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The phase shift errors and the harmonics are the most common types of errors in the phase shifting

interferometry. Although there are many suppression techniques for these two errors, it is hard to

suppress them simultaneously. In this paper the carrier squeezing interferometry is used to solve this

problem, where the data of phase shifting interferograms with linear carrier are re-arranged to acquire

a spatial–temporal fringes image. In the frequency domain of the image the lobes of harmonics and

phase shift errors and the lobe of the phase are separated, so the correct phase can be extracted by

filtering. The algorithm is validated by both simulations and the experiments, with the phase retrieving

accuracy greater than l/400 and l/200 (RMS value), respectively. The spatial uniform phase shift errors

and harmonics can be suppressed by this method, using only four phase shifting interferograms.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

The phase shifting interferometry (PSI) is widely used in
optical testing for its precision, automation and the ability to
obtain the global phase [1]. In the PSI two conditions should be
satisfied to ensure the precision of phase retrieving: (1) the phase
shift values between the interferograms are accurate, and (2) the
interferogram intensity is an ideal sine modulation of the phase.
However, in the actual measurements, the phase shift error is
caused by vibrations and phase shifter distortion, while the non-
sinusoid interferogram intensity is caused by the detector non-
linear, the multi-reflective interferences or the image
saturation [2].

To solve these problems, many error suppression algorithms
are proposed, which can be divided into three classes: (1) In the
error insensitive phase shift algorithms [3–5], the sample weights
of the signal in the phase retrieving calculation are designed to
make them insensitive to some harmonics and the phase shift
error with special form, but usually the orders of phase shift
distortion cannot be greater than two. (2) In the phase shift
calibration algorithms, the inaccurate phase shift values are
considered as the unknowns and solved by iterative [6–8] or
non-iterative [9,10] methods, and then the phase is reconstructed
ll rights reserved.
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by the least square calculation. Various kinds of phase shift errors
can be suppressed in this class of methods, however, the effect of
harmonics cannot be eliminated. (3) In the error compensation
algorithms [11–13], the inaccurate retrieved phase are compen-
sated to get the right one, guided by the specific phase errors
caused by the related error sources (vibrations, for example).
Unfortunately, the harmonics rejection is still unavailable in these
methods. On the other hand, some methods to calibrate or reject
the harmonics of the fringes are proposed [14–16], but they
cannot suppress the phase shift errors at the same time. Con-
sidering the coupling of these two kinds of errors, they should be
suppressed simultaneously while not calibrated one by one.
Therefore, Xu [17] and Hoang [18] proposed two advanced
iterative algorithms, by which the two errors can be suppressed
simultaneously. But in their methods 2pþ1 frames of phase
shifting interferograms are necessary if the pth order harmonic
is needed to reject.

In this paper, the carrier squeezing interferometry (CSI)
algorithm is used to suppress the phase shift error and harmonics
simultaneously to retrieve the accurate phase. CSI is a phase
retrieving algorithm we proposed [19] to retrieve the phase in PSI,
which is a modified algorithm arising from the squeezing inter-
ferometry (SI) algorithm proposed by Servin et al. [20]. Compared
to the SI, all spatial uniform phase shift errors within the
magnitude of 7151 and harmonics can be suppressed well (with
the cost of blurring some information with high frequency), but
its error suppression ability is only demonstrated under the
condition of the simple sinusoid model (without harmonics) in
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our early work. On the other hand, although the harmonics
rejection feature of SI and the analogous methods has been
researched by Servin and Padilla et al. [20,21], the phase shift
errors are not discussed except for the detuning error. That is, the
situation with both phase shift errors and harmonics in the SI–CSI
frame has not been studied. Therefore, in this paper the more
general phase shifting interferograms model with random phase
shift error and non-sinusoid signal is used to analyze the property
of CSI, and its ability to suppress the phase shift errors and
harmonics simultaneously will be validated by theory, simula-
tions and experiments. Different from the algorithms of Xu and
Hoang, only four frames of phase shifting interferograms are
necessary in the CSI and the iterative calculation can be evaded.

