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Sentiment Analysis is defined as the computational study of opinions, sentiments and emotions

expressed in text. Within this broad field, most of the work has been focused on either Sentiment

Polarity classification, where a text is classified as having positive or negative sentiment, or Subjectivity

classification, in which a text is classified as being subjective or objective. However, in this paper, we

consider instead a real-world problem in which the attitude of the author is characterised by three

different (but related) target variables: Subjectivity, Sentiment Polarity, Will to Influence, unlike the

two previously stated problems, where there is only a single variable to be predicted. For that reason,

the (uni-dimensional) common approaches used in this area yield to suboptimal solutions to this

problem. Somewhat similar happens with multi-label learning techniques which cannot directly tackle

this problem. In order to bridge this gap, we propose, for the first time, the use of the novel multi-

dimensional classification paradigm in the Sentiment Analysis domain. This methodology is able to join

the different target variables in the same classification task so as to take advantage of the potential

statistical relations between them. In addition, and in order to take advantage of the huge amount of

unlabelled information available nowadays in this context, we propose the extension of the multi-

dimensional classification framework to the semi-supervised domain. Experimental results for this

problem show that our semi-supervised multi-dimensional approach outperforms the most common

Sentiment Analysis approaches, concluding that our approach is beneficial to improve the recognition

rates for this problem, and in extension, could be considered to solve future Sentiment Analysis

problems.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Sentiment Analysis (SA), which is also known as Opinion
Mining, is a broad area defined as the computational study of
opinions, sentiments and emotions expressed in text [33]. It
mainly originated to meet the need for organisations to auto-
matically find the opinions or sentiments of the general public
about their products and services, as expressed on the Internet. A
fundamental methodology in many current SA applications and
problems is the well-known pattern recognition field called
classification [6].

Most of the work within this field has focused on the Sentiment

Polarity classification, i.e. determining if an opinionated text has
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positive or negative sentiment [38]. However, motivated by
different real-world problems and applications, researchers have
considered a wide range of closely related problems over a variety
of different types of corpora [37]. As an example of these
problems, we can find the following: Subjectivity classification,
which consists of determining if a text is subjective or objective
[41], Authorship identification, which deals with the problem of
identifying the author of a given text [2] or Affect Analysis, which
recognises emotions in a text [1].

In an analogous fashion, a real-world application within this field
has recently been tackled in Socialware&,1 one of the most relevant
companies in mobilised opinion analysis in Europe. The main goal of
this application is to determine the attitude of the customers that
write a post about a particular topic in a specific forum. The
characterisation of these costumers is performed in this problem
1 http://www.asomo.net/indexE.jsp
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by measuring three different dimensions: the sentiment, the sub-
jectivity and the potential influence of each post in the forum.

By just relying on the previous work done in the SA domain,
we can approach this problem by dividing it into three different
subproblems (one per each dimension to be classified) and tackle
them separately, i.e. study them in isolation by learning different
classifiers to predict the value of each target variable as if they
were independent.

However, some of the individual approaches explored in the
literature for each subproblem could be adapted to the others.
Moreover, a large number of papers [35,56] proposed approaches
for the problems of Sentiment Polarity classification and Subjec-
tivity classification, and sometimes by even using the same
corpus. This could indicate a certain degree of correlation between
these subproblems, and consequently between their target vari-
ables, as noticed in [37]. Nevertheless, this relation has never been
directly demonstrated due to the fact that, to the best of our
knowledge, no technique capable of dealing with several target
variables has ever been used to embrace SA problems. In spite of
that, it is relatively easy to notice the relation that exists between
the sentiment and subjectivity (a neutral review probably indi-
cates objectivity). So, why not learn a single classifier to classify
the three dimensions simultaneously so as to make use of the
statistical similarities between them? Finding a more predictive
classifier by means of this thought would demonstrate that there
is an actual relationship between these target variables. Also, in
extension to the SA domain, why not join some previously cited
problems in the same classification task in order to find more
accurate multi-dimensional classifiers that take advantage of their
closeness?

In order to embody this perception, we propose the use of the
recently proposed multi-dimensional Bayesian network classifica-
tion framework [53] to deal with multiple class classification
problems in the context of SA by solving a real-world application.
This methodology performs a simultaneous classification by exploit-
ing the relationships between the class variables to be predicted.
Note that, under this framework, several target variables could be
taken into account to enrich the SA problem and create market
intelligence.

Most papers have already addressed the SA task by building
classifiers that exclusively rely on labelled examples [33]. How-
ever, in practice, obtaining enough labelled examples for a
classifier may be costly and time consuming, an annotator has
to read loads of text to create a reliable corpus. And this problem
is accentuated when using multiple target variables. So, why not
make use of the huge amount of unlabelled data available on the
Internet to improve our solutions? Thus, the scarcity of labelled
data also motivates us to deal with unlabelled examples in a
semi-supervised framework when working with the exposed
multi-dimensional view.

Motivated by the aforementioned comments, the following
contributions are presented in this paper:
1.
 A novel and competitive methodology to solve the exposed
real-world SA application.
2.
 An innovative perspective to manage the SA domain by dealing
with several related problems in the same classification task.
3.
 The use of multi-dimensional class Bayesian network classi-
fiers as supervised methodology to solve these multi-dimen-
sional problems. This demonstrates that there is an actual
correlation between sentiment and subjectivity as previously
observed in several SA researches [35,37,56].
4.
 A supervised filter learning algorithm for multi-dimensional
J/K dependences Bayesian network classifiers.
5.
 The extension of multi-dimensional classification to the semi-
supervised framework by proposing a set of semi-supervised
learning algorithms. This demonstrates that more predictive
models can be found by making use of the unlabelled examples.

The rest of the paper is organised as follows. Section 2
describes the real multi-dimensional problem extracted from
the SA domain which is solved in this paper, reviews the work
related to SA and its problems, and motivates the use of multi-
dimensional approaches in this context. The multi-dimensional
supervised classification paradigm is defined in Section 3. Section
4 describes the multi-dimensional class Bayesian network classi-
fiers. A group of algorithms to learn different types of multi-
dimensional Bayesian classifiers in a supervised framework is
introduced in Section 5. Section 6 not only introduces the idea of
semi-supervised learning into the multi-dimensional classifica-
tion, but also extends the supervised algorithms presented in
Section 5 to the semi-supervised framework. Section 7 shows the
experimental results of applying the proposed multi-dimensional
classification algorithms using different feature sets to the real
problem stated in Section 3. Finally, Section 8 sums up the paper
with some conclusions and future work recommendations.
2. Problem statement and state-of-the-art review

2.1. The Sentiment Analysis domain

The concept of SA, motivated by different real-world applications
and business-intelligence requirements, has recently been inter-
preted more broadly to include many different types of analysis of
text, such as the treatment of opinion, sentiment or subjectivity [37].

