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We extend recent theoretical studies of entanglement dynamics in the presence of environmental noise,
following the long-time interest of Krzysztof Wodkiewicz in the effects of stochastic models of noise on
quantum optical coherences. We investigate the quantum entanglement dynamics of two spins in the
presence of classical Ornstein–Uhlenbeck noise, obtaining exact solutions for evolution dynamics. We
consider how entanglement can be affected by non-Markovian noise, and discuss several limiting cases.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction cently, there is growing interest in the non-Markovian entangle-
A quantum system of interest may be large or small, but its
background, called an environment, is almost always complex,
and is often represented by a bath of bosons or fermions, or by
classical random fields. In all these cases, system dynamics is de-
scribed by a quantum master equation that governs the evolution
of the reduced density matrix of the system. In the current decade,
decoherence dynamics of entangled quantum systems under the
influence of environmental noises has been extensively discussed
in different contexts involving atoms, ions, photons, quantum dots,
and Josephson junctions, to name several. This is all related to new
regimes of information processing, such as quantum cryptography
and quantum computation [1]. An important category of such re-
search has treated the fascinating domain where entanglement of
qubits evolves even though the qubits do not interact, even indi-
rectly. An example is sketched in Fig. 1 and we restrict our atten-
tion here to this category.

In experimental environments an entangled system may be ex-
posed to vacuum noise, phase noise, thermal noise, and various
classical noises, as well as mixed combinations of noises. A number
of idealized models have provided new insights by allowing entan-
glement evolution to be followed by solving the appropriate quan-
tum master equation (see [2,3], as well as [4–9]). Most research on
entanglement dynamics has been focused on ambient noises from
environments that obey the Markov (no memory) assumption. Re-
ll rights reserved.
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ment dynamics for both discrete and continuous quantum
systems (see [10–15] and the overview in [9]).

In truth every environment is non-Markovian. Non-Markovian
noise was a repeated theme in the research of Krzysztof Wodkie-
wicz [16–27], and we present our findings as a contribution to
his scientific memory.

As far as we know there are no fully systematic investigations of
non-Markovian noises or of their effect on the coherence dynamics
of non-interacting spin systems. In particular, a perturbative the-
ory leading to the Markov approximation is still lacking. The pur-
pose of this paper is to present a study of such problems in the
simplest form. We will consider classical non-Markovian noises,
modelling them as so-called Ornstein–Uhlenbeck processes, and
derive the consequences for entanglement dynamics. This can be
considered an extension of our earlier note on entanglement sud-
den death (ESD) under classical Markov noises [28].
2. The Kubo–Anderson model extended to two qubits

We consider an entangled pair of spins both of which are
subject to frequency fluctuations that are random [29]. We adopt
a model for these fluctuations that treats them as caused by noisy
environments described by Ornstein–Uhlenbeck processes. This
well-known Gaussian noise model is non-Markovian in the general
case but has a well-defined Markov limit. To focus exclusively on
the effects on the entanglement of the spins as it arises from the
noise, we assume the spins to be affected separately by separate
environments, and not to interact with each other in any way,
especially not through the noises. Thus the spins could be, for
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Fig. 1. Sketch of remote qubits in a quantum memory net, where the dashed lines
indicate entanglement, but not interaction.
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example, remote components of a quantum memory net (as in
Fig. 1) under steady attack by weak local noise. This compromises
the preservation of their entanglement.

The Hamiltonian of the two-spin system can then be formally
written as (we set �h ¼ 1):

HtotðtÞ ¼
XAðtÞ

2
rA

z þ
XBðtÞ

2
rB

z ; ð1Þ

where XAðtÞ and XBðtÞ are the independent fluctuations of the spin
transition frequencies (level spacings). They have the mean value
properties

