
Optics Communications 283 (2010) 4586–4593

Contents lists available at ScienceDirect

Optics Communications

j ourna l homepage: www.e lsev ie r.com/ locate /optcom
Vectorial structure of a hard-edged-diffracted four-petal Gaussian beam in
the far field

Xuewen Long a,b, Keqing Lu a,⁎, Yuhong Zhang a,b, Jianbang Guo a,b, Kehao Li a,b

a State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China
b Graduate School of Chinese Academy of Sciences, Beijing, 100039, China
⁎ Corresponding author.
E-mail address: keqinglu@opt.ac.cn (K. Lu).

0030-4018/$ – see front matter © 2010 Elsevier B.V. A
doi:10.1016/j.optcom.2010.06.097
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 27 April 2010
Received in revised form 28 June 2010
Accepted 30 June 2010

Keywords:
Four-petal Gaussian beam
Vectorial structure
Circular aperture
Far field
Based on the vector angular spectrum method and the stationary phase method and the fact that a circular
aperture function can be expanded into a finite sum of complex Gaussian functions, the analytical vectorial
structure of a four-petal Gaussian beam (FPGB) diffracted by a circular aperture is derived in the far field. The
energy flux distributions and the diffraction effect introduced by the aperture are studied and illustrated
graphically. Moreover, the influence of the f-parameter and the truncation parameter on the non-paraxiality
is demonstrated in detail. In addition, the approximate formulas obtained in this paper can degenerate into
un-apertured case when the truncation parameter tends to infinity. This work is beneficial to strengthen the
understanding of vectorial properties of the FPGB diffracted by a circular aperture.
ll rights reserved.
© 2010 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, there have been increasing interests in the study of
beam pattern formation. Many beam patterns have potential and
practical applications. For example,many researches have been done on
dark-hollow beam because it is a powerful tool in precise manipulation
and control of microscopic particles [1–5]. In fact, many other kinds of
special laser patterns and discrete beam, such as flower-like patterns,
daisy patterns and discrete cylindrical vector beam have been observed
and investigated [6–8]. More recently, a new form of laser beam called
four-petal Gaussian beam has been introduced and its properties of
passing through a paraxial ABCD optical system have been studied [9].
Subsequently, much work has been done on four-petal Gaussian beam
[10–14]. As is well known, some researches and applications are
conducted in the far field. Meanwhile, in practical applications,
however, there are more or less aperture effects, so it is of practical
significance to study the influence of a hard-edged aperture on the far
field properties of four-petal Gaussian beam.

In this paper, firstly the power transmissivity of the truncated four-
petal Gaussian beam passing through a circular aperture is studied.
Secondly, the analytical vectorial structure of four-petal Gaussian beam
diffracted by a circular aperture is derived based on vector angular
spectrum method [15–18], stationary phase method [19], and the fact
that a circular aperture function can be expanded into a finite sum of
complex Gaussian functions [20]. Based on the analytical vectorial
structure of four-petal Gaussian beam diffracted by a circular aperture,
the energyfluxexpressions of TE term, TMtermand thewholebeamare
also obtained, respectively. Thirdly, some typical numerical examples
are given to illustrate the influenceof thediffraction effect introducedby
an aperture on the far field energy flux distributions of four-petal
Gaussian beam. Furthermore, the influence of the f-parameter and the
truncation parameter on the non-paraxiality is demonstrated. Finally,
some simple conclusions are given.

2. Analytical vectorial structure of a hard-edged-diffracted
four-petal Gaussian beam

Let us consider a half space zN0 filled with a linear, homogeneous,
isotropic, and nonconducting medium characterized by electric
permittivity ε and magnetic permeability μ. All the sources only lie
in the domain zb0. For convenience of discussion, we consider a four-
petal Gaussian beam with polarization in the x direction, which
propagates toward the half space z≥0 along the z axis. The transverse
electric field distribution of the incident four-petal Gaussian beam at
z=0 plane can be written by [9]

Ex x;y;0ð Þ = Gn

xy

w2
0

 !2n

exp −x
2 + y

2

w2
0

 !
; n = 0;1;2…; ð1Þ

Eyðx;y;0Þ = 0; ð2Þ

where Gn is a amplitude constant associated with the order n; w0 is
the 1/e2 intensity waist radius of the Gaussian term; n is the beam
order of the four-petal Gaussian beam. When n=0, Eq. (1) reduces to
the ordinary fundamental Gaussian beam with the waist being w0 at
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Fig. 2. The power transmissivity of the truncated FPGB versus the truncation parameter
β for various beam order n=0 (dash-dotted curve), n=1 (solid curve), and n=3
(dashed curve), respectively.
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the plane z=0. The time factor exp(− iωt) has been omitted in the
field expression. After simple calculation, we know that the distance
of diagonal petals is given by

d = 2 2nð Þ1=2w0: ð3Þ

According to Eq. (3), the distance d is determined by beam order n and
waist size w0.