Within this broad field, the most known problem is referred to as
Sentiment Polarity classification, in which the problem of classifying
documents by their overall sentiment is considered, i.e. determining
whether a review is positive or negative [38]. Several papers
have expanded this original goal by, for instance, adding a neutral
sentiment [56] or considering a multi-point scale [48] (e.g. one to
five stars for a review) or using sentences or phrases instead of
reviews as input of the sentiment classifier [56].

Work in Sentiment Polarity classification often assumes the
incoming documents to be opinionated [37]. For many applica-
tions, though, we may need to decide whether a given document
contains subjective information or not. This is referred to as
Subjectivity classification and has gained considerable attention
in the research community [41,42,54]. Due to its ability to
distinguish subjective texts from the factual ones, it is also of
great importance in SA. There are works in which a subjectivity
classifier is used to filter the objective documents from a dataset
before applying a sentiment classifier [56,35]. There are even
works in which the need to predict both the Sentiment
Polarity and the Subjectivity has been noticed [21]. As stated in
[37], ‘‘the problem of distinguishing subjective versus objective
instances has often proved to be more difficult than subsequent
polarity classification, so improvements in subjectivity classifica-
tion promise to positively impact sentiment classification’’. From
this quotation we can infer that Sentiment Polarity classification
depends on Subjectivity classification and that there is a need to
improve the methodologies used in Subjectivity classification.

Other closely related problems can be found in the SA domain:
the set of problems called Viewpoints and Perspectives [37] which
includes problems such as classifying political texts as liberal or
conservative or placing texts along an ideological scale. Authorship

identification deals with the problem of identifying the author of a
given text [2]. Affection Analysis consists of extracting different types
of emotions or affects from texts [1]. Sarcasm Recognition deals with
the SA hard-nut problem of recognising sarcastic sentences [52].
More problems and applications are discussed in [37].
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2.2. The ASOMO problem: a multi-dimensional perspective of SA

In this paper, we deal with a recent real-world problem
studied in Socialware&. This problem is extracted from its ASOMO

service of mobilised opinion analysis and it has an underlying
multi-dimensional nature that can be viewed as an augmentation
of the classical problems of Sentiment Polarity classification and
Subjectivity classification.

The main goal of this application is to determine the attitude
of a customer when he writes a post about a particular topic in a
specific forum through three different dimensions: Sentiment
Polarity and Subjectivity (as widely used in the SA domain), and
a third one called Will to Influence, which is frequently used in
the framework of ASOMO. The latter is defined as the dimension
that rates the desire of the opinion holder to cause a certain
reaction in the potential readers of the text. While some people
leave a post on a forum to tell of their experience, others seek to
provoke a certain kind of reaction in the readers. In our applica-
tion, this class variable has four possible values: none (declarative
text), question (soft Will to Influence), complaint/recommenda-
tion (medium Will to Influence) and appellation (strong Will to
Influence). We use two example cases in order to introduce the
ASOMO problem:
�
 A customer who has bought an iPhone does not know how to
set up 3G on the phone, so he writes on a forum: ‘‘How can I
configure 3G on my iPhone?’’.

�
 Another customer is upset with the iPhone battery lifetime

and writes in the same forum: ‘‘If you want long battery life,
then don’t buy an iPhone’’.

The attitude of both customers is very different. The first one
has a doubt and writes to obtain a solution to his problem
{neutral sentiment, objective and soft Will to Influence} while
the second writes so as not to recommend the iPhone {negative
sentiment, subjective and strong Will to Influence}. Fig. 1 shows
one possible view of this problem and how we can translate the
attitude of the author in three different class variables that are
strongly correlated.

As previously mentioned, Will to Influence has four possible
values: declarative text, soft, medium and strong will to influence.
Sentiment Polarity, in this dataset, has five different labels as
occurs in the 1–5 star ratings. In addition to the three classic
values (positive, neutral and negative), it has the values ‘‘very
negative’’ and ‘‘very positive’’. Note that in using this approach,
the label ‘‘neutral’’ in Sentiment Polarity is ambiguous, as hap-
pens in the SA literature [37]. So, it can be used as a label for the
objective text (no opinion) or as a label for the sentiment that lies
between positive and negative. As usual, Subjectivity has two
Fig. 1. The vision of Socialware& of the problem of de
values: objective and subjective. Fig. 2 shows not only the label
distribution in the dataset for each different class variable (the
three bar diagrams on the left), but also the joint label distribu-
tion of these three class variables over the labelled subset of the
ASOMO dataset (the table on the right). Note that there are
configurations of the joint label distribution that are equal to
zero, this is because there are configurations of the class variables
which are not possible, e.g. {strong Will to Influence, negative
sentiment and objective}.
2.2.1. The ASOMO SA dataset

In order to deal with the previous problem, the ASOMO dataset
was collected by Socialware&. This corpus was extracted from a
single online discussion forum in which different customers of a
specific company had left their comments, doubts and views about
a single product. The forum consists of 2542 posts written in
Spanish, with an average of 94774 words per post. One hundred
and fifty of these documents have been manually labelled by an
expert in Socialware& according to the exposed three different
dimensions and 2392 are left as unlabelled instances.

As a result of the extensive work carried out by Socialware& on
manually dealing with the ASOMO problem in the recent past,
high levels of experience and understanding of determining the
major factors that characterise the attitude of the customers have
been gained. These factors are the following: (1) the implication
of the author with the other customers in the forum, (2) the
position of authority of the customer, and (3) the subjective
language used in the text.