M½XiðtÞ� ¼ 0; ð2Þ
M½XiðtÞXiðsÞ� ¼ bðt � sÞ

¼ Cic
2

e�cjt�sj; i ¼ A;B; ð3Þ

where M½�� stands for the statistical mean over the noises XAðtÞ and
XBðtÞ. Note that c is the noise bandwidth, and c�1 ¼ sc defines the
environment’s finite correlation time of the noise. For simplicity,
we will take the noise properties to be the same for A and B
(e.g., CA ¼ CB � C), although independent. In the limit c!1,
Ornstein–Uhlenbeck noise reduces to the well-known Markov case:

bðt; sÞ ¼ Cdðt � sÞ: ð4Þ

For the total system described by the Hamiltonian (1), the stochas-
tic Schrödinger equation is given by

i
d
dt
jwðtÞi ¼ HtotðtÞjwðtÞi: ð5Þ

The explicit solution for the stochastic Schrodinger equation can be
readily obtained in terms of a stochastic unitary operator:

jwðtÞi ¼ Uðt;XA;XBÞjwð0Þi; ð6Þ

where the stochastic propagator Uðt;XA;XBÞ is given by

Uðt;XA;XBÞ ¼ e�i
R t

0
ds XAðsÞrA

zþXBðsÞrB
zð Þ: ð7Þ

The reduced density matrix for spins A and B is then obtained from
the statistical mean

qðtÞ ¼ M½jwðtÞihwðtÞj�: ð8Þ

The master equation for the reduced density matrix for the two-
spin system in a non-Markovian regime can be readily derived
from the stochastic Schrödinger equation [30]:
dq
dt
¼ GðtÞ

4
2q� rA

z qrA
z � rB

zqrB
z

� �
; ð9Þ

where

GðtÞ ¼
Z t

0
bðt � sÞds ¼ C

2
ð1� e�ctÞ: ð10Þ

The memory information of the environmental noises is encoded in
the time-dependent coefficient GðtÞ where sc ¼ 1=c characterizes
the environmental memory time. In the Markov limit
sc ! 0 ðc!1Þ, when GðtÞ ! C=2, Eq. (9) reduces to the well-
known Markov master equation in the presence of dephasing
noises.

3. Exact solutions for quantum evolution

Solutions of master equations for the noisy evolution of two-
spin density matrices in terms of the Kraus operator-sum-repre-
sentation have been given before (see, for example, [28,31,32]).
In many cases of physical interest, the Kraus representation allows
a transparent analysis of entanglement decoherence without
invoking the explicit forms of the initial conditions. In what fol-
lows, we will use the fact that for any two-spin initial state q (pure
or mixed), the evolution of the reduced density matrix can be writ-
ten compactly as

qðtÞ ¼
X
l

KlðtÞqð0ÞKylðtÞ; ð11Þ

where the Kraus operators Kl satisfy
P

lKylKl ¼ 1 for all t.
In order to derive the desired Kraus operators for the reduced

density matrix we begin by noting that the solution for just spin
A can be written:

jwðtÞi ¼ UðXA; tÞjwð0Þi; ð12Þ

where

UðXA; tÞ ¼ exp �iFðtÞrz½ � ð13Þ

with the stochastic process FðtÞ ¼
R t

0 dsXAðsÞ. Then our first task is to
express the stochastic density operator qst ¼ jwðtÞihwðtÞj in the
Kraus-like operator representation form:

qstðtÞ ¼ exp �iFðtÞrz½ �qð0Þ exp iFðtÞrz½ �; ð14Þ

where qð0Þ ¼ jwð0Þihwð0Þj is the initial state of the system, which is
assumed to be independent of the noise. The desired Kraus opera-
tors for the spin are obtained by taking a statistical mean over the
noise XAðtÞ for qubit A and are given by

E1 ¼
pAðtÞ 0

0 1

� �
; E2 ¼

qAðtÞ 0
0 0

� �
; ð15Þ

where the time-dependent Kraus matrix elements are

qAðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2

AðtÞ
q

; and ð16Þ
pAðtÞ ¼ exp½�f ðtÞ�; with ð17Þ

f ðtÞ �
Z t

0
GðsÞds ¼ C

2
t þ 1

c
ðe�ct � 1Þ

� �
; ð18Þ

and similar expressions for pBðtÞ and qBðtÞ. The two-qubit case given
here can be easily applied to N non-interacting qubits, an extension
we reserve for later attention.