Supposing that a hard-edged circular aperture is located at the
z=0 plane, and the center of the circular aperture is the origin. The
geometry for the screen with a circular aperture and the coordinate
system is shown in Fig. 1. The corresponding circ function can be
written as follows

circ
ρ
R

� �
= 1; ρ≤R;

0; ρ N R:

�
ð4Þ

where R denotes the radius of the circular aperture and ρ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
is the radial distance. The power transmissivity of the truncated four-
petal Gaussian beam is given by

Tn =
∫R

0
∫2π
0

Ex ρ; θ;0ð Þj j2ρdρdθ
∫∞
0
∫2π
0

Ex ρ; θ;0ð Þj j2ρdρdθ

= 1−
Γ 4n + 1;2β2
� �

4nΓ 4nð Þ ;

ð5Þ

where Γ(z)=∫0

∞
t z−1e− tdt is Euler gamma function, and Γ a; zð Þ =

∫∞
z
ta−1e−tdt is incomplete gamma function. β=R /w0 is defined as the

truncation parameter. When n tends to zero, one can also obtain the
fundamental Gaussian beam power transmissivity, namely

T0 = 1− exp −2R2
=w

2
0

� �
: ð6Þ

Fig. 2 represents the power transmissivity of the truncated FPGB
versus the truncation parameterβ for various beam order n=0 (dash-
dotted curve), n=1 (solid curve), and n=3 (dashed curve),
respectively. It is found that Tn increases rapidly with decreasing n
for the same value of β.

Starting from Maxwell's equations, the basic principles of vector
angular spectrum method are vectorial plane wave expansion. The
propagating electric field toward half space z≥0 turns to be [15,18,21]

Ex x;y; zð Þ = ∫∫∞
�∞

Ax p; q;γð Þ exp ik px + qy + γzð Þ½ �dpdq; ð7Þ
Fig. 1. Illustrating the geometry of the screen with a circular aperture and the
coordinate system.
Ey x;y; zð Þ = ∫∫∞
−∞

Ay p; q;γð Þ exp ik px + qy + γzð Þ½ �dpdq; ð8Þ

Ez x;y; zð Þ = −∫∫∞
−∞

p
γ
Ax p; q;γð Þ + q

γ
Ay p; q;γð Þ

� �

× exp ik px + qy + γzð Þ½ �dpdq;

ð9Þ

where k=2π/λ denotes the wave number in the medium related
wave length λ, γ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−p2−q2

p
, if p2+q2≤1 or γ = i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 + q2−1

p
, if

p2+q2N1. The values of p2+q2b1 correspond to the homogeneous
waves which propagate at angles arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 + q2

p
with respect to the

positive z axis, whereas the values of p2+q2N1 correspond to the
evanescent waves which propagate along the boundary plane but
decays exponentially along the positive z direction. In terms of Fourier
transform, the transverse components of the vectorial angular spectrum
of the electric field just behind the aperture are expressed as follows

Ax p; qð Þ = 1
λ2 ∫∫

∞
−∞

Ex x;y;0ð Þcirc ρ
R

� �
exp −ik px + qyð Þ½ �dxdy; ð10Þ
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λ2 ∫∫

∞
−∞

Ey x;y;0ð Þcirc ρ
R

� �
exp −ik px + qyð Þ½ �dxdy: ð11Þ

As is well known, circ function can be expanded into a finite sum of
complex Gaussian functions [20,22,23]

circ
ρ
R

� �
= ∑

10

l=1
Al exp −Bl

ρ2

R2

 !
; ð12Þ

where the coefficients Al and Bl can be obtained by optimization com-
putation and they can be found in Table 1 of Ref. [20]. On substituting
Eqs. (1), (2) and (12) in Eqs. (10) and (11), one can find
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2
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2
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4f 2
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Ay p; qð Þ = 0; ð14Þ

where f=1/kw0,which is the f-parameter, and 1F1(·) denotes confluent
hypergeometric function. It is well known thatMaxwell's equations can
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be separated into transverse and longitudinal field equations and an
arbitrary polarized electromagnetic beam, which is expressed in terms
of vector angular spectrum, is composed of the transverse electric (TE)
term and the transverse magnetic (TM) term, namely,

