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A B S T R A C T

We introduce the estimation protocol for detecting the temperature of the transverse vibrational modes of
linear ion crystal. We show that thanks to the laser induced laser coupling between the vibrational modes and
the collective spin states the estimation of the temperature is carried out by set of measurements of the spin
populations. We show that temperature estimation protocol using single ion as a quantum probe is optimal in
a sense that the set of state projective measurements saturate the fundamental Cramer–Rao bound. We find a
plateau of the maximal temperature sensitivity using ion chain as a quantum probe. Moreover, we show that the
non-classical part of the quantum Fisher information could leads to enhancement of the temperature sensitivity
compared to the single ion case.

1. Introduction

Precise temperature estimation has attracted recently considerable
interest due to the broad range of technological applications including
medicine and biology [1] as well as quantum thermodynamics [2]. For
example measuring low temperature with high precision in a controlled
quantum systems can be used to test and explore the thermodynamics
in the quantum regime [3,4]. One way to determine the temperature of
the quantum system is to measure its energy where the ultimate limit
of estimation precision was recently discussed [5–7]. Other approach is
based on the coupling between the system at the thermal equilibrium
and ancillary probe qubit system where the temperature estimation is
carried out by state-dependent measurement of the qubit states [8–11].
Various quantum systems can be used to detect very low temperature
including for example Bose–Einstein condensate [12,13] and ultracold
lattice gases [14]. Another promising quantum system with application
in low temperature measurement is the laser cooled trapped ions which
provide excellent experimental control over the external and internal
degree of freedom as well as high fidelity read out of the quantum
state [15–17].

In this work we consider the estimation on the temperature of the
two transverse vibrational modes of linear ion crystal via state depen-
dent measurement of the collective ion’s spin states. We show that the
bichromatic laser field can be used to couple the transverse vibrational
modes with the collective spin states with tunable coupling strength and
detuning. Our temperature estimation protocol consists of Ramsey type
sequence where the temperature dependent phase acquired by the spins
during the time evolution is mapped on the respective spin populations
which are subsequently measured. We quantify the estimation precision
in terms of classical and quantum Fisher information. For the single ion
case we show that the estimation protocol is optimal in a sense that it
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leads to equality between the classical and quantum Fisher information.
We find the optimal spin basis and show that is independent on the
temperature. We extend the discussion by considering multi-ion chain
as a quantum probe. At low temperature limit we find a plateau of the
maximal sensitivity compared to the single ion case. We examine the
quantum Fisher information and show that its non-classical part could
leads to enhancement of the temperature sensitivity.

The paper is organized as follows: In Section 2 we discuss the
vibrational modes of the linear ion crystal. In Section 3 we consider the
laser–ion interaction which coupled the transverse vibrational modes
with the collective spin states. In Section 4 the adiabatic elimination
of the phonon states is discussed. We show that depending on the
sign of the laser detuning the time evolution generated by the residual
spin–phonon interaction takes the form of spin-dependent beam-splitter
(BS) operator or two-mode squeezing (TMS) operator. In Section 5
we provide the general background of the temperature estimation. In
Sections 6 and 7 we consider the Ramsey interferometry sequence
in which the information of the temperature is mapped on the spin
populations. Finally, in Section 8 we summarize our findings.

2. Quantum probe

We begin by considering ion system which consists of 𝑁 ions
with charge 𝑒 and mass 𝑚 confined in linear Paul trap with trapped
frequencies 𝜔𝛼 (𝛼 = 𝑥, 𝑦, 𝑧). The potential energy of the ion system
is a sum of the effective harmonic potential and the mutual Coulomb
interaction given by [18,19]
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For sufficiently strong transverse confinement with trap frequencies
𝜔𝑥(𝑦) ≫ 𝜔𝑧 the ions are arranged in a linear configuration along the trap
axis 𝑧. The equilibrium ion’s position 𝑧(0)𝑖 are determined by the balance
between the Coulomb repulsion force and the harmonic trapping force,
which are quantified by the condition (𝜕𝑉 ∕𝜕𝑟𝑖)𝑟𝑖=𝑧(0)𝑖

= 0. Hereafter
we consider the low temperature limit where we can expressed the
position operator of ion 𝑗 as ̂⃗𝑟𝑗 = (𝑧0𝑗 + 𝛿𝑟̂𝑧,𝑗 )𝑒𝑧 + 𝛿𝑟̂𝑥,𝑗𝑒𝑥 + 𝛿𝑟̂𝑦,𝑗𝑒𝑦
where the displacement operator 𝛿𝑟̂𝛼,𝑗 describes the quantum harmonic
oscillation of the ion around the equilibrium position. Within the
harmonic approximation the vibrational Hamiltonian becomes

𝐻̂vib =
∑
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where 𝐾 (𝛼)
𝑗,𝑙 is the spring-constant matrix [20,21]. Since the Hamiltonian

(2) is quadratic in the momentum and displacement operators one
can diagonalize it by introducing collective vibrational normal modes.
Indeed, solving the eigenvalue problem, ∑𝑁
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𝑏(𝛼)𝑝,𝑛 is the component of the 𝑛th normal mode eigenvector and 𝜆𝛼,𝑛 is the
corresponding eigenvalue one can expressed the displacement operators
in terms of normal modes as 𝛿𝑟̂𝛼,𝑖 =

∑𝑁
𝑛=1 𝑏

(𝛼)
𝑖,𝑛
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√

𝜆𝛼,𝑛 is the collective vibrational frequency and 𝑎̂†𝛼,𝑛, 𝑎̂𝛼,𝑛 are
the respective creation and annihilation operators of phonon in the 𝑛th
mode and direction 𝛼. Finally, the vibrational Hamiltonian becomes
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We emphasize that for 𝑛 = 1 the collective frequencies becomes 𝜔𝛼,1 =
𝜔𝛼 with normal mode eigenvectors 𝑏(𝛼)𝑖,1 = 1∕

√

𝑁 . In this mode all ions
oscillate in the same manner which we refer it as collective center-of-
mass (c.m.) motion.

In the following we discuss measurement of the temperature of the
c.m. modes in two orthogonal transverse 𝑥-𝑦 directions by detecting the
population of the internal ion’s states. For this goal we consider the
laser–ion interaction which couples the ion’s internal electronic states
with the c.m. vibration modes. We show for sufficiently high effective
phonon frequencies compared to the spin–phonon couplings the c.m.
vibrational modes can be adiabatically eliminated such that the residual
spin–phonon interaction takes the form of the spin-dependent phonon
beam-splitter [22] as well as two mode squeezing operators [23]. The
temperature estimation is performed by mapping the temperature de-
pendent phase acquired by the spin states during the Ramsey sequence
into the spin-state populations.