1. Principle

Usually a phase shifting interferogram can be written as

smðx,yÞ ¼ b0þb1cos½j x,yð Þþ2pmf 0þrm� ð1Þ

where x and y are the spatial coordinates, the subscript m

represents the mth interferogram, b0 is the background intensity,
b1 is the contrast, j is the unknown phase, rm represents the
phase shift error, f0 is the temporal phase shift frequency (f0¼1/4
for most commercial phase shifting interferometers in the nor-
malized frequency domain coordinate). However, the fringes will
not be sinusoidal as presented by Eq. (1) caused by some factors
in the actual measurements such as the nonlinear response of the
detector, the intensity saturation and multi-reflective interfer-
ences. In these situations, the interferogram is periodic but not
sinusoidal, that is, the high order harmonics exist; and an
interferogram with high order harmonics can be represented by

smðx,yÞ ¼
X1
k ¼ 0

bkfcos k½jðx,yÞþ2pmf 0þrm�g ð2Þ

where bk is the coefficient of the kth harmonics. In the CSI
method, the data of phase shifting interferograms are re-
arranged by row or column to be fused into a frame of spatial–
temporal fringes (STF) which contains not only the spatial phase
information but also the temporal phase shift information. In this
paper the data is re-arranged by column, that is:

s0ðMxþm,yÞ ¼ smðx,yÞ ð3Þ

where M is the amount of the interferograms and

f 0 ¼
1

M
ð4Þ

And the intensity of STF is:

s0ðx0,yÞ ¼
X1
k ¼ 0

bkfcos k½j0ðx0,yÞþ2pf 0x0 þpðx0,yÞ�g ð5Þ

where x0 is the spatial coordinate after extension and the error
term p(x0, y) is given by

pðx0,yÞ ¼
XM�1

m ¼ 0

XN=2�1

n ¼ �N=2

rmdðx0�Mn�m,yÞ ð6Þ

where n represents the nth column in the original interferograms
(with the width of N columns). Moreover, j(x0, y) is the extended
phase of j(x,y) along the x direction, which is

j0 x0

M

� �
int

,y

� �
¼jðx,yÞ ð7Þ

and [ � ]int is the operator to get the integer. In Fig. 1(a) and
(b) one of the phase shifting interferograms and the re-arranged
STF image are given as an example, but the left half of the STF
image is shown in Fig. 1(b) since the width of the whole image is
too large.
Since the phase shift error rm is usually a small value compared
with the phase shift period, the first-order approximation can be
used to get

s0ðx0,yÞ ¼ s0þ
X1
k ¼ 1

sþkþ
X1
k ¼ 1

s�kþ
X1
k ¼ 1

eþkþ
X1
k ¼ 1

e�k ð8Þ

where the background is

s0 ¼ b0 ð9Þ

and the 7kth order of signal is

s7kðx
0,yÞ ¼

bk

2
exp 7 ikð2pf 0x0 þj0Þ

� �
ð10Þ

while the 7kth order of error is

e7kðx
0,yÞ ¼ 8s7kðx

0,yÞ � k
XM�1

m ¼ 0

X1
n ¼ �1

rmdðx0�Mn�m,yÞ ð11Þ

Then we can obtain the frequency spectrum by using spatial
2-D Fourier transform (FT) to Eq. (8), which is written as

Sðf x,f yÞ ¼ S0þ
X1
k ¼ 1

Sþkþ
X1
k ¼ 1

S�kþ
X1
k ¼ 1

Eþkþ
X1
k ¼ 1

E�k ð12Þ

where the background lobe is the FT of Eq. (9):

S0 ¼ b0 � dð0,0Þ ð13Þ

and the 7kth-order lobe of phase is the FT of Eq. (10):

S7k ¼
bk

2
F7kðf x8kf 0,f yÞ ð14Þ

while the 7kth-order lobe of error is the FT of Eq. (11):