→
E →rð Þ = →

ETE
→rð Þ + →

ETM
→rð Þ; ð15Þ

→
Hð→r Þ = →
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→
HTMð→r Þ; ð16Þ

where
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and
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−∞
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→
HTM

→rð Þ = −
ffiffiffi
ε
μ

r
∫∫∞

−∞
pAx p; qð Þ + qAy p; qð Þ
h i 1

b2γ
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where →r = xêx + yêy + zêz is the displacement vector and êx, êy, êz
denote unit vectors in the x, y, z directions, respectively; u=px+qy+
γz; b2=p2+q2.

Generally speaking, the evolution of beam is often studied by
virtue of numerical simulation. However, in the far field framework,
the condition k(x2+y2+z2)1/2→∞ is satisfied due to z is big enough.
By virtue of the method of stationary phase [19], the TE mode and the
TM mode of the electromagnetic field can be given by
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where r =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2 + z2

p
, and ZR=πw0

2 /λ is the Rayleigh length.
Eqs. (21)–(24) are analytical vectorial expressions for the TE and TM
terms in the far field and constitute the basic results in this paper. It
follows that spherical wave front remain unchanged for apertured
FPGB in the far field. The results obtained here are applicable for both
non-paraxial case and paraxial case. From Eqs. (21)–(24), one can
find that

→
ETEð

→
r Þ·→

ETMð→r Þ = 0; ð25Þ

→
HTEð

→
r Þ·→

HTMð
→
r Þ = 0: ð26Þ

According to Eqs. (25) and (26), the TE and TM terms of a hard-
edged-diffracted four-petal Gaussian beam are orthogonal to each
other in the far field.

3. Energy flux distributions in the far field

The energy flux distributions of the TE and TM terms at the
z=const plane are expressed in terms of the z component of their
time-average Poynting vector as

〈Sz〉TE =
1
2
Re

→
E

⁎
TE×

→
HTE

h i
z
; ð27Þ

〈Sz〉TM =
1
2
Re

→
E

⁎
TM×

→
HTM

h i
z
; ð28Þ

where the Re denotes real part, and the asterisk denotes complex
conjugate. The whole energy flux distribution of the beam is the sum
of the energy flux of the TE and TM terms, namely

〈Sz〉 = 〈Sz〉TE + 〈Sz〉TM : ð29Þ

On substituting Eqs. (21)–(24) in Eqs. (27)–(28) yields
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1
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ffiffiffi
ε
μ

r
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2
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Sn x;y; z; f ;βð Þj j2; ð30Þ
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2
R
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x
2z

r3ρ2 Γ n +
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 �� �4
Sn x;y; z;f;βð Þj j2: ð31Þ



Fig. 3.Normalized energy fluxes 〈Sz〉TE , 〈Sz〉TM and 〈Sz〉 of the FPGBwith beam order n=1 and n=3 (from top to bottom) in the reference plane z=2000λ, respectively. Waist sizew0

is set to 10λ, and the circular aperture radius R→∞.

Fig. 4.Normalized energy fluxes 〈Sz〉TE , 〈Sz〉TM and 〈Sz〉 of the hard-edged-diffracted four-petal Gaussian beamwith beam order n=1 in the reference plane z=2000λ. The truncation
parameter is set to β =

ffiffiffi
2

p
and β=1 (from top to bottom), respectively. Waist size w0 is set to 10λ.
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Fig. 5. Cross section and on-axis value of the normalized total energy flux of the hard-
edged-diffracted four-petal Gaussian beam with the beam order n=1 in the reference
plane z=2000λ. Waist size w0 is set to 10λ. (a) The cross section with respect to x
direction (y=0) with various truncation parameter β=1 (dashed curve), β =

ffiffiffi
2

p

(circled curve), and β=∞ (solid curve), respectively, (b) Normalized axial energy flux
at z=2000λ versus the truncation parameter β.
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Therefore, the whole energy flux distribution of a hard-edged-
diffracted four-petal Gaussian beam in the far field is given by