3. Laser-ion interaction

Consider that each ion has two metastable internal states |↑⟩, |↓⟩

with Bohr frequency difference 𝜔0. The interaction-free Hamiltonian
describing the internal and external degrees of freedom is given by

𝐻̂f ree = ℏ𝜔0𝐽𝑧 + 𝐻̂vib, (4)

where we have introduced collective spin operators 𝐽𝛼 = 1
2
∑𝑁
𝑘=1 𝜎

𝛼
𝑘 with

𝜎𝛼𝑘 being the Pauli operator for 𝑘th spin.
In order to couple the internal spin states with the collective vibra-

tional states we assume that bichromatic laser fields are applied along
the transverse 𝑥 and 𝑦 directions with laser frequencies 𝜔𝑟,𝛼 = 𝜔0−(𝜔𝛼+
𝛿𝛼) and 𝜔𝑏,𝛼 = 𝜔0+(𝜔𝛼−𝛿𝛼) [24,25]. Here 𝛿𝑥, 𝛿𝑦 with 𝛿𝑥(𝑦) ≪ 𝜔𝑥(𝑦) are the
laser detunings to the c.m. vibrational modes along the two transverse
directions. The bichromatic laser field causes simultaneous excitation
of the red- and blue-sideband transitions between the spin and motion
states. The total Hamiltonian becomes 𝐻̂ = 𝐻̂0 + 𝐻̂𝐼 with

𝐻̂𝐼 = ℏ
𝑁
∑

𝑘=1
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𝑖𝑘𝛼𝛿𝑟̂𝛼,𝑘−𝑖𝜙𝛼 (𝑒−𝑖𝜔𝑟,𝛼 𝑡 + 𝑒−𝑖𝜔𝑏,𝛼 𝑡)

+ h.c.}, (5)

where 𝛺𝛼 is the Rabi frequency, 𝑘⃗𝛼 is the laser wave vector, and
𝜙𝛼 is the respective laser phase. We introduce Lamb–Dicke parameter
𝜂𝛼 = 𝑘𝛼

√

ℏ∕2𝑚𝜔𝛼 and assume Lamb–Dicke limit 𝜂𝛼 ≪ 1. Transforming
the total Hamiltonian in an interaction picture with respect to 𝑈̂ (𝑡) =
𝑒−𝑖𝜔0𝑡𝐽𝑧−𝑖

∑

𝛼
∑𝑁
𝑝=1(𝜔𝛼,𝑝−𝛿𝛼 )𝑡 we obtain

𝐻̂ = 𝐻̂b + 𝐻̂sb, 𝐻̂b = ℏ
∑
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†
𝛼 𝑎̂𝛼 ,

𝐻̂sb = ℏ
∑

𝛼=𝑥,𝑦

2𝑔𝛼
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𝑁
𝐽𝛼(𝑎̂†𝛼 + 𝑎̂𝛼), (6)

where 𝑔𝛼 = 𝜂𝛼𝛺𝛼 is the spin–phonon coupling. The term 𝐻̂b describes
a quantum harmonic oscillators with effective frequency 𝛿𝛼 . The term
𝐻̂sb describes the desired coupling between the collective spin operators
and the c.m. vibrational modes. In the expression (6) we have assumed
that all vibrational modes can be neglected except the c.m. mode,
which is justified as long as (𝜔𝛼 − 𝜔𝛼,𝑝≠1) ≫ 𝑔, |𝛿𝛼| [26]. Since the c.m.
frequency is the highest vibrational mode frequency along the transverse
direction the latter condition requires that the frequency difference to
the nearest vibrational rocking mode 𝜔roc,𝛼 = 𝜔𝛼 − 𝜔𝛼

√

1 − (𝜔𝑧∕𝜔𝛼)2 to
be sufficiently large compared to the spin–phonon coupling and the laser
detuning, namely, 𝛥c.m. = 𝜔𝛼 −𝜔roc,𝛼 ≫ 𝑔, |𝛿𝛼|. Consider for example the
trap frequencies 𝜔𝑧 = 2𝜋 × 0.9 MHz, 𝜔 = 2𝜋 × 2.0 MHz and 𝑔 = 2𝜋 × 1.0
kHz, 𝛿 = 2𝜋 × 20 kHz we find 𝑔∕𝛥c.m. ≈ 4 × 10−3 and 𝛿∕𝛥c.m. ≈ 9 × 10−2

which guaranties the suppression of the undesired phonon excitations.
For simplicity hereafter we assume equal couplings, 𝑔𝛼 = 𝑔.

Finally, we point out because each spin is equally coupled to the
c.m. vibrational mode in 𝑥-𝑦 directions one can introduce the collective
spin basis spanned by the Dicke states |𝑗, 𝑚⟩, which are simultaneous
eigenvectors of 𝐽 2

|𝑗, 𝑚⟩ = 𝑗(𝑗 + 1) |𝑗, 𝑚⟩ and 𝐽𝑧 |𝑗, 𝑚⟩ = 𝑚 |𝑗, 𝑚⟩, where
𝑗 = 𝑁∕2 is the length of the maximum spin of the system. Including
the motion degree of freedom the total Hilbert space is spanned by
the vectors |𝑗, 𝑚⟩|𝑛𝑥, 𝑛𝑦⟩, where |𝑛𝛼⟩ (𝛼 = 𝑥, 𝑦) is a Fock state with 𝑛𝛼
phonons.

4. Phonon adiabatic elimination

In order to perform phonon temperature measurement by detecting
the ion’s internal state population we consider the spin–phonon coupling
term in (6) as a perturbation which is valid as long as |𝛿𝛼|≫ 𝑔. Then the
c.m. vibrational modes in 𝑥-𝑦 directions can be traced out which leads
to an effective spin–phonon coupling [27,28]. In the following we show
that residual interaction is described by spin-dependent beam-splitter or
two mode squeezing phonon operators.

Let us perform unitary transformation to (6) such that 𝐻̂eff = 𝑅̂(𝐻̂b+
𝐻̂sb)𝑅̂†, where we set 𝑅̂ = 𝑒−𝑆̂ with 𝑆̂ being anti-Hermitian operator. We
choose 𝑆̂ such that all terms in order of 𝑔 in 𝐻̂eff are canceled and the
first term describing the spin–phonon interaction is of order of 𝑔2∕𝛿𝛼 .
In order to fulfill this we determine the operator 𝑆̂ by the condition
𝐻̂b − [𝑆̂, 𝐻̂sb] = 0 which gives

𝐻̂eff ≈ 𝐻̂b +
1
2
[𝐻̂sp, 𝑆̂] + 𝑂(𝑔3∕𝛿2𝛼). (7)

Since the time evolution of 𝑆̂(𝑡) = 𝑒𝑖𝐻̂b𝑡∕ℏ𝑆̂𝑒−𝑖𝐻̂b𝑡∕ℏ is governed by
the Heisenberg equation, namely 𝑖ℏ ̇̂𝑆 = [𝑆̂(𝑡), 𝐻̂b] we obtain 𝑖ℏ ̇̂𝑆(𝑡) =
𝐻̂sp(𝑡), where 𝐻̂sp(𝑡) = 𝑒𝑖𝐻̂b𝑡∕ℏ𝐻̂sp𝑒−𝑖𝐻̂b𝑡∕ℏ. Using this we find after the
integration