Since our two spins are evolving independently, we have the
following four Kraus operators in terms of the tensor products of
E1 and E2:
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K1 ¼
pA 0
0 1

� �
�

pB 0
0 1

� �
; ð19Þ

K2 ¼
pA 0
0 1

� �
�

qB 0
0 0

� �
; ð20Þ

K3 ¼
qA 0
0 0

� �
�

pB 0
0 1

� �
; ð21Þ

K4 ¼
qA 0
0 0

� �
�

qB 0
0 0

� �
: ð22Þ
4. Non-Markovian entanglement dynamics

4.1. X matrix and concurrence

We now consider entanglement dynamics of two half-integral
spins (qubits) with an initial density matrix with the common X-
form [31]:

qAB ¼

q11 0 0 q14

0 q22 q23 0
0 q32 q33 0

q41 0 0 q44

0
BBB@

1
CCCA: ð23Þ

Such X states occur in many contexts and include pure Bell states as
well as Werner mixed states.

For two qubits, entanglement can be evaluated unambiguously
via the concurrence function [33], which may be calculated explic-
itly from the density matrix qAB. For qubits A and B we have:
CAB ¼ CðqABÞ ¼maxf0;QðtÞg. Here QðtÞ is defined as

Q ¼
ffiffiffiffiffi
k1

p
�

ffiffiffiffiffi
k2

p
�

ffiffiffiffiffi
k3

p
�

ffiffiffiffiffi
k4

p
; ð24Þ

where the quantities ki are the (generally time-dependent) eigen-
values in decreasing order of the following (nonlinear in q) matrix:

f ¼ q rA
y � rB

y

	 

q�ðrA

y � rB
yÞ; ð25Þ

where q� denotes the complex conjugation of q in the standard ba-
sis jþ;þi; jþ;�i; j�;þi; j�;�i, and ry is the usual Pauli matrix ex-
pressed in the same basis.

From the general solution (19)–(22), one can easily show for the
initial state (23) that one finds

QðtÞ ¼ 2 max jq32ðtÞj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q11ð0Þq44ð0Þ

q
; jq14ðtÞj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q22ð0Þq33ð0Þ

q� �
:

ð26Þ
4.2. Solutions for non-Markovian disentanglement

The Ornstein–Uhlenbeck phase-noise solutions for the density
matrix elements of a general initial state are given by

q12ðtÞ ¼ q12ð0Þe�f ðtÞ; ð27Þ
q13ðtÞ ¼ q13ð0Þe�f ðtÞ; ð28Þ
q24ðtÞ ¼ q24ð0Þe�f ðtÞ; ð29Þ
q34ðtÞ ¼ q34ð0Þe�f ðtÞ ð30Þ
q23ðtÞ ¼ q23ð0Þe�2f ðtÞ; ð31Þ
q14ðtÞ ¼ q14ð0Þe�2f ðtÞ ð32Þ
qiiðtÞ ¼ qiið0Þ ði ¼ 1;2;3;4Þ; ð33Þ

where f ðtÞ is defined in (18). Let us note that in the limit c!1, we
recover the standard Markov approximation where f ðtÞ ¼ Ct=2.

Although there is no compact analytical expression for the con-
currence CðqðtÞÞwith an arbitrary initial state, we can readily show
that preservation of entanglement is restricted by the inequality
CðqðtÞÞ 6 e�2f ðtÞCðqð0ÞÞ: ð34Þ

A sharper result occurs for the X matrix under consideration be-
cause the diagonal elements are independent of t. Since they all
vanish as expð�f ðtÞÞ for increasing t, we know that QðtÞmust even-
tually become strictly negative if diagonal values are initially non-
zero (e.g., any finite-temperature equilibrium state). Negative Q
mandates CAB ¼ 0, so ESD must occur. Next we will consider key
limiting cases.

4.3. Entanglement decay: stationary limit

We consider now the stationary limit ct � 1. Then

f ðtÞ ¼ C
2

t þ 1
c
ðe�ct � 1Þ

� �
! C

2
t: ð35Þ

Therefore, from (34), we get

CðqðtÞÞ 6 e�CtCðqð0ÞÞ: ð36Þ

Hence, the entanglement decay rate is at least as rapid as C, and
may be much faster. Clearly, the stationary limit is identical to
the Markov limit aðt � sÞ ¼ Cdðt � sÞ.