E7k ¼
8k

M

XM�1

m ¼ 0

rm

X1
n ¼ �1

expð�i2pmnf 0ÞS7kðf x�nf 0,f yÞ ð15Þ

And in Eq. (14) F7k (fx, fy) is defined by

F7kðf x,f yÞ ¼ FT½expð7 ikj0Þ� ð16Þ

where the operator FT[ � ] represents the Fourier transform.
From Eq. (12) it can be seen that the spectrum of STF is

composed by the background lobe S0, the 7kth phase lobes S7k

and the 7kth error lobes E7k. To reconstruct the phase correctly,
the Sþ1 (or S�1) lobe should be extracted independently, so the
lobes with the potential of overlapping with Sþ1 will be analyzed
as follows. First, there is no overlapping between any two
adjacent lobes of S7k because the distance between them is
always f0 which is a large value (1/4 of the total length of the
frequency domain coordinate for the phase shift interval p/2).
Second, from Eq. (15) we can know that the error spectrum E7k

composed by a series of lobes with the interval of f0 and the
central location of 7kf0, therefore, the error lobes which may
overlap with Sþ1 are

Eþk9n ¼ k�1 ¼
�k

M

XM�1

m ¼ 0

rmexp½�i2pmðk�1Þf 0�Sþk½f x�ðk�1Þf 0,f y�

ð17Þ

and

E�k9n ¼ kþ1 ¼
þk

M

XM�1

m ¼ 0

rmexp½�i2pmðkþ1Þf 0�S�k½f x�ðkþ1Þf 0,f y�

ð18Þ

To evade the overlapping of the phase lobe and error lobe in
CSI method, a linear carrier is introduced in the original phase
shifting interferograms [19], and in the following analysis we will
demonstrate that this condition is still effective when there are
high order harmonics. Assuming that the carrier fc is introduced
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along y direction, then Eq. (14) is changed to

S7k ¼
bk

2
F7kðf x8kf 0,f y8kf cÞ ð19Þ

Correspondingly, Eqs. (17) and (18) are re-written as

Eþk,n ¼ k�1 ¼
�k

M

XM�1

m ¼ 0

rmexp½�i2pmðk�1Þf 0�Sþkðf x,f yÞ ð20Þ

and:

E�k,n ¼ kþ1 ¼
þk

M

XM�1

m ¼ 0

rmexp½�i2pmðkþ1Þf 0�S�k½f x�ðkþ1Þf 0,f y�

ð21Þ
f0
f0

E+1,n=2

S-1+E-1,n=0

fcfc

E-1, n=2

S+1+E+1, n=

E-2, n=2

Fig. 1. The principle of the CSI algorithm. (a) The original interferogram. (b) The STF

spectrum. (d) The fx¼ f0 plane of (c) viewed from the þ fx direction.
The spectrum distribution of STF with the existence of linear
carrier is shown in Fig. 1(c), where there are lots of lobes
distributed at the different locations decided by their parameters
k and n. Since f0 is very large (it equates 1/4 of the whole length
along the fx direction in the frequency domain), the lobes which
have the potential to overlap with Sþ1 are all in the fx¼ f0 plane
as shown in Fig. 1(d). In addition, the amplitude of E7k is a
module of the vector sum, so the inequality

E7k

S71

����
����r kb7k

Mb71

XM�1

m ¼ 0

rmj j ð22Þ

is satisfied. Usually the amplitude of b7k is evidently less than
b71 for kZ2, and rm is a small value compared with 2p, so the
fx

fy

fc

fc

S+1+E+1,n=0
S0

E-1,n=2

Extract it to 

retrieve phase 

fyfc fc

Gaussian filter 

0 

E+2, n=0

(only the left half of the image is shown). (c) The schematic diagram of the STF
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effect of the error lobes E7k to the phase retrieving can be
omitted when kZ2. In other words, although there are many
error lobes caused by high order harmonics in the fx¼ f0 plane,
most of them can be disregarded for their tiny magnitude except
for E71; and these two error lobes can be obtained from Eqs. (20)
and (21) by substituting k¼1:

Eþ1,n ¼ 0 ¼
�1

M

XM�1

m ¼ 0

rmSþ1ðf x,f yÞ ð23Þ

and

E�1,n ¼ þ2 ¼
þ1

M

XM�1

m ¼ 0

rmexpð�i4pmf 0ÞS�1ðf x�2f 0,f yÞ ð24Þ

From Eq. (23) it can be seen that the lobes Eþ1, n¼0 and Sþ1
are at the same location, and the former equates to the later
multiplied by a real number, that is