𝑆̂ =
∑

𝛼=𝑥,𝑦

2𝑔

𝛿𝛼
√

𝑁
𝐽𝛼(𝑎̂𝛼 − 𝑎̂†𝛼). (8)

Then for the effective Hamiltonian we obtain

𝐻̂eff = 𝐻̂b +
∑

𝛼=𝑥,𝑦

4ℏ𝑔2

𝑁𝛿𝛼
𝐽 2
𝛼 +

2𝑖ℏ𝑔2

𝑁𝛿𝑥𝛿𝑦
𝐽𝑧{(𝛿𝑥 + 𝛿𝑦)(𝑎̂†𝑥𝑎̂𝑦 − 𝑎̂𝑥𝑎̂

†
𝑦)

− (𝛿𝑥 − 𝛿𝑦)(𝑎̂†𝑥𝑎̂
†
𝑦 − 𝑎̂𝑥𝑎̂𝑦)}, (9)

where we have omitted the constant terms. The second term in (9)
describes the long-range spin–spin interaction mediated by the c.m.
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vibrational modes. The last term in (9) is the residual spin–phonon
coupling, which we use to map the relevant temperature information of
the c.m. vibrational modes into the spin state populations. Depending
on the phonon detunings we distinguish to two cases:

4.1. Spin-dependent phonon beam-splitter operator

Setting 𝛿𝑥 = 𝛿𝑦 = 𝛿 the expression (9) simplifies to

𝐻̂bs = 𝐻̂b +
4ℏ𝑔2

𝑁𝛿
𝐽 2
𝑧 −

4𝑖ℏ𝑔2

𝑁𝛿
𝐽𝑧(𝑎̂†𝑥𝑎̂𝑦 − 𝑎̂𝑥𝑎̂

†
𝑦), (10)

where we use the relation 𝐽 2
𝑥 + 𝐽 2

𝑦 = 𝐽 2 − 𝐽 2
𝑧 . The Hamiltonian (10)

contains a quadratic term in the collective spin operator and residual
spin–phonon term, where both are diagonal in the collective spin basis.
The unitary evolution generated by the residual spin–phonon term
is given by the spin-dependent beam-splitter operator [22]. Such a
operator has been used as an entangler of the output optical fields. Here
we use this spin-dependent part to map the temperature of the quantum
oscillators into the collective spin states.

4.2. Two-mode squeezing operator

For 𝛿𝑥 = −𝛿𝑦 the Hamiltonian (9) becomes

𝐻̂tms = 𝐻̂b +
4ℏ𝑔2

𝑁𝛿
(𝐽 2
𝑥 − 𝐽 2

𝑦 ) −
4𝑖ℏ𝑔2

𝑁𝛿
𝐽𝑧(𝑎̂†𝑥𝑎̂

†
𝑦 − 𝑎̂𝑥𝑎̂𝑦). (11)

The spin part in (11) is described by the Lipkin–Meshkov–Glick Hamil-
tonian [29]. The unitary evolution generated by the residual spin–
phonon term is the spin-dependent two-mode squeezing operator [23,
30] in which two phonons in 𝑥-𝑦 directions are simultaneously cre-
ated/annihilated. Again we shall use this interaction to map the tem-
perature information of the quantum oscillators into the spin-degree of
freedom.

In the following we briefly provide the general background of the
theory of the temperature estimation.

5. Temperature estimation: General background

We consider that the two c.m. vibrational modes are in thermal state
with inverse temperature 𝛽 = 1∕𝑘B𝑇 where 𝑘B is the Boltzmann constant
and 𝑇 is the temperature, the parameter which we wish to estimate. The
state of the two quantum oscillators is described by the Gibbs density
operator

𝜌̂th =
∞
∑

𝑛𝑥=0

∞
∑

𝑛𝑦=0
𝑃𝑛𝑥𝑃𝑛𝑦

|

|

|

𝑛𝑥, 𝑛𝑦
⟩⟨

𝑛𝑥, 𝑛𝑦
|

|

|

, (12)

where 𝑃𝑠 = 𝑛̄𝑠𝛼
(1+𝑛̄𝛼 )𝑠+1

and 𝑛̄𝛼 = (𝑒𝛽ℏ𝜔𝛼 − 1)−1 being the average
number of thermal excitations. Usually, such a thermal state is realized
experimentally after Doppler cooling of the ion crystal [31]. Following
the approach discussed in [8,9] the temperature estimation is performed
by read out the spin state populations via state dependent fluorescence
technique. For this goal we assume that the total density operator
evolves in time according to 𝜌̂(𝑡) = 𝑈̂ 𝜌̂(0)𝑈̂†, where 𝜌̂(0) = 𝜌̂spin(0)⊗ 𝜌̂th
is the initial density operator with 𝜌̂spin(0) being the initial spin density
operator and 𝑈̂ = 𝑒−𝑖𝐻̂eff 𝑡∕ℏ is the unitary operator. At time 𝑡 the spin
density operator is 𝜌̂spin(𝑡) = Trp(𝜌̂) where the tracing over the phonon
degree of freedom is performed. For a set of measurement outcomes with
probability 𝑝𝑚(𝑇 ) with 𝑚 = −𝑗,… , 𝑗, the classical Fisher information
quantifies the amount of information on the temperature of the system.
We have

𝐹CL(𝑇 ) =
𝑗
∑

𝑚=−𝑗

(

𝜕𝑇 𝑝𝑚
)2

𝑝𝑚
. (13)

The Cramer–Rao inequality bounded the variance of the temperature
estimation

𝛿𝑇 2 ≥ 1
𝜈𝐹CL(𝑇 )

, (14)

Fig. 1. (Color online) Time evolution of the spin state probability 𝑝↑(𝑡, 𝑇 ) for various c.m.
mean-phonon numbers 𝑛̄. We compared the numerical solution of the time-dependent
Liouville equation 𝑖ℏ 𝑑

𝑑𝑡
𝜌̂ = [𝐻̂, 𝜌̂] with Hamiltonian Eq. (9) after applying 𝜋∕2 laser pulse,

with the analytical solution (black solid line) Eq. (17). The parameters are set 𝑔 = 2𝜋 ×0.6
kHz, 𝛿 = 2𝜋 × 24 kHz, and 𝜙 = 0. We assume trap frequency 𝜔 = 2𝜋 × 2.0 MHz and
initial thermal state with mean phonon number 𝑛̄ = 0.15 (dashed red square) (𝑇 ≈ 47 μK),
𝑛̄ = 0.1 (dashed gray triangle) (𝑇 ≈ 40 μK), 𝑛̄ = 0.05 (dashed blue dot) (𝑇 ≈ 31 μK). The
gray dashed line shows the numerical solution of the master equation including a phonon
heating ⟨𝑛̇𝑥⟩ = ⟨𝑛̇𝑦⟩ = 0.01 ms−1 for initial thermal state with 𝑛̄ = 0.10. The blue solid line
represent the analytical solution (20) and respectively the red dashed line is the numerical
solution assuming 𝑛̄𝑥 = 0.15.