These broad factors have been helpful in detecting a list of 14
morphological features which characterise each analysed docu-
ment. In order to engineer this list of features, each document is
preprocessed using an open source morphological analyser [3,8].
Firstly, spelling in the entire corpus is checked. Then, the analyser
provides information related to the part-of-the-speech (PoS)
tagging [38]. Once the preprocessing task is performed, determin-
ing the values of the features is carried out by just looking for
specific patterns in the corpus. In the following paragraphs, a
detailed introduction of each factor is given, as well as a descrip-
tion of the features used in each factor.

The implication of the author: This factor covers the features
that are related with the interaction between the author and the
other customers in the forum. It consists of six different features
that are described in Table 1. For each feature, we show its
description and an example (with its translation into English) of
the type of pattern that matches with the feature.

The position of authority of the opinion holder is mainly
characterised by the purpose of the written post and it is related
to the potential influence on the readers of the forum. The author
termining the attitude of the writers in a forum.



Table 1
Subset of features related to the implication of the author with other customers.

Feature Description Example Translation

First persons Number of verbs in the fist person Contraté y I hired y

Second persons Number of verbs in the second person Tienes y You have y

Third persons Number of verbs in the third person Sabe y He knows y

Relational forms Number of phatic expressions, i.e. expressions

whose only function is to perform a social task

(1) Hola (1) Hello

(2) Gracias de antemano (2) Thanks in advance

Agreement expressions Number of expressions that show

agreement or disagreement

(1) Estoy de acuerdo contigo (1) I agree with you

(2) No tienes razón (2) You’re wrong

Request Number of sentences that express

a certain degree of request

(1) Me gustarı́a saber y (1) I’d like to know y

(2) Alguien podrı́a y (2) I would appreciate it if someone could y

Fig. 2. Distribution of the labels of the three class variables over the labelled subset. The marginal distributions of Will to Influence, Sentiment Polarity and Subjectivity are

represented as bar diagrams (left) and the joint distribution is represented in a table (right).
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could express advice, disapproval with a specific product, predic-
tions, etc. Table 2 shows the six features that are part of this
major factor.

Subjective language deals with the opinion of the author.
In order to determine this factor, we consider only the adjective
detected with the PoS recogniser, as commonly carried out in the
state-of-the-art literature [27]. Then, the adjectives are
classified in polarity terms by means of a hand-annotated
sentiment-lexicon. As a result of this task, we obtain two
features: Positive Adjectives and Negative Adjectives, which are
the number of positive and negative adjectives, respectively, in
the text.



Table 2
Subset of features related to the position of authority of the customer.

Feature Description Example Translation

Imperatives Number of imperative verbs in the second person No compres Do not buy

Exhorts and Advice Number of exhort verbs, e.g. recommend, advise, prevent, etc. Te recomiendo y I recommend that you y

Sufficiency Expressions Number of expressions used to corroborate other sentences of the text (1) Por supuesto (1) Of course

(2) Naturalmente, y (2) Naturally, y

Prediction Verbs Number of verbs in the future (1) Voy a probar (1) I’m going to try

(2) Llamaré. (2) I’ll call

Authority Number of expressions that denote high degree of authority,

usually written in the subjunctive mode

Si fuera tú, y If I were you, y

Questions Number of question in the post, both direct and indirect (1) ¿ Qué tal es? (1) How is it?

(2) Dime qué te parece (2) Tell me what you think of it
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The 14 features (the ASOMO features) are normalised to be in
the range [0,1] by dividing them by the maximal observed value.

2.3. The need for multi-dimensional classification techniques

In order to solve the typical problems of the SA domain (those
exposed in Section 2.1), there are two main types of techniques
that can be distinguished: Symbolic and Machine Learning [20].
The symbolic approach uses manually crafted rules and lexicons,
whereas the machine learning approach uses supervised or semi-
supervised learning to construct a model from a training corpus.
Due to the fact that the main proposal of this paper is to solve a
real SA problem by means of a novel machine learning technique,
this paper focuses on the latter. The machine learning approaches
have gained interest because of (1) their capability to model many
features and, in doing so, capturing context, (2) their easier
adaptability to changing input, and (3) the possibility to measure
the degree of uncertainty by which a classification is made [20].
Supervised methods that train from examples which have been
manually classified by humans are the most popular.

Most of the work that has been carried out in tuning up these
machine learning techniques (as also happens in text processing
tasks) has been dedicated to addressing the problem of converting a
piece of text into a feature vector (i.e. model features able to capture
the context of the text) in order to improve the recognition rates.
The most common approaches use the single lower cased words
(unigrams) as features, which in several cases reports pretty good
results as in [38]. However, other common approaches can be found,
such as n-grams [35] or PoS information [38]. A deeper study of such
work is beyond the scope of this paper. The reader who is interested
in feature engineering can consult [22], where there is an extensive
body of work that addresses feature selection for machine learning
approaches in general.

On the other hand, little research has been done on the
induction of the classifiers. Most of the existing works learn
either a naive Bayes [38,56] or a support vector machine (SVM)
[2,38], i.e. uni-dimensional classifiers able to predict a single
target variable. For that reason, the classification models used in
the SA literature seem inappropriate to model the three-dimen-
sional problem exposed in this paper. However, there are several
possibilities to adapt these uni-dimensional classifiers to multi-
dimensional classification problems, and the ASOMO problem is
no exception. Unfortunately, none of these approaches captures
exactly the underlying characteristics of the problem [44]:
�
 One approach is to develop multiple classifiers, one for each
class variable. However, this approach does not capture the
real characteristics of the problem, because it does not model
the correlations between the different class variables and so, it
does not take advantage of the information that they may
provide. It treats the class variables as if they were indepen-
dent. In the case of the previously exposed problem, it would
be splitting it into three different uni-dimensional problems,
one per each class variable.

�
 Another approach consists of constructing a single artificial

class variable that models all possible combinations of classes.
This class variable models the Cartesian product of all the class
variables. The problem of this approach arises because this
compound class variable can easily end up with an excessively
high cardinality. This leads to computational problems
because of the high number of parameters the model has to
estimate. Furthermore, the model does not reflect the real
structure of the classification problem either. By means of this
approach, the ASOMO problem would be redefined as a uni-
dimensional problem with a 40-label class variable.