S0þ1 ¼ Sþ1þEþ1,n ¼ 0 ¼ R1 � Sþ1ðf x,f yÞ ð25Þ

where the real number factor R1 ¼ 1�
PM�1

m ¼ 0 rm=M. Therefore, this
superposition only changes the amplitude of Sþ1 which will not
affect the phase retrieving. On the other hand, E�1, n¼þ2
equates to S�1 multiplied by a real number; hence, its over-
lapping with Sþ1 will result in the phase retrieving error.
However, the distance between E�1, n¼þ2 and Sþ1 is 2fc, so
these two lobes can be separated from each other if the carrier fc

is suitable. Then the phase lobe S0 þ1 can be extracted indepen-
dently by a filter window G(fx, fy) and the phase can be retrieved
by

j0 ¼ tan�1 ImfFT�1
½Sðf x,f yÞ � Gðf x,f yÞ�g

ReImfFT�1
½Sðf x,f yÞ � Gðf x,f yÞ�g

ð26Þ

where FT�1[ � ] represents the inverse Fourier Transform, while
Re[ � ] and Im[ � ] are the operators to get the real part and
imaginary part. The filter used to extract the phase lobe in the
CSI can be the Gaussian lowpass filter, which was demonstrated
useful in the SI method by Servin et al. [20]:

Gðf x,f yÞ ¼ exp �
ðf x�f 0Þ

2

ðMsÞ2
þ
ðf y�f cÞ

2

s2

" #( )
ð27Þ

where s is the parameter to control the bandwidth of the filter
window. Experientially s can be set as N/10 and N is the width or
height of the original interferogram. Using this convenient esti-
mated value of s, the retrieved phase is very close to the one
using the optimal s in most situations.

Finally the extensive phase j0 can be recovered to the original
size by Eq. (7). So the ability of CSI to suppress both the phase
shift errors and the harmonics is demonstrated.
Fig. 2. The difference between the separating of two spectrum lobes with equal

and unequal amplitudes.

Table 1
The necessary carrier in the FT method and CSI method under the different

conditions.

Interferogram conditions Necessary carrier

FT method CSI method

Ideal interferogram fc

With non-uniform background fcþ fa
a 0.9fc

With qth order harmonics (2q�1)fc

a fa is the cutoff frequency of the background component.
2. The carrier condition

In the previous section the principle of the algorithm is
presented, but the necessary linear carrier value is still unknown,
which will be analyzed in this section.

It is well known that to demodulate a single linear carrier
interferogram using the FT method [22], the following carrier
condition should be satisfied to separate S71:

f c 4
1

2p
@f
@y

����
����
max

ð28Þ

where the carrier is along the y direction. It is an evident
conclusion since the two lobes have the same amplitude. How-
ever, the situation is different in CSI where the amplitudes of the
phase lobe S0 þ1 and the error lobe E�1 are different. if the phase
shift errors rm is in the range of 7151 and r0 is considered as zero
(since only the relative phase is measured), the amplitude ratio of
these two lobes is greater than 5.7 with 99.73% probability
through a simple numeric simulation.

Naturally the necessary carrier to separate these two lobes will
be less than the situation of Eq. (28), but its value is decided by
the phase shape. Since only an approximate estimation of the
carrier is needed, we simplify this problem by assuming that the
lobes obey the normal distribution and using only a 1D model. As
shown in Fig. 2, the overlap area (energy) of two Gauss function
with different amplitudes is used to estimate the necessary
carrier. The carrier values fc and fc

0 are the distances between
two lobes with the equal overlap area but unequal amplitude
ratios. The value of fc

0/fc is 0.86 if the overlap area 1% and 0.92 if
the overlap area is 0.1%, so fc

0 ¼0.9fc can be accepted as an
approximated estimation.