Fig. 2. (Color online) (a) Classical Fisher information as a function of time. We assume ion
trap frequency 𝜔 = 2𝜋 × 2.0 MHz and temperature 𝑇 = 14 μK (black triangles) (𝑛̄ ≈ 10−3),
𝑇 = 16 μK (blue dots) (𝑛̄ ≈ 2 × 10−3), 𝑇 = 18 μK (red squares) (𝑛̄ ≈ 5 × 10−3). The gray
solid line shows 𝐹CL for different trap frequencies, 𝜔𝑥 = 2𝜋 × 2.0 MHz and 𝜔𝑦 = 2𝜋 × 2.5
MHz at 𝑇 = 18 μK. (b) 𝐹CL at 𝑡max for different trap frequencies 𝜔. The dashed gray line
corresponds to the different trap frequencies.

where 𝜈 is the number of experimental repetitions. The classical Fisher
information is further bounded by the quantum Fisher information
𝐹Q(𝑇 ) which gives the ultimate limit of precision in the temperature
estimation quantified by the quantum Cramer–Rao bound

𝛿𝑇 2 ≥ 1
𝜈𝐹Q(𝑇 )

. (15)

The quantum Fisher information can be expressed as 𝐹Q(𝑇 ) = Tr(𝜌̂spin
𝐿̂2), where 𝐿̂(𝑇 ) is the symmetrical logarithmic derivative operator
which satisfy the operator equation 𝜕𝑇 𝜌̂spin = (𝜌̂spin𝐿̂ + 𝐿̂𝜌̂spin)∕2. In
present context the quantum Fisher information is a measure of dis-
tinguishability of two quantum states with respect to the infinitesimal
variation of the temperature [32].

Finally, one can express the quantum Fisher information in the
eigenbasis of the density operator 𝜌̂spin =

∑𝑗
𝑚=−𝑗 𝜌𝑚 |

|

𝜓𝑚⟩ ⟨𝜓𝑚|| where
𝜌𝑚 and |

|

𝜓𝑚⟩ are respectively the 𝑚th eigenvalue and eigenvector. We
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Fig. 3. (Color online) Matrix elements of the spin density operator 𝜌̂spin at time 𝑡max
versus the laser phase 𝜙. We assume mean-phonon number 𝑛̄ = 0.15. We compared
the exact results for the spin population 𝑝↑(𝑡max , 𝑇 ) (red squares) and the spin coherence
ℜ𝑝↑,↓(𝑡max , 𝑇 ) (black triangles), ℑ𝑝↑,↓(𝑡max , 𝑇 ) (blue dots) with the analytical expressions
(black solid lines), Eqs. (17) and (18).

have [33,34] (see Appendix A)

𝐹Q(𝑇 ) = 𝐹 cl
Q (𝑇 ) + 𝐹 nc

Q (𝑇 ), 𝐹 cl
Q (𝑇 )

𝑗
∑

𝑚=−𝑗

(𝜕𝑇 𝜌𝑚)2

𝜌𝑚
,

𝐹 nc
Q (𝑇 ) = 2

𝑗
∑

𝑚≠𝑘

(𝜌𝑚 − 𝜌𝑘)2

𝜌𝑚 + 𝜌𝑘
|⟨𝜕𝑇𝜓𝑚|𝜓𝑘⟩|

2, (16)

The first term in (16) represent the classical Fisher information for the
probability distribution 𝜌𝑚 while the second term has truly quantum
contribution and leads to 𝐹Q(𝑇 ) ≥ 𝐹CL(𝑇 ).

6. Temperature estimation with beam-splitter phonon operator

6.1. Single ion case, 𝑗 = 1
2

We begin with the case 𝑗 = 1
2 and assume equal trap frequencies

𝜔𝑥 = 𝜔𝑦 = 𝜔 which implies that the c.m. mean phonon numbers along
the two orthogonal directions are equal, 𝑛̄𝑥 = 𝑛̄𝑦 = 𝑛̄. For that case
it is convenient to introduce a pair of right and left chiral operators
according to 𝑎̂r = (𝑎̂𝑥 − 𝑖𝑎̂𝑦)∕

√

2 and 𝑎̂l = (𝑎̂𝑥 + 𝑖𝑎̂𝑦)∕
√

2 which can
be used to diagonalized the phonon part in Eq. (10). Indeed omitting
the constant term we find 𝐻̂bs =

2ℏ𝑔2
𝛿 (𝑛̂l − 𝑛̂r )𝜎𝑧. The discussion of the

general case of an anisotropic transverse trap frequencies is presented
in Appendix B.

The Ramsey-type sequence starts by preparing the spin in the equal
superposition, 𝜌̂spin(0) = (|↑⟩ + |↓⟩)(⟨↑| + ⟨↓|)∕2. The combined system
evolves for time 𝑡′ according the beam-splitter unitary operator 𝑈̂bs =
𝑒−𝑖𝐻̂bs𝑡′∕ℏ. Then a 𝜋

2 laser pulse with phase 𝜙 is applied which creates the
spin superposition, |↑⟩ → (|↑⟩−𝑒−𝑖𝜙 |↓⟩)∕

√

2 and |↓⟩ → (|↓⟩+𝑒𝑖𝜙 |↑⟩)∕
√

2
which conclude the interaction sequence. The spin density operator at
time 𝑡 becomes 𝜌̂spin(𝑡, 𝑇 ) = 𝑝↑ |↑⟩ ⟨↑|+ 𝑝↓ |↓⟩ ⟨↓|+ 𝑝↑,↓ |↑⟩ ⟨↓|+ 𝑝↓,↑ |↓⟩ ⟨↑|.
Subsequently a measurement of the spin population is performed with
probability given by

𝑝↑(𝑡, 𝑇 , 𝜙) =
1
2

⎛

⎜

⎜

⎜

⎝

1 +
cos(𝜙)

1 + 4𝑛̄(𝑛̄ + 1) sin2
(

𝜃𝑡
2

)

⎞

⎟

⎟

⎟

⎠

, (17)

with 𝑝↓ = 1 − 𝑝↑ and 𝜃 = 4𝑔2
𝛿 . The off-diagonal quantum coherence

elements are

𝑝↑,↓(𝑡, 𝑇 , 𝜙) = − 𝑖
2

𝑒𝑖𝜙 sin(𝜙)

1 + 4𝑛̄(𝑛̄ + 1) sin2
(

𝜃𝑡
2

) , (18)

Fig. 4. (Color online). (a) Populations 𝑝𝑚(𝑡, 𝑇 ) (𝑚 = −1, 0, 1) for an ion chain with two ions
as a function of time. We compared numerical solution with Hamiltonian (6) for 𝑝1(𝑡, 𝑇 )
(dashed red dots), 𝑝0(𝑡, 𝑇 ) (dashed gray triangles), 𝑝−1(𝑡, 𝑇 ) (dashed blue squares) with
the analytical expression, Eq. (23) (black solid lines). We assume mean phonon number
𝑛̄ = 0.1. (b) Off-diagonal coherence element 𝑝1,−1(𝑡, 𝑇 ) of the spin-density matrix. We
compared the exact results for ℑ𝑝1,−1 (dashed blue triangles), ℜ𝑝1,−1 (dashed red dots)
with Eq. (24) (black solid lines).