The previous approaches are clearly insufficient for the resolu-
tion of problems where class variables have high cardinalities or
large degrees of correlation among them. The first approach does
not reflect the multi-dimensional nature of the problem because
it does not take into account any correlation among the class
variables. The second approach, however, does not consider the
possible conditional independences between the classes and
assumes models that are too complex. As can be seen in the
experiments section, these deficiencies in capturing the real
relationship between the class variables may cause a low perfor-
mance, so new techniques are required to bridge the gap between
the solutions offered by the learning algorithms used in the SA
literature and the multi-dimensional underlying nature of the
ASOMO problem.

Multi-label learning [51], which deals with problems with
several labels per each instance, could also be viewed as a
potential solution to this problem. However, as we show in the
following section, the ASOMO problem cannot be directly tackled
by the multi-label techniques. This problem is characterised for
having several class variables, instead of several labels.

Within this framework, in order to yield more adequate
models for problems with several target variables, multi-dimen-
sional classification appears. It is able to use the correlations and
conditional independencies between class variables in order to
help in the classification task in both supervised and semi-
supervised learning frameworks.
3. Multi-dimensional classification

In this section we present, in detail, the nature of the multi-
dimensional supervised classification paradigm and how to define
and evaluate a multi-dimensional classifier.
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3.1. Multi-dimensional supervised classification problems

A typical (uni-dimensional) supervised classification problem
consists of building a classifier from a labelled training dataset
(see Table 3) in order to predict the value of a class variable C

given a set of features X¼ ðX1,: :,XnÞ of an unseen unlabelled
instance x¼ ðx1,: :,xnÞ.

If we suppose that ðX,CÞ is a random vector with a joint
feature-class probability distribution pðx,cÞ then, a classifier c is
a function that maps a vector of features X into a single class
variable C

c : f0, . . . ,r1�1g � � � � � f0, . . . ,rn�1g/f0, . . . ,t�1g

x/c

where ri and t are the number of possible values of each feature
Xi,ði¼ 1, . . . ,nÞ and the class variable respectively.

A generalisation of this problem to the simultaneous predic-
tion of several class variables has recently been proposed in the
research community [5,17,40,43,44,53]. This generalisation is
known as multi-dimensional supervised classification. Its purpose
is to simultaneously predict the value of each class variable in
the class variable vector c¼ ðc1,: :,cmÞ given the feature vector
x¼ ðx1,: :,xnÞ of an unseen unlabelled instance. The training
dataset, in this multi-dimensional framework, is expressed as
shown in Table 4.

Thus, the classifier c becomes a function that maps a vector of
features X into a vector of class variables C

c : f0, . . . ,r1�1g � � � � � f0, . . . ,rn�1g/f0, . . . ,t1�1g � � � � � f0, . . . ,tm�1g

x/c

where ri and tj are the cardinalities of each feature Xi (for
i¼ 1, . . . ,n) and each class variable Cj (for j¼ 1, . . . ,m) respectively.
Note that we consider all variables, both predictive features and
class variables, as discrete random variables.

A classifier is learnt from a training set (see Table 4) with a
classifier induction algorithm Að�Þ. Given the induction algorithm
Að�Þ, which is assumed to be a deterministic function of the
training set, the multi-dimensional classifier obtained from a
training set D is denoted as c¼ AðDÞ.

3.2. Related areas

In this paper we deal with multi-dimensional classification
problems, and they must not be confused with other classification
tasks which have similar designations, e.g. multi-class [50]:
Table 3
A possible representation of a (uni-dimensional) labelled training dataset.

X1 X2 y Xn C

xð1Þ1 xð1Þ2
y xð1Þn cð1Þ

xð2Þ1 xð2Þ2
y xð2Þn cð2Þ

^ ^ ^ ^ ^

xðNÞ1 xðNÞ2
y xðNÞn cðNÞ

Table 4
Representation of a multi-dimensional labelled training dataset.

X1 X2 y Xn C1 C2 y Cm

xð1Þ1 xð1Þ2
y xð1Þn cð1Þ1 cð1Þ2

y cð1Þm

xð2Þ1 xð2Þ2
y xð2Þn cð2Þ1 cð2Þ2

y cð2Þm

^ ^ ^ ^ ^ ^ ^ ^

xðNÞ1 xðNÞ2
y xðNÞn cðNÞ1 cðNÞ2

y cðNÞm
problems with a single class variable that can take more than
two values, multi-task [9]: an inductive transfer approach, where
a main task is predicted with the help of the prediction of some
extra tasks, or multi-label classification [51]: where an instance can
be classified with several different labels.

Note, however, that a multi-label problem can be easily
modelled as a multi-dimensional classification problem where
each label or category is a binary class variable whose value is one
when the instance is included in that category or zero otherwise.
The opposite, which is redefining multi-dimensional problems as
multi-label problems, seems very unnatural and has an important
drawback: current multi-label methods cannot always handle the
multi-dimensional nature of this kind of problems (illustrated in
Example 1). This limitation gave rise to the development of multi-
dimensional techniques, which nowadays, is differentiated to
multi-label learning in the machine learning research community,
see for instance [5,44]. These concerns can be demonstrated by
setting up the following simple example:

Example 1. Suppose we consider a multi-dimensional problem
where we want to determine the sex, the colour of the eyes and
hair colour given several characteristics of a person (as repre-
sented in Table 5). The problem has five discrete predictive
variables and three class variables: Sex, Eyes and Hair. Sex have
two possible values: male and female, Eyes has three: blue, dark
and green, and Hair has four possible labels: black, blonde, brown
and ginger. Note that this kind of problem is similar to our
application due to the fact that both have several class variables
with more than two values.

If we wanted to tackle this problem by means of a multi-label
algorithm, we would have to force it to fit in the multi-label
framework. The most straightforward way to transfer it is to treat
each value of each class variable as one independent label, i.e.
treat each value Male, Female, Blue, Dark, etc. as a different label.
In order to accomplish that the following conversion has to be
done:
1.
Tab
An

tran

in

(1

(2

(3

(4

(5
First, define each instance as a list of three labels (view the last
column of Table 5), one per each class variable.
2.
 Second, deal with the main drawback that this approach has:
there are several configuration of labels that are forbidden
and/or senseless in the original multi-dimensional problem.
For that reason, several restrictions to the multi-label techni-
que have to be added in order to reflect the true nature of the
problem. These constraints are the following:
(a) Fix the number of labels per each instance, e.g. forbid the

instances classified as {Male} or {Male, Blue, Black, Ginger}.
Each instance must have just three labels.