However, it is notable that Eq. (28) is only the carrier condition
for the ideal interferogram, that is, the background intensity is
uniform and there is no harmonics. With these noise, the
necessary carrier of FT method will be quite different but they
do not affect CSI method as we have demonstrated in the previous
section. This contrast is shown in Table 1, where it can be seen
that the necessary carrier increases evidently in the FT method for
the non-ideal interferograms but does not change in the CSI
method. For example, if there are 2nd-order harmonics in the
interferogram, the carrier greater than three times of fc is
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necessary to retrieve the phase by FT method (considering the
non-uniform background). This rigorous demanding usually
results in a very large tilt of the reference mirror in the
interferometer, which makes the retrace error increase signifi-
cantly. But using CSI method the necessary carrier is always 0.9fc,
which is an advantage compared with the FT method.
In this section the carrier condition of the CSI method is
discussed semi-quantitatively, and the fact is validated that the
necessary carrier of CSI is smaller than that of FT method (slightly
for the ideal interferogram but significantly for the interferogram
with non-uniform background and harmonics). Theoretically, we
can increase the linear carrier for the object with more high
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frequency components to satisfy the carrier condition so the
maximum phase gradient is only limited by the Nyquist fre-
quency, which is similar as the FT method based on the linear
carrier. However, there will be a significant retrace error if the tilt
is too large. In some references, such as the Zygo ‘‘FlashPhase’’
application manual, there are often 40 fringes approximately in
the interferogram if the linear carrier is necessary. That means the
maximum phase gradient should be smaller than 2.28�10�4 (or
0.36 l/mm when l¼0.6328 mm), so the CSI method is still not
suitable for demodulating the phase containing numerous high
frequency components such as the step surface.
3. Simulations and experiments

The simulations are executed for verifying the algorithm. The
ideal phase step of the simulated interferograms is p/2, and the
non-uniform intensity distribution in each interferogram is
assumed as the Gauss Function so that the contrast of the
aperture edge is about half of the central one as shown in
Fig. 3(a). There are both the phase shift errors (distributed in
the range of 7151) and high order harmonics (with the coeffi-
cients b2¼0.3b1 and b3¼0.3b2) in the simulated interferograms,
where the assumptions of the errors amplitudes are based on the
two factors: (1) Generally speaking, most errors in the actual
measurements are at this level; (2) The error suppression ability
of the CSI algorithm trends to be decreased when the errors
exceed this range. The object phase is set to contain the primary
aberrations with the random coefficients, but their peak to valley
value is set to be smaller than 1l. The primary aberrations are
defined by the Kingslake polynomial [2]:

Wðx,yÞ ¼ Aðx2þy2Þ
2
þByðx2þy2ÞþCðx2�y2ÞþDðx2þy2Þ ð29Þ

where A–D are the coefficients of spherical aberration, coma,
astigmatism and defocusing. The interferograms are processed by
the CSI algorithm, the Schmit 6A algorithm (well known for its
harmonics suppression ability) [3] and the Wang’s advanced
iterative algorithm (AIA, insensitive to the phase shift errors) [6]
for contrast. Temporally there is no random noise in the inter-
ferogram since the Schmit 6A algorithm and Wang’s AIA are not
insensitive to it. As a intermediate result, the frequency spectrum
of the STF is shown in Fig. 3(c), where the logarithmic amplitude
of the spectrum is used to display the small lobes clearly. In this
figure, we can see that the phase lobe can be extracted indepen-
dently to retrieve the phase, which is the same as the conclusion
of Section 2.

The phase error of one column is shown in Fig. 3(b), where the
amplitudes of phase errors obtained by Schmit 6A algorithm and
Wang’s AIA are almost the same while the CSI algorithm has a
much less one, because the former two algorithm can suppress
only one kind of error while CSI suppresses two kinds of errors
simultaneously. Totally 50 groups of simulation results are
obtained, where the RMS values of phase retrieving error of the
three algorithm are shown in Fig. 3(c). It can be seen that the
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phase errors of CSI are always less than 0.004l and the mean error
is 0.0017l, while the mean errors of Schmit 6A algorithm and
Wang’s AIA are 0.0137l, and 0.0132l, respectively.