with 𝑝↓,↑ = (𝑝↑,↓)∗.
In Fig. 1 we show the time evolution of the probability 𝑝↑(𝑡, 𝑇 ) for

different 𝑛̄. We observe very good agreement between the analytical
expression (17) and the exact result with Hamiltonian (9). As can be seen
from the figure the signal oscillation period vary with 𝑛̄ and approaches
to zero in the limit 𝑇 → 0. Using Eqs. (13) and (17) one can obtain the
classical Fisher information. We find for 𝜙 = 0

𝐹CL =
ℏ2𝜔2 sin2

(

𝜃𝑡
2

)

sinh2
(

ℏ𝜔
𝑘B𝑇

)

𝑘2B𝑇
4(cosh

(

ℏ𝜔
𝑘B𝑇

)

− cos
(

𝜃𝑡
2

)

)(cosh
(

ℏ𝜔
𝑘B𝑇

)

− cos(𝜃𝑡))2
. (19)

In Fig. 2(a) we plot the classical Fisher information (19) versus the
interaction time 𝑡. At low temperature 𝑇𝑘B ≤ ℏ𝜔∕2 the maximum
value of 𝐹CL(𝑇 ) is reached at time 𝜃𝑡max = (2𝑘 + 1)𝜋, (𝑘 = 0, 1, 2,…)
and 𝜙 = 2𝑝𝜋 (𝑝 = 0, 1, 2,…). The oscillation behavior of 𝐹CL(𝑇 ) with
maximum achieved at the same instance of times is also observed for
the general case of different transverse trap frequencies. In Fig. 2(b)
we show 𝐹CL(𝑇 ) at 𝑡max versus the temperature 𝑇 . It has a maximal
value defined by the condition 𝜕𝑇𝐹CL(𝑇 ) = 0 which reduces to the
following transcendental equation 𝑥−𝑥sech(𝑥)(2+sech(𝑥))−4 tanh(𝑥) = 0
where 𝑥 = 𝛽ℏ𝜔. We find that the maximal value of the classical Fisher
information is achieved for temperature 𝑇max ≈ ℏ𝜔

4.245𝑘B
. At this point

the uncertainty in the estimation of the temperature is bounded by the
classical Cramer–Rao bound (14) which yields 𝛿𝑇 ≥ ℏ𝜔

2.964
√

𝜈𝑘B
. As an

example consider transverse ion trap frequency 𝜔 = 2𝜋 × 2.0 MHz we
obtain temperature sensitivity approximately to 32.4 μK. As can be seen
from Fig. 2 a similar temperature sensitivity is also observed for the
anisotropic trap frequency case.

In Fig. 3 we plot the spin density matrix elements at the time 𝑡max as
a function of the laser phase 𝜙. We see from Eqs. (17) and (18) that the
spin density operator becomes diagonal for laser phase 𝜙 = 2𝑝𝜋 with
𝑝 integer, leading to the equality 𝐹CL(𝑇 ) = 𝐹Q(𝑇 ) at any instance of
time 𝑡. Indeed as long as the eigenvectors of 𝜌̂spin(𝑡, 𝑇 ) do not depend
on the temperature such a equality is always fulfilled, see Eq. (16)
and Appendix A for details. The latter implies that uncertainty of
the temperature estimation performed by the projective measurements
in the original spin basis is bounded by the quantum Cramer–Rao
inequality (15). This result can be generalized for an arbitrary phase
𝜙 where one can find a basis ||

|

𝜓↑

⟩

= −𝑖𝑒𝑖𝜙 cos(𝜙∕2) |↑⟩+ sin(𝜙∕2) |↓⟩ and
|

|

|

𝜓↓

⟩

= 𝑖𝑒𝑖𝜙 sin(𝜙∕2) |↑⟩+ cos(𝜙∕2) |↓⟩ independent on the temperature 𝑇
which diagonalize 𝜌̂spin(𝑡, 𝑇 ) with eigenvalues 𝜌↑(𝑡, 𝑇 ) = 𝑝↑(𝑡, 𝑇 , 𝜙 = 0)
and 𝜌↓(𝑡, 𝑇 ) = 𝑝↓(𝑡, 𝑇 , 𝜙 = 0).
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Fig. 5. (Color online) (a) Fisher information versus interaction time 𝑡. We plot the QFI
for 𝑗 = 1 and 𝐹 cl

Q (𝑇 ) for 𝑗 = 3∕2 at 𝑇 = 5 μK. As a comparison is shown the QFI for 𝑗 = 1∕2
at 𝑡max (black dashed lime) according Eq. (19). (b) QFI for 𝑗 = 1 compared to 𝑗 = 1∕2 at
𝑡max (black dashed lime) for 𝑇 = 15 μK.

Up to know we assume that both transverse vibrational modes are
in thermal state with mean phonon number 𝑛̄. Consider that one of
the modes is prepared in the motion ground state for example the
c.m. mode along the 𝑦-direction by using red-sideband laser cooling
technique. Our goal is to estimate the temperature of the c.m. mode
along the 𝑥-direction which is prepared in the thermal state with mean
phonon number 𝑛̄𝑥. The vibrational density operator becomes 𝜌̂th =
∑∞
𝑛𝑥=0

𝑃𝑛𝑥 |𝑛𝑥, 0𝑦⟩⟨𝑛𝑥, 0𝑦|. Assuming that the spins are prepared in equal
superposition with 𝜌̂spin(0) = (|↑⟩ + |↓⟩)(⟨↑| + ⟨↓|)∕2, the evolution of
the total system is driven by the propagator 𝑈̂bs = 𝑒−𝑖𝐻̂bs𝑡′∕ℏ. After
applying 𝜋∕2 laser pulse (we set for simplicity 𝜙 = 0) the spin density
operator becomes 𝜌̂spin(𝑡, 𝑇 ) = 𝑝↑(𝑡, 𝑇 ) |↑⟩ ⟨↑| + 𝑝↓(𝑡, 𝑇 ) |↓⟩ ⟨↓| where (see
Appendix B for details)

𝑝↑(𝑡, 𝑇 ) =
1
2

⎛

⎜

⎜

⎜

⎝

1 + 1

1 + 2𝑛̄𝑥 sin
2
(

𝜃𝑡
2

)

⎞

⎟

⎟

⎟

⎠

. (20)

In Fig. 1 we compare the analytical expression (20) with the exact result.
As can be seen the population oscillates with the same period as (17)
but the amplitude is less sensitive to the change of the mean phonon
number. Using (20) we obtain the classical Fisher information

𝐹CL =
ℏ2𝜔2

𝑥 sin
2
(

𝜃𝑡
2

)

𝑒
2ℏ𝜔𝑥
𝑘B𝑇

𝑘2B𝑇
4
(

𝑒
ℏ𝜔𝑥
𝑘B𝑇 + cos2

(

𝜃𝑡
2

)

)(

𝑒
ℏ𝜔𝑥
𝑘B𝑇 − cos(𝜃𝑡)

)2
, (21)

with the equality 𝐹CL(𝑇 ) = 𝐹Q(𝑇 ). The maximum of 𝐹CL(𝑇 ) is achieved
for 𝑇 ≈ ℏ𝜔𝑥

4.13𝑘B
where we obtain temperature sensitivity to 𝛿𝑇 ≥

(ℏ𝜔∕2.13
√

𝜈𝑘B).
Finally, we point out that the main source of decoherence which

compromises the signal contrast is the motion heating. We investigate
the effect of motion heating by numerical integration the master equa-
tion as is shown in Fig. 1 [35]. It causes a lost of contrast which limits
the temperature sensitivity. The effect can be suppressed significantly
by using cryogenic ion trap with very low motion heating of order of
⟨𝑛̇⟩ = 1 s−1 [36].