(b) Ensure that each instance has just one label per each class
variable of the original multi-dimensional problem. We
cannot classify an instance as {Male, Female}.
le 5
exam

sfer

st.

)

)

)

)

)

To the best of our knowledge, adapting multi-label techniques
by adding several restrictions to deal with this type of problems,
as stated in the previous paragraphs, has not been proposed by
ple of a multi-dimensional problem and the most straightforward way to

it to the multi-label domain.

X1 X2 X3 X4 X5 Sex Eyes Hair List of labels

C C C A A Male Blue Black {Male, Blue, Black}

B A B A D Male Dark Brown {Male, Dark, Brown}

A A D A B Female Dark Blonde {Female, Dark, Blonde}

C B C D A Male Green Blonde {Male, Green, Blonde}

B B D A C Female Blue Ginger {Female, Blue, Ginger}



Fig. 3. Well known multi-dimensional classification subproblems, such as multi-

label and multi-task learning, and structure prediction, contained in the set of

multi-dimensional problems.

J. Ortigosa-Hernández et al. / Neurocomputing 92 (2012) 98–115104
the research community. Therefore, it is not possible to fit most of
the multi-dimensional problems (those that have at least one
class variable with more than two values) into the current multi-
label framework.

In analogous fashion, the exposed ASOMO problem cannot be
solved by means of a multi-label technique. It has two class
variables, Will to Influence and Sentiment polarity, with four and
five values, respectively. For that reason, multi-label techniques
cannot be applied to the application presented in this paper.

In addition to multi-label classification, other classification
tasks in pattern recognition can also naturally be modelled as a
multi-dimensional classification problem [5]. For instance, struc-

tured prediction [4,16], where there are several class variables
with a conditional structure among them, or hierarchical classifi-

cation [19], where there is a hierarchical structure (two or more
levels) among the class variables. Therefore, the multi-dimen-
sional techniques can be applied to these subproblems as the set
of multi-dimensional problems contains these well known sub-
problems, as shown in Fig. 3.
3.3. Multi-dimensional classification rule

In probabilistic classification, the induction multi-dimensional
algorithm learns a probability distribution pðx,cÞ or pðc9xÞ from
the training data and classifies a new unlabelled instance based
on it. For that purpose, a classification rule must be defined.

In uni-dimensional supervised classification, the most com-
mon classification rule returns the most likely class value given
the features

ĉ ¼ arg max
c
fpðc9x1, . . . ,xnÞg

The multi-dimensional nature of the problem allows us to
develop several classification rules that would make no sense in
single-class classification because they take into account multiple
class variables. Nevertheless, the previous one-dimensional classifi-
cation rule can be easily generalised to the prediction of more than
one class variable. In this case, the multi-dimensional classifier
returns the most probable combination of class variables given the
features. This rule is known as joint classification rule [44]

ðĉ1, . . . ,ĉmÞ ¼ arg max
c1 ,...,cm

fpðc1, . . . ,cm9x1, . . . ,xnÞg
Although several other classification rules are proposed in
[44], it is shown that the joint classification rule obtains better
results.
3.4. Multi-dimensional classification evaluation

Once a classifier is constructed, its associated error needs to be
measured. The prediction error of a single-class classifier c is the
probability of the incorrect classification of an unlabelled instance
x and is denoted as EðcÞ

EðcÞ ¼ pðcðXÞaCÞ ¼ EX½dðc,cðxÞÞ�

where dðx,yÞ is a loss function whose results are 1 if xay and 0 if
x¼y.

However, in multi-dimensional classification, the correctness
of a classifier can be measured in two different ways:
�
 Joint evaluation: This consists of evaluating the estimated
values of all class variables simultaneously, that is, it only
counts a success if all the classes are correctly predicted, and
otherwise it counts an error

EðcÞ ¼ pðcðXÞaCÞ ¼ EX½dðc,cðxÞÞ�

This rule is the generalisation of the previous single-class
evaluation measure to multi-dimensional classification.

�
 Single evaluation: After a multi-dimensional learning process,

this consists of separately checking if each class is correctly
classified. For example, if we classify an instance x as
ðĉ1 ¼ 0,ĉ2 ¼ 1Þ and the real value is ðc1 ¼ 0,c2 ¼ 0Þ, we count
ĉ1 as a success and ĉ2 as an error. This approach provides
one performance measure for each class Cj (for j¼ 1, . . . ,m).
The output of this evaluation is a vector e of size m with the
performance function of the multi-dimensional classifier for
each of the class variables

EjðcÞ ¼ pðcjðXÞaCjÞ ¼ EX½dðcj,cjðxÞÞ�

where cjðxÞ is the estimation of the multi-dimensional classi-
fier for the j-th class variable.

Ideally, we would like to exactly calculate the error of a
classifier, but in most real world problems the feature-label
probability distribution pðx,cÞ is unknown. So, the prediction
error of a classifier c is also unknown; it cannot be computed
exactly, and thus, must be estimated from data.

Several approaches to estimate the prediction error can be
used. In this work, we use one of the most popular error
estimation techniques: k-fold cross-validation (k-cv) [49] in its
repeated version. In k-cv the dataset is divided into k folds, a
classifier is learnt using k�1 folds and an error value is calculated
by testing the learnt classifier in the remaining fold. Finally, the
k-cv estimation of the error is the average value of the errors
made in each fold. The repeated r times k-cv consists of estimat-
ing the error as the average of r k-cv estimations with different
random partitions into folds. This method considerably reduces
the variance of the error estimation [45].

In multi-dimensional classification we could be interested in
either learning the most accurate classifier for all class variables
simultaneously (measured with a joint evaluation) or in finding
the most accurate classifier for each single class variable (mea-
sured with single evaluations). In this paper, we are mainly
interested in using the joint evaluation for evaluation. However,
in our application to SA we also measure the performance of the
algorithms with a single evaluation per each class variable in
order to compare both types of evaluation and perform a deeper
analysis of the results.



Fig. 4. A multi-dimensional Bayesian classifier and its division. (a) Complete graph, (b) feature selection subgraph, (c) class subgraph and (d) feature subgraph.

2 In [53,17,43], instead of multi-dimensional, the term fully is used in order to

name the classifiers.
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4. Multi-dimensional Bayesian network classifiers

In this section, multi-dimensional class Bayesian network
classifiers [5,53], which are able to deal with multiple class
variables to be predicted, are presented as a recent generalisation
of the classical Bayesian network classifiers [32].