4.4. Entanglement decay: short-time limit

Now let us turn to the opposite limiting case: ct 	 1. In this
case, we can use the following approximation,

e�ct 
 1� ct þ 1
2
c2t2: ð37Þ

Therefore,

f ðtÞ ¼ 1
4

Cct2: ð38Þ

Then concurrence decay is bounded by

CðqðtÞÞ 6 e�
1
2Cct2

Cðqð0ÞÞ: ð39Þ

Hence, the effective disentanglement time is given by:

sdis ¼

ffiffiffiffiffiffi
2
Cc

s
: ð40Þ

Clearly, for non-Markovian noises, the short-time limit is more
interesting since it shows that the resultant entanglement behav-
ior deviates significantly from the well-known Markov dynamics.
Obviously, the smaller c is, the better approximation we have.
For both limiting cases, it is easy to prove that a sufficient condi-
tion for ESD to occur is q11q22q33q44 – 0 [34].

5. Evaluation for a special X state

In Fig. 2 we show the evolution of the concurrence for a specific
X-form entangled state:

qAB
a ð0Þ ¼

1
3

a 0 0 0
0 1 1 0
0 1 1 0
0 0 0 1� a

0
BBB@

1
CCCA; ð41Þ

where 0 6 a 6 1, so the initial concurrence is Cð0Þ ¼ 2=3 1�½ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� aÞ

p
� > 0.

The time dependence of the concurrence of this state is well-
known in the Markov dephasing limit [9,28]. For our present
non-Markovian case, which introduces the environmental band-
width c, the time dependence of the Q parameter satisfies
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Fig. 3. The graphs show CAB
a vs. t with a ¼ 1=3. (a) shows that with c=C ¼ 0:5, an

initially non-Markovian entanglement (solid line) evolves in a markedly different
way compared to its Markov limit (dotted line). Clearly, the short-time limit
(dashed line) gives a better approximation than the stationary limit (dotted line).
However, as shown in (b) where c=C ¼ 5, the difference is washed out at later times
when the short-time limit (dashed line) ceases to be a good approximation.
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for c < C the inevitable onset of ESD (the region where CðtÞ ¼ 0) can be
substantially delayed.
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QðtÞ ¼ 2
3

e�f ðtÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� aÞ

p	 

: ð42Þ

For all finite values of c the quantity e�f ðtÞ approaches zero exponen-
tially at long times, and then QðtÞ must become negative, so ESD
inevitably occurs, with a finite disentanglement time tESD given by
e�2f ðtESDÞ ¼ að1� aÞ: ð43Þ

Fig. 3 shows several interesting features of entanglement evolu-
tion under Ornstein–Uhlenbeck noise. Clearly, we see that non-
Markovian noises have markedly different affects on entanglement
evolution at short times, while the long time limit gives rise to
familiar Markov behavior. First, note that ESD must occur for the
entire parameter range of a, except for the end points a ¼ 0;1, gi-
ven our initial X-state. However, the ESD times are different for
non-Markovian short-time and stationary limit cases. From
Fig. 3a, it should be noted that the disentanglement time for
non-Markovian regimes could be significantly longer than the dis-
entanglement times in the Markov limit if the dissipation is small.
However, once the state becomes separable it will never become
entangled again. That is, entanglement rebirth or revival does not
occur for Ornstein–Uhlenbeck noise [14].
6. Concluding remarks

We have presented here, as a contribution to the scientific
memory of Krzysztof Wodkiewicz, the first results of a new inves-
tigation that has clear connections to his long-time interest in
quantum systems evolving under the influence of stochastic per-
turbations. One of the targets of his creativity and energy, over
many years, was the challenge presented by the influence of
non-Markovian noise and we have addressed that challenge with
some calculations focused on entanglement.

We have shown that entanglement dynamics under Ornstein–
Uhlenbeck noise can be affected in several different ways, depend-
ing on the initial entangled states and the noise correlation time. It
can be seen that the non-Markovian properties can prolong the life
of entanglement. We note that the effective long-time relaxation
rate C is ordinarily associated with experimentally accessible
relaxation times such as T1 and T2. Fig. 2 highlights the unusual do-
main c < C, in which these times are shorter than the internal
environmental relaxation time sc . Entanglement survival is of fun-
damental interest at short times in quantum information process-
ing (see [35,36]). In the case of the short-time limit our results
capture the features of quadratic rather than exponential decay
at early times. In this simple model, non-Markovian noises appear
to play a role as a short-time decoherence buffer, but entanglement
measured by concurrence will inevitably conform to the stationary
limit at long times. Finally, it is interesting to note that our findings
based on the classical phase noise model can be extended into the
case of quantum phase noises where the environment is modeled
as a set of harmonic oscillators at a finite temperature [37].
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