6.2. Multi-ion case 𝑗 > 1
2

In the following we discuss the temperature estimation of the c.m.
mode using ion crystal consisting of𝑁 ions. In that case the bichromatic
laser–ion interaction couples the collective spin states to the c.m.
vibrational mode according Eq. (10). We assume that initially the spins

Fig. 6. (Color online) Time evolution of the spin populations. The detuning is set to
|𝛿| = 2𝜋 × 22 kHz and the system evolves according the spin-dependent two-mode
squeezing operator. We compare the exact numerical solution for 𝑝↑(𝑡, 𝑇 ) (dashed blue
dots) and 𝑝↓(𝑡, 𝑇 ) (dashed red squares) with the analytical formulas (black solid lines),
Eq. (B.10). We assume mean-phonon number 𝑛̄ = 0.1 (𝑇 ≈ 40 μK).

are fully polarized along the 𝑥-direction, ||
|

𝜓spin(0)
⟩

= |↑↑ … ↑⟩𝑥. Using
the collective Dicke states one can express the initial spin state as

|

|

|

𝜓spin(0)
⟩

=
𝑗
∑

𝑚=−𝑗

√

(2𝑗)!
22𝑗 (𝑗 + 𝑚)!(𝑗 − 𝑚)!

|𝑗, 𝑚⟩ . (22)

The combine system evolves in time according the unitary operator
𝑈̂bs = 𝑒−𝑖𝐻̂bs𝑡′∕ℏ. Similar to a single ion case at time 𝑡′ a global 𝜋∕2 laser
pulse is applied to all spins which conclude the interaction sequence.

Consider as an example ion chain with two ions, 𝑗 = 1. The spin
density operator at time 𝑡 becomes 𝜌̂spin(𝑡, 𝑇 ) =

∑1
𝑚=−1 𝑝𝑚|𝑗, 𝑚⟩⟨𝑚, 𝑗| +

{𝑝1,−1|1, 1⟩⟨−1, 1| + h.c.}, with populations

𝑝±1(𝑡, 𝑇 ) = 1
8
{3 + 1

1 + 4𝑛̄(𝑛̄ + 1) sin2
(

𝜃𝑡
2

)

±
4 cos

(

𝜃𝑡
2

)

1 + 4𝑛̄(𝑛̄ + 1) sin2
(

𝜃𝑡
4

) }, (23)

𝑝0 = 1 − 𝑝1 − 𝑝−1 and quantum coherence

𝑝1,−1(𝑡, 𝑇 ) = 1
8
{−1 + 1

1 + 4𝑛̄(𝑛̄ + 1) sin2
(

𝜃𝑡
2

)

+
4𝑖 sin

(

𝜃𝑡
2

)

1 + 4𝑛̄(𝑛̄ + 1) sin2
(

𝜃𝑡
4

) }. (24)

Fig. 4 compares the analytical formulas (23) and (24) to the exact
solution where very good agreement is observed. In order to find the
quantum Fisher information we diagonalize the spin density operator
𝜌̂spin(𝑡, 𝑇 ), see Appendix B. In contrast to a single ion case, now the
non-classical part 𝐹 nc

Q (𝑇 ) of the quantum Fisher information is generally
non-zero leading to 𝐹Q(𝑇 ) ≥ 𝐹CL(𝑇 ) for 𝑗 > 1∕2. In Fig. 5 we plot
the Fisher information versus the interaction time 𝑡. We observe that
at low temperature limit 𝑇 → 0 the eigenvectors of 𝜌spin(𝑡, 𝑇 ) becomes
temperature independent such that non-classical part of QFI for 𝑗 = 1
tends to zero, which leads to equality between the classical and quantum
Fisher information. In this regime the QFI becomes approximately equal
to the maximal value of QFI for 𝑗 = 1∕2. However, in contrast to the
single ion case now we find plateaus where the maximal value of QFI is
reached. This could be experimental advantage since it does not require
precise knowledge of the parameter 𝜃 as is the case for 𝑗 = 1∕2 where
the maximal sensitivity is achieved for 𝑡max = 𝜋∕𝜃. As can be seen from
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Fig. 7. (Color online) Classical Fisher Information versus the interaction time for different
temperatures. We calculate 𝐹CL(𝑇 ) using formula (B.10) for 𝑇 = 36 μK (black triangles)
(𝑛̄ ≈ 7×10−2), 𝑇 = 38 μK (blue circle) (𝑛̄ ≈ 8×10−2) and 𝑇 = 40 μK (red squares) (𝑛̄ ≈ ×10−1)
assuming trap frequency 𝜔 = 2𝜋 × 2.0 MHz.

Fig. 5a the size of the plateaus increases with the number of ions. On
the other hand slightly rising the temperature leads to a non vanishing
𝐹 nc
Q (𝑇 ) such that the QFI for 𝑗 > 1∕2 becomes much higher than the

maximal value of QFI for 𝑗 = 1∕2, as is shown in Fig. 5b.

7. Temperature estimation with two mode squeezing operator

In the following we discuss the temperature estimation using two-
mode squeezing Hamiltonian, Eq. (11). We consider only the single ion
case such that the first term in Eq. (11) has no role since it gives constant
shift. Again, following the Ramsey sequence the initial prepared equal
spin superposition evolves in time according to two-mode squeezing
transformation 𝑈̂tms(𝑡) = 𝑒−𝑖𝐻̂tms𝑡∕ℏ. At time 𝑡′ a 𝜋∕2 laser pulse is
applied and subsequently the temperature estimation is carried out by
state projective measurements. The analytical expression for the spin
population can be derived exactly, see Appendix B. We compare these
formulas with the exact numerical result. From Fig. 6 we see that the
expressions (B.10) matches the exact result very closely. We find that for
sufficiently long interaction time both signals tend to 1∕2 such that the
spin density operator becomes completely incoherent mixture and no
temperature estimation is possible. Also at any instance of time the off-
diagonal elements of 𝜌spin(𝑡, 𝑇 ) are zero such that the density operator
is diagonal in the original spin basis. The latter implies that we need
only to consider 𝐹CL(𝑇 ) because of the equality 𝐹CL(𝑇 ) = 𝐹Q(𝑇 ). Using
the expression (B.10) one can calculate the classical Fisher information.
On one hand we observe that the maximal value of 𝐹CL(𝑇 ) using two-
mode squeezing transformation is smaller than the corresponding value
using beam-splitter operator, see Eq. (19) and Fig. 2a for comparison.
On the other hand the maximal value of 𝐹CL(𝑇 ) is reached for shorter
interaction time which could have particular advantage in case of strong
motion heating which reduces the coherence time (see Fig. 7).