4.1. Bayesian network classifiers

Bayesian networks are powerful tools for knowledge repre-
sentation and inference under uncertainty conditions [39]. These
formalisms have been extensively used as classifiers [31] and
have become a classical and well-known classification paradigm.

A Bayesian network is a pair B¼ ðS,HÞ where S is a directed
acyclic graph (DAG) whose vertices correspond to random vari-
ables and whose arcs represent conditional (in)dependence rela-
tions among variables, and where H is a set of parameters.

A Bayesian classifier is usually represented as a Bayesian
network with a particular structure. The class variable is on the
top of the graph and it is the parent of all predictive variables.

In spite of the popularity of Bayesian network classifiers, few
works have taken into account their generalisation to multiple class
variables [5,17,43,44,53]. In multi-dimensional classification, we con-
sider Bayesian networks over a finite set V¼ fC1, . . . ,Cm,X1, . . . ,Xng

where each class variable Cj and each feature Xi takes a finite set of
values. H is formed by parameters pijk and yijk, where pijk ¼ p

ðCi ¼ ck9PaðCiÞ ¼ PaðciÞjÞ for each value ck that can take each class
variable Ci and for each value assignment PaðciÞj to the set of the
parents of Ci. Similarly, yijk ¼ pðXi ¼ xk9PaðXiÞ ¼ PaðxiÞjÞ for each value
xk that can take each feature Xi and for each value assignment PaðxiÞj

to the set of the parents of Xi.
Thus, the network B defines a joint probability distribution

pðc1, . . . ,cm,x1, . . . ,xnÞ which is given by

pðc1, . . . ,cm,x1, . . . ,xnÞ ¼
Ym
i ¼ 1

pijk

Yn

i ¼ 1

yijk

4.2. Structure of multi-dimensional class Bayesian network

classifiers

A multi-dimensional class Bayesian network classifier is a
generalisation of the classical one-class variable Bayesian classi-
fiers for domains with multiple class variables [53]. It models the
relationships between the variables by means of directed acyclic
graphs (DAG) over the class variables and over the feature
variables separately, and then connects the two sets of variables
by means of a bi-partite directed graph. So, the DAG structure
S¼ ðV,AÞ has the set V of random variables partitioned into the
sets VC ¼ fC1, . . . ,Cmg, m41, of class variables and the set
VF ¼ fX1, . . . ,Xng ðnZ1Þ of features. Moreover, the set of arcs A
can be partitioned into three sets: ACF , AC and AF with the
following properties:
�
 ACF DVC � VF is composed of the arcs between the class
variables and the feature variables, so we can define the
feature selection subgraph of S as SCF ¼ ðV,ACF Þ. This subgraph
represents the selection of features that seems relevant for
classification given the class variables.

�
 AC DVC � VC is composed of the arcs between the class

variables, so we can define the class subgraph of S induced
by VC as SC ¼ ðVC ,ACÞ.

�
 AF DVF � VF is composed of the arcs between the feature

variables, so we can define the feature subgraph of S induced
by VF as SF ¼ ðVF ,AF Þ.

Fig. 4 shows a multi-dimensional class Bayesian network
classifier with 3 class variables and 5 features, and its partition
into the three subgraphs.

Depending on the structure of the three subgraphs, the
following sub-families2 of multi-dimensional class network clas-
sifiers are proposed in the state-of-the-art literature:
�
 Multi-dimensional naive Bayes classifier (MDnB): The class
subgraph and the feature subgraph are empty and the feature
selection subgraph is complete.

�
 Multi-dimensional tree-augmented Bayesian network classifier

(MDTAN): Both the class subgraph and the feature subgraph
are directed trees. It could be viewed as the multi-dimensional
version of the (uni-dimensional) tree-augmented Bayesian
network classifier (TAN) proposed in [24].

�
 Multi-dimensional J/K dependences Bayesian classifier (MD J/K):

This structure is the multi-dimensional generalisation of the
well-known K-DB [47] classifier. It allows each class variable Ci

to have a maximum of J dependences with other class vari-
ables Cj, and each predictive variable Xi to have, apart from the
class variables, a maximum of K dependences with other
predictive variables.
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In the following section, several algorithms are provided in
order to learn from a given dataset the previous sub-families of
multi-dimensional Bayesian network classifiers.
5. Learning multi-dimensional Bayesian network classifiers

As in the classic Bayesian network learning task, learning a
multi-dimensional class Bayesian network classifier from a train-
ing dataset consists of estimating its structure and its parameters.
These two subtasks are called structure learning and parameter
learning respectively. Due to the fact that each previously
introduced sub-family has different restrictions in its structure,
a different learning algorithm is needed for each one.

In this section, we provide algorithms for learning MDnB [53],
MDTAN [53] and MD J/K classifiers from a given dataset. The
MDnB and MD J/K learning algorithms use a filter approach, i.e.
the learning task precedes the classification evaluation. However,
as it is proposed in its original work [53], the MDTAN learning
algorithm is formulated as a wrapper approach [25], i.e. it tries to
find more accurate classifiers by taking advantage of the classi-
fication evaluation.

As Fig. 5 shows, in the MDnB classifier, each class variable is
parent of all the features, and each feature has only all the class
variables as parents. Conventionally, the class subgraph and the
feature subgraph are empty and the feature selection subgraph is
complete. This classifier assumes conditional independence
between each pair of features given the entire set of class
variables. Due to the fact that it has no structure learning (the
structure is fixed for a determined number of class variables and
features), learning a MDnB classifier consists of just estimating
the parameters Y of the actual model by using a training dataset
D. This is achieved by calculating the maximum likelihood
estimator (MLE) [15].

Instead, learning a MDTAN classifier consists of learning both
structure and parameters. A wrapper structure learning algorithm
is proposed in [53]. Its aim is to produce the MDTAN structure
(see Fig. 6) that maximises the accuracy from a given dataset. This
algorithm has a main part called Feature subset selection algorithm,
Fig. 5. An example of a multi-dimensional naive Bayes structure.