〈Sz〉 =
1
2

ffiffiffi
ε
μ

r
G2
nZ

2
R

π2

z
r3ρ2

y
2z2

r2
+ x

2

 !
Γ n +

1
2


 �� �4
Sn x;y; z; f ;βð Þj j2;

ð32Þ
where

Sn x;y; z; f ;βð Þ = ∑
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× 1F1 n +
1
2
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1
2
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4f 2r2
β2

β2 + Bl

 !
;

ð33Þ

the function Sn(·) is defined as above for simplifying expressions of
energy flux. Eqs. (30)–(32) indicate that the diffraction effect
introduced by a circular aperture is described by the truncation
parameter β in the far field. The smaller the truncation parameter is,
the more strongly the field is diffracted by the aperture. In addition, as
the truncation parameter β tends to infinity, Eqs. (30)–(32) degenerate
into
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ð34Þ
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× 1F1 n +
1
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;
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4f 2r2

 !2
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ð36Þ

As a matter of fact, Eqs. (34)–(36) are energy flux expressions in un-
apertured case, which is not difficult to understand.

4. Numerical examples and discussion

Thenormalized energyfluxdistributions of the TE term, the TMterm
and the whole of the un-apertured beam at the plane z=2000λ for
different beam order n=1 and 3 versus x/λ and y/λ are illustrated in
Fig. 3 based on Eqs. (34)–(36), respectively.Waist sizew0 is set to 10λ in
the calculation. Apparently, the TE term and the TMtermare orthogonal
to each other. The four-petal Gaussian beam splits into a number of
small petals in the farfield,whichdiffers from its initial four-petal shape.
Furthermore, the number of petals in the far field gradually increases
when the parameter n increases, which has potential applications in
micro-optics and beam splitting techniques, etc [9]. The above
conclusion is also applicable to four-petal Gaussian beam diffracted
by a circular aperture. In fact, the four-petal Gaussian beam with beam
order n is not a pure mode, which can be regarded as a superposition
of n2 two dimensional Hermite–Gaussian modes [9], and different
modes evolve differently within the same propagation distance. The
overlap and interference between different modes result in the
propagation properties of the four-petal Gaussian beam in the far field.

The influence of the diffraction effect introduced by the aperture on
the energyfluxdistributions of the four-petal Gaussian beam is depicted
in Fig. 4 and Fig. 5 based on Eqs. (30)–(32). Waist size w0 is set to 10λ.
For simplicity, the beam order n is set to be 1. In Fig. 4, the truncation
parameter is set toβ =

ffiffiffi
2

p
andβ=1, respectively. According to Eq. (3),

the four peak-value positions of the incident beam is just on the
boundary line of the circle when the truncation parameter is set to
β =

ffiffiffi
2

p
for n=1. Comparing top subfigure of Fig. 3 with Fig. 4, one can

find that the central spot and side lobes spread more widely in the far
field when the circular aperture exists. Moreover, the smaller the radius
of the aperture is, the more wide the distribution of the energy flux is.
This phenomenon is easy to understand because the initial field is
confined by the aperture and its diffracted field has bigger divergence
angle in the far field [24]. For the sake of showing clearly, cross section
andon-axis value of thewhole energyflux is plottedbased onEq. (32) in
Fig. 5. Fig. 5(a) shows cross section of the total energy flux at y=0 for
different truncation parameter, from which we can see clearly that the
relative values of the lobes and the full width at halfmaximum(FWHM)
of the central spot become bigger when the truncation parameter

image of Fig.�5
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decreases. The values of FWHM are 41.6λ for R=∞, 61.8λ for β =
ffiffiffi
2

p
,

and 83.8λ for β=1, respectively. In addition, the ratios of themaximum
value of the first side-lobe to that of the central spot are 0.19 for β=∞,
0.32 for β =