8. Conclusion

We have considered the quantum estimation scheme of the tem-
perature of the transverse vibrational modes of linear ion chain. The
protocol consists of a Ramsey type sequence in which the acquired
phase of the spins is mapped on the respective population which
subsequently is measured. We characterize the temperature sensitivity
in terms of classical and quantum Fisher information and show that
scheme using single ion as a quantum probe is optimal in a sense that
the state projective measurement saturates the Cramer–Rao bound. We
find a measurement basis which leads to equality between the classical

and quantum Fisher information and show that is independent on the
temperature. At low temperature we find plateau of maximal sensitivity
in the case of multi-ion quantum probe. We have shown that the size of
the plateau increases with the number of ions. Rising the temperature we
have shown that non-classical part of the quantum Fisher information
leads to enhancement of the temperature sensitivity compared with the
single ion case.
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Appendix A. Quantum Fisher Information

Consider the quantum Fisher information 𝐹Q(𝑇 ) =
∑𝑗
𝑚=−𝑗 𝜌𝑚⟨𝜓𝑚|𝐿̂

2

|𝜓𝑚⟩ which gives the ultimate precision in the temperature estimation.
Here 𝐿̂ is the symmetric logarithmic derivative operator which satisfies
the operator equation 𝜕𝑇 𝜌̂spin = (𝜌̂spin𝐿̂ + 𝐿̂𝜌̂spin)∕2. We decompose the
spin density operator in its eigenbasis, namely 𝜌̂spin =

∑𝑗
𝑚=−𝑗 𝜌𝑚|𝜓𝑚⟩⟨𝜓𝑚|

where 𝜌𝑚 and |𝜓𝑚⟩ are respectively the eigenvalue and the correspond-
ing eigenvector. The symmetric logarithmic derivative operator can be
written as

𝐿̂ = 2
𝑗
∑

𝑚,𝑘=−𝑗

⟨𝜓𝑚|𝜕𝑇 𝜌̂spin|𝜓𝑘⟩
𝑝𝑚 + 𝑝𝑘

|𝜓𝑚⟩⟨𝜓𝑘|

=
𝑗
∑

𝑚=−𝑗

𝜕𝑇 𝜌𝑚
𝜌𝑚

|𝜓𝑚⟩⟨𝜓𝑚| + 2
𝑗
∑

𝑚≠𝑘

⟨𝜓𝑚|𝜕𝑇 𝜌̂spin|𝜓𝑘⟩
𝜌𝑚 + 𝜌𝑘

|𝜓𝑚⟩⟨𝜓𝑘|

=
𝑗
∑

𝑚=−𝑗

𝜕𝑇 𝜌𝑚
𝜌𝑚

|𝜓𝑚⟩⟨𝜓𝑚| + 2
𝑗
∑

𝑚≠𝑘

𝜌𝑚 − 𝜌𝑘
𝜌𝑚 + 𝜌𝑘

⟨𝜕𝑇𝜓𝑚|𝜓𝑘⟩|𝜓𝑚⟩⟨𝜓𝑘|. (A.1)

Here we have used the orthogonality ⟨𝜓𝑚|𝜓𝑘⟩ = 𝛿𝑚,𝑘 as well as the
relation ⟨𝜕𝑇𝜓𝑚|𝜓𝑘⟩ = −⟨𝜓𝑚|𝜕𝑇𝜓𝑘⟩. Finally, using Eq. (A.1) one can write
the quantum Fisher information in the following way

𝐹Q(𝑡, 𝑇 ) =
𝑗
∑

𝑚=−𝑗

(𝜕𝑇 𝜌𝑚)2

𝜌𝑚
+ 2

𝑗
∑

𝑚≠𝑘

(𝜌𝑚 − 𝜌𝑘)2

𝜌𝑚 + 𝜌𝑘
|⟨𝜕𝑇𝜓𝑚|𝜓𝑘⟩|

2, (A.2)

where the first term is the classical part and the second term has
respectively truly quantum contribution.

Appendix B. Spin populations

B.1. Beam-Splitter operator

The total system evolves in time according to

𝜌̂(𝑡) = 𝑈̂ 𝜌̂spin(0)⊗ 𝜌̂th𝑈̂
−1, (B.1)

where the unitary operator is 𝑈̂ = 𝑒−𝑖
𝜃𝑡
𝑁 (𝐽2𝑧−𝑖𝐽𝑧(𝑎̂

†
𝑥 𝑎̂𝑦−𝑎̂𝑥 𝑎̂

†
𝑦)). We assume

that the initial spin density operator is 𝜌̂s(0) = |𝜓(0)⟩⟨𝜓(0)| with all
spins polarized along the 𝑥-axis, |𝜓(0)⟩ = |↑↑ … ↑⟩𝑥. The transverse c.m.
vibrational modes are prepared in a thermal state with mean phonon
number 𝑛̄𝛼 = (𝑒𝛽ℏ𝜔𝛼 − 1)−1.

B.1.1. Single ion case
The spin-density operator is obtained after taking the partial trace

over the vibrational degrees of freedom. We have

𝜌̂spin = 1
2
{|↓⟩ ⟨↓| + |↑⟩ ⟨↑| + |↑⟩ ⟨↓|Tr

(

𝑒𝜃𝑡(𝑎̂
†
𝑥 𝑎̂𝑦−𝑎̂𝑥 𝑎̂

†
𝑦)𝜌̂th

)

+ |↓⟩ ⟨↑|Tr
(

𝑒−𝜃𝑡(𝑎̂
†
𝑥 𝑎̂𝑦−𝑎̂𝑥 𝑎̂

†
𝑦)𝜌̂th

)

}. (B.2)

At time 𝑡′ a 𝜋∕2 laser pulse is applied to the ion which rotates the spin
states |↑⟩ → (|↑⟩ − 𝑒−𝑖𝜙 |↓⟩)∕

√

2 and |↓⟩ → (|↓⟩ + 𝑒𝑖𝜙 |↑⟩)∕
√

2 with laser
phase 𝜙. Measuring the spin populations allow to extract the information
of the temperature of the c.m. vibrational mode. We find that the
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spin density operator is 𝜌̂spin(𝑡, 𝑇 ) = 𝑝↑ |↑⟩ ⟨↑| + 𝑝↓ |↓⟩ ⟨↓| + 𝑝↑,↓ |↑⟩ ⟨↓| +
𝑝↓,↑ |↓⟩ ⟨↑|, where