Fig. 6. An example of a multi-dimensional tree-augmented network structure.
which follows a wrapper approach [25] by performing a local
search over the ACF structure. In order to obtain a MDTAN struc-
ture in each iteration, it generates a set of different ACF structures
from a current ACF and learns its class subgraph and feature
subgraph by using the following sub-algorithms:
1.
Fig
stru
AC structure learning algorithm is the algorithm that learns the
structure between the class variables by building a maximum
weighted spanning [29] tree using mutual information.
2.
 AF structure learning algorithm learns the AF subgraph by using
conditional mutual information, by means of the Chow and Liu
algorithm [11].

After that, the accuracies of all the learnt models are com-
puted. The iterative process continues by setting the ACF of the
best classifier, in terms of estimated accuracy, as current ACF. This
algorithm belongs to the hill-climbing family of optimisation
algorithms, i.e. when no improvement is achieved by generating
a new set of structures, the algorithm stops.

5.1. Multi-dimensional J/K dependences Bayesian classifier

The MD J/K (see Fig. 7), which is introduced in [44], is the
generalisation of the K dependence structure [47] to the multi-
dimensional framework. It is able to move through the spectrum
of allowable dependence in the multi-dimensional framework,
from the MDnB to the full multi-dimensional Bayesian classifier.
Note that from the setting J¼ K ¼ 0, we can learn a MDnB, setting
J¼ K ¼ 1 a MDTAN structure is learned and so on. The full multi-
dimensional Bayesian classifier, which is the classifier that has the
three complete subgraphs, can be learnt by setting J¼ ðm�1Þ and
K ¼ ðn�1Þ, where m and n are the number of class variables and
predictive features respectively.

Although the MD J/K structure has been proposed in the state-
of-the-art literature, to the best of our knowledge, a specific MD J/

K learning algorithm for the multi-dimensional framework has
not been defined by the research community. To bridge this gap,
in this paper, we propose a filter algorithm in a supervised
learning framework capable of learning this type of structure
(see Algorithm 1).

In this algorithm, we do not directly use the mutual informa-
tion as measured in the previous MDTAN learning algorithm [53].
This is due to the fact that the mutual information is not
normalised when the cardinalities of the variables are different,
so we use an independence test to determine if a dependence
between two variables is strong enough to be part of the model: It
. 7. An example of a multi-dimensional 2/3-dependence Bayesian network

cture.
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is known [30] that 2NÎðXi,XjÞ asymptotically follows a w2

distribution with ðri�1Þðrj�1Þ degrees of freedom, where N is
the number of cases, if Xi and Xj are independent, i.e. LimN-12
NÎðXi,XjÞ*w2

ðri�1Þðrj�1Þ.
Algorithm 1. A MD J/K structure learning algorithm using a filter
approach.
1. Learn the AC structure

1. Calculate the p-value using the independence test for each

pair of class variables, and rank them.

2. Remove the p-value higher than the threshold
ð1�saÞ ¼ 0:10.
3. Use the ranking to add arcs between the class variables
fulfilling the conditions of no cycles between the class
variables and no more than J-parents per class.

2. Learn the ACF structure

1. Calculate the p-value using the independence test for each

pair Ci and Xj and rank them.

2. Remove the p-value higher than the threshold
ð1�saÞ ¼ 0:10.
3. Use the ranking to add arcs from the class variables to the
features.

3. Learn the AF structure

1. Calculate the p-value using the conditional independence

test for each pair Xi and Xj given PacðXjÞ and rank them.
2. Remove the p-value higher than the threshold
ð1�saÞ ¼ 0:10.
3. Use the ranking to add arcs between the class variables
fulfilling the conditions of no cycles between the features
and no more than K-parents per feature.

Based on this result, a statistical hypothesis test can be carried

out in a multi-dimensional Bayesian network classifier to check

the robust dependences in AC. The null hypothesis H0 is that the

random variables Ci and Cj are independent. If the quantity

2NÎðCi,CjÞ surpasses a threshold sa for a given test size

a¼
Z 1

sa

w2
ðti�1Þðtj�1Þ ds

where ti is the cardinality of Ci and tj the cardinality of Cj, the null

hypothesis is rejected and a dependence between Ci and Cj is

considered. Therefore the arc between these class variables is

included in the model. The dependences in ACF are calculated

using the same procedure, the null hypothesis H0 is that ‘‘The

random variables Ci and Xj are independent’’. So, if 2NÎðCi,XjÞ

surpasses the threshold sa, then the null hypothesis is rejected

and an arc is included in the model. This test was also used on

single-class Bayesian network classifiers to check the depen-

dences among the class variables and the features [7].

Using this approach, the structures AC and ACF are learnt in steps

1 and 2 of Algorithm 1, respectively.

In order to calculate the structure AF, we need to use the
conditional mutual information between a feature Xi and a feature
Xj given its class parents PacðXjÞ to determine if the relation between
both predictive features should be included in the model. For that
purpose, we use the generalisation of the previous result to the case
of conditional mutual information as defined in [30]

LimN-12NÎðXi,Xj9PacðXjÞÞ*w2
ðri�1Þðrj�1Þð9PacðXjÞ9Þ

where ri is the cardinality of Xi, rj the cardinality of Xj and 9PacðXjÞ9
the cardinality of the class parents of Xj.
Analogously to the hypothesis test previously described, based
on these results we can perform the following conditional
independence test: the null hypothesis assumes that the random
variables Xi and Xj are conditionally independent given PacðXjÞ.
So, if the quantity 2NÎðCi,Cj9PacðXjÞÞ surpasses a threshold sa for a
given test size

a¼
Z 1

sa

w2
ðti�1Þðtj�1Þð9PacðXjÞ9Þ

ds

the null hypothesis is rejected and the random variables Xi and Xj

are considered dependent given PacðXjÞ. Therefore, the arc is
included in the model. The structure ACF is learnt using this
hypothesis test in step 3 of Algorithm 1.
6. Semi-supervised multi-dimensional classification

In this section, we proceed with the extension of the previous
multi-dimensional learning algorithms to the semi-supervised
learning framework. When large amounts of labelled data are
available, one can apply familiar and powerful machine learning
techniques such as the previous multi-dimensional Bayesian net-
work algorithms in order to learn accurate classifiers. However,
when there is a scarcity of such labelled data and a huge amount of
unlabelled data, as happens in the SA domain, one can wonder if it is
possible to learn competitive classifiers from unlabelled data.