ffiffiffi
2

p
, and 0.34 for β=1, respectively. The on-axis energy
Fig. 6. Cross section at y=0 of the normalized total energy flux of the hard-edged-
diffracted four-petal Gaussian beam with the beam order n=1 in the reference plane
z=2000λ. The solid and the dashed curves denote the non-paraxial and the paraxial
results, respectively. Truncation parameter β is 2. In subfigure (c) cross section at x=0
is also plotted based on non-paraxial result. (a) f=0.1, (b) f=0.2, (c) f=1.5.
flux of the whole beam at z=2000λ versus truncation parameter β is
shown in Fig. 5(b). It should be noticed that the truncation parameter
cannot be too small in order to obtain the better transmissivity in
practical application.
Fig. 7. Cross section at y=0 of the normalized total energy flux of the hard-edged-
diffracted four-petal Gaussian beam with the beam order n=1 in the reference plane
z=2000λ. The solid and the dashed curves denote the non-paraxial and the paraxial
results, respectively. The f-parameter is set to be 0.1. (a) β=1.1, (b) β=1.5, (c) β=2.5.
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Fig. 8. Normalized total energy flux of the hard-edged-diffracted four-petal Gaussian beam with the beam order n=1 in the reference plane z=2000λ. The f-parameter is set to be
1.5. β=2.0. (a) non-paraxial result, (b) paraxial result.
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It is well known that the paraxial approximation is allowable when
w0 /λ is much larger than 1. The far field expression of the four-petal
Gaussian beam diffracted by a circular aperture under paraxial regime
can be treated as a special case by using approximation

r = z +
ρ2

2z
≈z: ð37Þ

Therefore, the paraxial expression of the whole energy flux of the
four-petal Gaussian beam diffracted by a circular aperture turns out to
be

〈Sz〉 =
1
2

ffiffiffi
ε
μ

r
G2
nZ

2
R

π2

1
r2

Γ n +
1
2


 �� �4
Sn x;y; z; f ;βð Þj j2: ð38Þ

Eq. (38) is symmetric about the x and y variables, whereas Eq. (32)
is somewhat asymmetric about the x and y variables. With the given
beam order, the non-paraxiality of an apertured FPGB depends on f-
parameter and truncation parameter β. Fig. 6 shows cross section at
y=0 of the normalized total energy flux of the hard-edged-diffracted
four-petal Gaussian beam with different f-parameter in the reference
plane z=2000λ. Truncation parameter β is 2. For simplicity, the beam
order n=1 (hereafter). The solid and the dashed curves denote the
non-paraxial and the paraxial results, respectively (hereafter). From
Fig. 6(a) one find that the difference between the non-paraxial and
the paraxial results is negligible for β=2 and f≤0.1. The difference
between them becomes evident as the f-parameter increases. The
central beam spot obtained by paraxial result is obviously larger than
that obtained by non-paraxial result and side lobes disappear when f-
parameter increases enough, which is shown in Fig. 6(c). Moreover,
the cross section at x=0 is also plotted in Fig. 6(c) in order to observe
the asymmetry. Fig. 7 shows cross section at y=0 of the normalized
total energy flux of the hard-edged-diffracted four-petal Gaussian
beam with different truncation parameter in the reference plane
z=2000λ. The f-parameter is 0.1. The difference between paraxial
result and non-paraxial result becomes evident as the truncation
parameter decreases. Comparing Fig. 6 with Fig. 7, we obtained the
conclusion that the f-parameter plays a more key role in determining
the non-paraxiality of an apertured FPGB than does the truncation
parameter β, which is similar to the conclusions of Refs. [25,26]. In
order to understand, Fig. 6(c) is plotted in contour graphs, which is
shown in Fig. 8. It can be clearly shown that the non-paraxial result is
approximately elliptic, which is obviously different from the paraxial
result. The above conclusion is also applicable to other higher beam
order.

5. Conclusions

In summary, the vectorial structure of an apertured four-petal
Gaussian beam in the far field is derived in the analytical form by
using the vector angular spectrum method, the complex Gaussian
expansion of the circular aperture function, and the stationary phase
method. Based on the analytical vectorial structure of an apertured
beam, the energy flux distributions of the TE term, the TM term and
the whole beam are derived in the far field. Our formulas obtained in
this paper are applicable to both non-paraxial case and paraxial case.
When the truncation parameter β tends to infinity, our formulas
degenerate into the un-apertured case. The four-petal Gaussian beam
cannot preserve its initial shape, and the number of petals in the far
field gradually increases when beam order n increases. Energy
distributions spread more widely in the far field when the circular
aperture exists. The influence of f-parameter and truncation param-
eter on the far field behavior is also studied in detail. The f-parameter
plays a more key role in determining the non-paraxiality of an
apertured FPGB than does the truncation parameter β. In addition, the
asymmetry of beam spot becomes apparent with increasing non-
paraxiality. This work is important to understand the theoretical
aspects of vector FPGB and is beneficial to its practical application.
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