𝑝↑(𝑡, 𝑇 ) =
1
2
{1 + cos(𝜙)Tr

(

𝑒𝜃𝑡(𝑎̂
†
𝑥 𝑎̂𝑦−𝑎̂𝑥 𝑎̂

†
𝑦)𝜌̂th

)

},

𝑝↑,↓(𝑡, 𝑇 ) = − 𝑖
2
𝑒𝑖𝜙 sin(𝜙)Tr

(

𝑒𝜃𝑡(𝑎̂
†
𝑥 𝑎̂𝑦−𝑎̂𝑥 𝑎̂

†
𝑦)𝜌̂th

)

, (B.3)

with 𝑝↓ = 1 − 𝑝↑ and 𝑝↓,↑ = (𝑝↑,↓)∗. The trace over the motion degree of
freedom can be exactly evaluated [37]. We find

Tr
(

𝑒𝜃𝑡(𝑎̂
†
𝑥 𝑎̂𝑦−𝑎̂𝑥 𝑎̂

†
𝑦)𝜌̂th

)

=
∞
∑

𝑛𝑥 ,𝑛𝑦=0

𝑛𝑥
∑

𝑠𝑥=0

𝑛𝑦
∑

𝑠𝑦=0
𝑃𝑛𝑥𝑃𝑛𝑦 (−1)

𝑛𝑥−𝑠𝑥

× sin(𝜃𝑡)𝑛𝑥+𝑛𝑦−𝑠𝑥−𝑠𝑦 cos(𝜃𝑡)𝑠𝑥+𝑠𝑦
𝑛𝑥!𝑛𝑦!

𝑠𝑥!(𝑛𝑥 − 𝑠𝑥)!𝑠𝑦!(𝑛𝑦 − 𝑠𝑦)!

× 𝛿𝑛𝑥−𝑠𝑥 ,𝑛𝑦−𝑠𝑦 . (B.4)

For particular example of equal trap frequencies 𝜔𝛼 = 𝜔 such that
𝑛̄𝛼 = 𝑛̄ the spin state probabilities and the respective coherence simplify
to

𝑝↑(𝑡, 𝑇 ) =
1
2

(

1 +
∞
∑

𝑛,𝑠=0
𝑃𝑛𝑃𝑠 cos (𝜃𝑡(𝑛 − 𝑠) + 𝜙)

)

,

𝑝↑,↓(𝑡, 𝑇 ) = − 𝑖𝑒
𝑖𝜙

2

∞
∑

𝑛,𝑠=0
𝑃𝑛𝑃𝑠 sin (𝜃𝑡(𝑛 − 𝑠) + 𝜙) . (B.5)

Both sums in Eq. (B.5) can be evaluated which gives respectively
Eq. (17) and (18). The density operator is diagonal for 𝜙 = 0 with
eigenstates |

|

|

𝜓−1∕2
⟩

= |↓⟩, |

|

|

𝜓1∕2
⟩

= |↑⟩. From Eq. (A.2) we find the
equality 𝐹CL(𝑡, 𝑇 ) = 𝐹Q(𝑡, 𝑇 ). Note that the equality 𝐹CL(𝑡, 𝑇 ) = 𝐹Q(𝑡, 𝑇 )
can be generalized for arbitrary phase 𝜙.

Finally, in order to calculate the probability (20) we use the follow-
ing relation

Tr{𝑒𝜃𝑡(𝑎̂
†
𝑥 𝑎̂𝑦−𝑎̂𝑥 𝑎̂

†
𝑦)𝜌̂th,x ⊗ |0𝑦⟩⟨0𝑦|}

=
∞
∑

𝑛𝑥=0
𝑃𝑛𝑥 ⟨𝑛𝑥, 0𝑦|𝑒

𝜃𝑡(𝑎̂†𝑥 𝑎̂𝑦−𝑎̂𝑥 𝑎̂
†
𝑦)
|𝑛𝑥, 0𝑦⟩ =

∞
∑

𝑛𝑥=0
𝑃𝑛𝑥 cos

𝑛𝑥 (𝜃𝑡)

= 1

1 + 2𝑛̄𝑥 sin
2
(

𝜃𝑡
2

) . (B.6)

B.1.2. Two ion case
We continue with the two ion case, where the collective spin

populations and the spin coherences are given by Eqs. (23) and (24).
We diagonalize the spin density operator which yield 𝜌̂spin(𝑡, 𝑇 ) =
∑1
𝑚=−1 𝜌𝑚 |

|

𝜓𝑚⟩ ⟨𝜓𝑚|| where the eigenvectors are

|𝜓1⟩ = 𝑒𝑖𝜑 cos(𝜉)|1, 1⟩ + sin(𝜉)|1,−1⟩, |𝜓0⟩ = |1, 0⟩,

|𝜓−1⟩ = −𝑒𝑖𝜑 sin(𝜉)|1, 1⟩ + cos(𝜉)|1,−1⟩, (B.7)

with

𝜉 = arctan

⎛

⎜

⎜

⎜

⎜

⎝

√

(𝑎 − 1)2 + 16𝑏2 sin2
(

𝜃𝑡
2

)

√

(𝑎 − 1)2 + 16𝑏2 − 4𝑏 cos
(

𝜃𝑡
2

)

⎞

⎟

⎟

⎟

⎟

⎠

,

𝜑 = arctan

⎛

⎜

⎜

⎜

⎝

4𝑏 sin
(

𝜃𝑡
2

)

𝑎 − 1

⎞

⎟

⎟

⎟

⎠

. (B.8)

The corresponding eigenvalues are given by

𝜌± = 1
8

(

3 + 𝑎 ±
√

(𝑎 − 1)2 + 16𝑏2
)

,

𝜌0 =
1
4
(1 − 𝑎). (B.9)

Here we have introduced the notation 𝑎 = (1 + 4𝑛̄(𝑛̄ + 1) sin2( 𝜃𝑡2 ))
−1 and

𝑏 = (1 + 4𝑛̄(𝑛̄ + 1) sin2( 𝜃𝑡4 ))
−1.

B.2. Two-mode squeezing transformation

Using the representation of the two-mode squeezing operator pre-
sented in [30] one can derived expression for the spin populations. We
find

𝑝↑(𝑡, 𝑇 ) = 1
2
{1 +

∞
∑

𝑛,𝑠=0

min(𝑛,𝑠)
∑

𝑙,𝑘=0
𝑃𝑛𝑃𝑠sech(𝜃𝑡)𝑛+𝑠−𝑙−𝑘+1𝑒𝜃𝑡(𝑙−𝑘)

×
(𝑛 + 𝑠 − 𝑙 − 𝑘)!𝑛!𝑠!

𝑙!(𝑛 − 𝑙)!(𝑠 − 𝑙)!𝑘!(𝑛 − 𝑘)!(𝑠 − 𝑘)!
} (B.10)

and 𝑝↓(𝑡, 𝑇 ) = 1−𝑝↑(𝑡, 𝑇 ). The off-diagonal elements of 𝜌spin(𝑡, 𝑇 ) are zero.
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