With the existence of random noise, the error suppression
ability of CSI is more powerful compared with the other two
algorithms for its inherited low-pass filtering characteristic. As
shown in Fig. 3(e), the results of CSI keep high accuracy (mean
value of phase error RMS is 0.0026l) for the interferograms with
the SNR of 10:1, while the phase retrieving errors of other two
algorithms are much worse than the error-free conditions with
the mean error of 0.039l. Although the results of Schmit 6A
algorithm and Wang’s AIA can also be improved by an extra low-
pass filtering to overcome the random noise, the calculation of CSI
is more direct.

In the experiments, first a flat mirror with the aperture of
100 mm is tested by a Zygo GPI-XP interferometer to capture the
phase shifting interferograms, where the intensity saturation is
introduced to generate harmonics. Besides, the air compressor
used for the vibration–isolation supports of the optical table is
turned off so that the vibration can be introduced to generate the
phase shift error. The Schmit 6A algorithm, Wang’s AIA and our
CSI algorithm are used to process these interferograms whose
results are compared with the standard phase obtained under the
normal measurement conditions. One of the captured interfero-
grams is shown in Fig. 4(a), and the retrieved phase by CSI is
shown in Fig. 4(b). To compare the performances of the three
algorithms clearly, the central columns of their demodulated
errors are shown in Fig. 4(c), where it can be seen that the error
amplitude of CSI is significantly less than other two algorithms
and the error RMS values of the three algorithms are 0.0036l,
0.0103l and 0.0109l, respectively. Here the data within the 98%
aperture are used to calculate the RMS value considering the well
known ‘‘edge error’’ of all phase retrieving method based on the
FT (containing the CSI). The relative errors suppression ability of
the CSI compared with other two algorithms seems to be weaker
than that in the simulations. It may be caused by the errors that
cannot be suppressed by all of the three algorithms, such as the
space non-uniform phase shift errors. For example, if this kind of
errors results in the phase error RMS value of 0.0025l, the two
errors suppressed by the three algorithms are 0.0011l, 0.0078l
and 0.0084l, respectively; and in this case the error suppression
ability of CSI compared with other two algorithms is very similar
to that of simulations.

Second, a concave mirror with the aperture of 130 mm and the
radius of 630 mm is tested using the 4D phaseCam2000 dynamic
interferometer in the natural vibration environment, which is
able to capture the phase shifting interferograms simultaneously.
The interferograms are captured continuously, so the phase
shifting interferograms with p/2 phase shift at different time
(i.e., temporal phase shifting interferograms) also can be obtained.
These interferograms are set to be over gained so that they
contain both the phase shift errors and the harmonics where
one of them is shown in Fig. 5(a). The vibration-immune phase
are retrieved from the simultaneous phase shifting interfero-
grams as the standard one, and the temporal phase shifting
interferograms with over contrast are demodulated by the three
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algorithms to compare their error suppression ability. The demo-
dulated phase by CSI is presented in Fig. 5(b) where it can be seen
that the phase is more varying than the previous experiment, and
the error RMS values of the three algorithms are 0.0173l, 0.0161l
and 0.0042l, respectively. The central columns of the demodula-
tion errors of the three algorithms are also shown in Fig. 5(c),
which is similar as the former experiment. However, it is notable
that the linear carrier in the interferogram is greater this time,
since the phase is more varying. If the carrier is the same as the
previous experiment (about 12 fringes in the interferogram), the
demodulated error (RMS value) will be 0.116l since the error lobe
and the phase lobe overlap in the frequency domain.

4. Conclusion

In this paper the carrier squeezing interferometry (CSI) algo-
rithm is proposed to simultaneously suppress the phase errors in
the PSI arising from the inaccurate phase shifts and the harmonics.
It is suitable for various phase shift errors (such as the vibrations,
the phase shifter distortions and so on) as long as they are spatial
uniform since the actual phase shifts are considered as the random
values in the algorithm. Besides, any order of harmonics can be
rejected if its coefficient bk is not too large (it cannot be close to b1

or even greater), which can be satisfied in most cases. An
advantage of this method is that only four phase shifting inter-
ferograms are used. On the other hand, this method is not suitable
for the phase with much component of high frequency (such as the
step) because of its inherited low passing filtering.
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