixed phase screen

We apply the Fourier filtering method presented in the previous
section to generate phase screens in a three dimensional temperature
field, denoted as 9. We assume the phase screens to be correlated
based on temperature and the distance between them to be the same.
Let x’ = (x', y') be a fixed point on phase screen at z and x = (x, y) be
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any other point on this screen. Furthermore, denote the temperature at
position x in the screen at point z as 7 (x, z). According to Section 2,
suppose we are given,

E(T X, z) =g, 2) (12a)
E(T(X,2)) - g, 2’ =06"<o0 (12b)
and that the autocorrelation is provided as
E(T(x, )T (. 2) =/ () = f (& = ) + (y = y)? + (2 = 2)?).

(13)

We use the following algorithm to generate a random temperature
field.

1. Take the Fourier transform of the autocorrelation:

FIET x, 2T (X, 2))] = FIf (D] = f (kD) 14
2. Let
Tk =U®K) + iV k) (15)
where
U ~ N (Re (g (k)), max {u(D)f (k) — Ig ®P, 0}), (16a)
V ~ N(Im k), max {u(D)f (Kl — 1g &), 0}). (16b)

3. A random temperature field with the given autocorrelation can be
generated by,

T(x,2) = F'[T &) a”

Hence, knowing the autocorrelation between two points and the
average value, we can generate values for the temperature at any point
in D.

4. Correlated phase screens with Markov property

In this section we investigate the correlation of phase screens based
on temperature, by examining it analytically. The screens can be
thought of as sheets in the two dimensional case and rectangular boxes
having volume in the three dimensional case. We assume the screens to
have equal size arranged with different distance between them in the z
direction. Based on experimental data, the temperature at each point
on a phase screen is Gaussian with possibly nonzero mean. We assume
that the screens have the Markov property so that the temperature at a
screen only depends on the known temperature of the latest phase
screen before it.

Let x’ be a fixed point on the phase screen at z;. Given temperature
T (x/, z;), we estimate the temperature at the fixed point, x’, on a screen
at z;,1, which is further along the z direction by distance Iz;; — z1. To
match the setting of the Fourier filtering method, introduced in the
previous section, we assume that we are given,

ET ', 2)T (X', ziv1)) = f (2ier — 2,

where as required by the method, f is a continuous, positive definite
real function. We determine

(18)

Sfzipr = zih) = E(T (X', 2)T (X', 2ig1))

=EET &, )T &, z4)IT X', 20) = Lz, .., T (X', 25) = 1)
=ET &, )ET &', 20 )IT (X', 20) = L., T (X', 2i) = 1))
=ET &, )ET X, zu)IT (X', 2) = 13)) (19)

where 7, is the temperature at the point x’ on the screen at z; and the

102
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Markov property has been applied. Since e« i DT, z) = 1z = (T (x, 2 for
some real function, h, we obtain

flzip = 2 = BT, 20T (X', zi41) = BT X', 2) (T (X', 7)) (20)

Now based on the given information, the only candidate for 4 (T (x', z;)),
that would not require more assumptions on the temperature, is
h(T (x', z;)) = KT (x', z;) where K is a positive constant. Using Eq.
(20), K = f (Iziz1 — Z)/E(T (%', z;)%), thus, we obtain

_ flzig = zl)

ET X, 20 )IT X', ) = 1) = h(T (X', z)) = 70)

T, z)

(21)

where f(0) = [E(T (x/, z;)*) > 0 and by the positive definite property of
S (zigy = 2D < £(0).

If the distance between each phase screen is constant we can use the
Markov property to find the correlation between all screens. We let this
equal distance be denoted by an integer a > 1. To determine the
correlation between phase screens at z; and z;,, we have,
ET &, z)T (X', Zi+ad))

=ET &, )ET X, 24 IT X, Ziva—1) = p,.1))
=ET &, 2)h(T (X', Ziva-1)))- (22)

Similar to above we pick 2 (T (X', ziya—1)) = KT (X', Ziyq—1) arriving at,

ET &, z2)T X', zi+a)) = KE(T X', 2)T (X', Zita-1))- (23)
Therefore, repeating this process a times yields
E(T ', z)T (X', Zira)) = KET (X', 2))) (24)

which confirms the exponential behavior we have observed in Fig. 1.

5. Generation of correlated phase screens with Markov
property

Here we generate arbitrary spaced phase screens having Markov
property and apply our results from Section 4. Suppose phase screens
are not necessarily equally spaced. Suppose we have (12a) and (12b)
and in addition, assume we are given the autocorrelation function and
the correlation between phase screens at z; and z;_; as,

E(T(x, z)T (%', z))) = f(Ix = x'I), (25a)

WT K, 2)) = ET K, )T, ziog) = 1, ) = L& = a=D

z 70) T (X', zi-1)-

(25b)

1.0 T T T T T T T

0.8

0.6

0.4f

0.2

0.0}

—0.2f

20 25 30 35

r/L

0.5 1.0 1.5 4.0

Fig. 1. Numerically calculated correlation between the phase screen as a function of
integral length scale.
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Fig. 2. Slices of temperature field generated by the algorithm described in Section 3. No wrapping mitigation techniques was utilized. Top left is the first slice. Top right is the second
slice. Bottom left is the difference between the two slices. Bottom right is the numerically calculated correlation between the temperature slices as a function of integral length scale.

To generate correlated phase screens in this setting we follow the
steps below.

1. Take the Fourier transform of the autocorrelation function:

FIET (x, 2)T (X', 2))] = FLf (ieh)] = f (1K) (26)

2. Make the phase screen at z; be dependent on the previous phase
screen, z;:

gk, zp), ifi=0,
hk, z) = fla—ziha
gk, z)) + ———=T (x/, zi—1), else.
10 ] @7
Note that i=0 indicates the first phase screen.
3. Let,
Tk, z)=UKk) + iV (K), (28)
where
U ~ N (Re (h (k, z;)), max {u(D)f (k) — Ih (k, z)I?, 0}),
(29a)
V ~ N(Im(h (k, z;)), max {u(D)f (K — 17 (k, z)2, 0}). (29b)
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4. The phase screen at position z; is obtained by,

FUT (k, 2) = T (x, 2). (30)

5. Repeat steps 2—4 until all phase screens have been generated.
6. Numerical results

We now provide phase screens that we have simulated using the
method described. Figs. 2 and 3 illustrate phase screens generated by
algorithms presented by Sections 3 and 5, respectively, using the three
dimensional spectrum given by [10, p. 232],

5/3+py
] =53k

(31)

where x = \Jk? + k# + k7. The above parameters determine the tem-
perature spectrum and are set as,

kL

J&L)Y? + ¢

E®) = 9§ 7 (i, Jo, ks) P sin hdpd0 = (

e [: integral length scale, here 50 m,

® [z Kolmogorov micro-scale, here 1 mm,

® c;: a positive constant, depending on integral length scale, here
6.78,
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Fig. 3. Sequence of phase screens described in Section 5. Phase screens using the spectrum defined in Eq. (31). No wrapping mitigation techniques was utilized. Top left is the first
phase screen. Top right is the second phase screen. Bottom left is the difference between the phase screens. Bottom right is the numerically calculated correlation between the phase

screens as a function of integral length scale.

® p: a positive constant, determining the power of the three dimen-
sional energy function spectrum and as « — 0, p, = 4,

® =52

® ¢, =0

No wrapping mitigation techniques were utilized. In Figs. 2 and 3, the
phase screens on the top left represent the screen at point z; and the
one on the top right is the screen at z;,;. The difference between the
screens is in bottom left. Correlation between the slices is clear and an
estimate for this correlation is given by,

- 1 NI N N3
fn= N DIDID IR HCTEIEAYAC AT AR
NMMN; 5 j=0 k=0 (32)

where N7, N> and N represent the number of grid points in x, y and z,
respectively. The estimated correlation between slices are plotted
against the integral length scale and are shown in the bottom right of
Figs. 2 and 3.

7. Results

In this article we described a technique for generating temperature
fields with a known correlation function. The traditional method is to
create a correlation matrix and factorize the matrix using the Cholesky
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factorization. The algorithm described here only uses the Fast Fourier
Transform and is computationally faster and requires less memory. We
also presented a method for generating correlated phase screens based
on the Markov property. The new method can also generate random
fields with non-zero and spatial varying mean.
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