In this context, where the training dataset consists of labelled
and unlabelled data, the semi-supervised learning approach
[10,57,58] appears as a promising alternative. It is motivated from
the fact that in many real world problems, obtaining unlabelled data
is relatively easy, e.g. collecting posts from different blogs, while
labelling is expensive and/or labor intensive, due to the fact that the
tasks of labelling the training dataset is usually carried out by
human beings. Thus, it is highly desirable to have learning algo-
rithms that are able to incorporate a large number of unlabelled data
with a small number of labelled data when learning classifiers.

In the semi-supervised learning framework, the training data-
set D, as shown in Table 5, is divided into two parts: the subset of
instances DL for which labels are provided, and the subset DU,
where the labels are not known. Therefore, we have a dataset of N

instances, where there are L labelled examples and ðN�LÞ unla-
belled examples. Normally, ðN�LÞbL, i.e. the unlabelled subset
tends to have a very large amount of instances whilst the labelled
subset tends to have a small size.

Therefore, the aim of a semi-supervised learning algorithm is
to build more accurate classifiers using both labelled and unla-
belled data, rather than using exclusively labelled examples as
happens in supervised learning.

6.1. Learning multi-dimensional Bayesian network classifiers in the

semi-supervised framework

In this section, we propose the extension of multi-dimensional
Bayesian network classifiers to the semi-supervised learning
framework by using the EM algorithm [18]. Although this method
was proposed in [18] and was deeply analysed in [34], it had been
used much earlier, e.g. [26], and it is still widely used in many
recent semi-supervised learning algorithms, e.g. [13,14,36].

The aim of the EM algorithm as typically used in semi-
supervised learning is to find the parameters of the model that
maximise the likelihood of the data, using both labelled and
unlabelled instances. The iterative process, which ensures that
the likelihood is maximised in each step, works as follows: in the
Kth iteration the algorithm alternates between completing the
unlabelled instances by using the parameters HðKÞ (E-step) and
updating the parameters of the model HðKþ1Þ using MLE with the
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whole dataset (M-step), i.e. the labelled data and the unlabelled
instances that have been previously classified in the E-Step. Note
that the structure remains fixed in the whole iterative process.

Although good results have been achieved with the EM
algorithm in uni-dimensional classification [13,36], we are con-
cerned about the restriction of only maximising the parameters of
a fixed structure in our extension of the EM algorithm to the
multi-dimensional domain, where there are several class vari-
ables to be predicted. As stated in [12], if the correct structure of
the real distribution of the data is obtained, unlabelled data
improve the classifier, otherwise, unlabelled data can actually
degrade performance. For this reason, it seems more appropriate
to perform a structural search in order to find the real model.
Thus, we perform several changes to the EM algorithm in order to
avoid fixing the structure of the model during the iterative
process. The proposal is shown in Algorithm 2.

Algorithm 2. Our version of the EM Algorithm.
T
A

Input A training dataset with both labelled and unlabelled

data (Table 6) and an initial model cðK ¼ 0Þ with a fixed

structure and with an initial set of parameters HðK ¼ 0Þ.
1:
able
form

DL

DU
while the model cðKÞ does not converge do
2:
 E-STEP Use the current model cðKÞ to estimate the
probability of each configuration of class variables for each
unlabelled instance.
3:
 M-STEP Learn a new model cðKþ1Þ with structure and
parameters, given the estimated probabilities in the
E-STEP.
4:
 end while
Output classifier c, that takes an unlabelled instance and
predicts the class variables.

In this version of the EM algorithm, we want to find the model,
both structure and parameters, that maximises the likelihood of
the whole dataset. So, in this version, the iterative process is
performed as follows: in the Kth iteration, the algorithm alter-
nates between completing the unlabelled instance by the pre-
viously learnt model cðKÞ (E-step) and learning a new model
cðKþ1Þ by using a learning algorithm with the whole dataset, both
labelled and completed instances (M-step). In the semi-super-
vised learning research community, the input initial parameter
cðK ¼ 0Þ of the EM Algorithm is usually learnt from the labelled
subset DL. Hence, we will continue to use this modus operandi in
this version of the algorithm. Note that our version of the EM
algorithm is closer to the Bayesian structural EM algorithm
proposed in [23] rather than the original formulation of the
algorithm [18]. However, in the case of the MDnB classifier, it is
just a parametric search since it has a fixed structure.
6
al representation of a multi-dimensional semi-supervised training dataset.

X1 X2 y Xn C1 C2 y Cm

xð1Þ1 xð1Þ2
y xð1Þn cð1Þ1 cð1Þ2

y cð1Þm

xð2Þ1 xð2Þ2
y xð2Þn cð2Þ1 cð2Þ2

y cð2Þm

^ ^ ^ ^ ^ ^ ^ ^

xðLÞ1 xðLÞ2
y xðLÞn cðLÞ1 cðLÞ2

y cðLÞm

xðLþ1Þ
1 xðLþ1Þ

2
y xðLþ1Þ

n
? ? y ?

xðLþ2Þ
1 xðLþ2Þ

2
y xðLþ2Þ

n
? ? y ?

^ ^ ^ ^ ^ ^ ^ ^

xðNÞ1 xðNÞ2
y xðNÞn

? ? y ?
Using Algorithm 2, all the supervised learning approaches
proposed in the previous section can be straightforwardly used
in this semi-supervised scenario. The learning algorithm is used in
the M-step, where it learns a model using labelled and unlabelled
data that have been previously labelled in the E-step. So, applying
our adaptation of the EM Algorithm, we have extended the multi-
dimensional Bayesian network classifiers to the semi-supervised
learning framework.
7. Experimentation

7.1. Artificial experimentation

Before solving the ASOMO problem, we have tested our
proposed semi-supervised algorithms over a set of designed
artificial datasets as commonly carried out in the machine
learning research community. This has been done due to the fact
that, unfortunately, we cannot apply our proposals in the baseline
datasets of the SA domain. The multi-dimensional classification
paradigm has recently been proposed in the research community
[5,17,40,43,44,53], and, to the best of our knowledge, there are no
benchmark multi-dimensional datasets in this domain to test our
proposals as they consider just one target variable at a time
(usually sentiment polarity). So, in order to bridge this gap, we
provide a detailed report of these artificial experiments on several
synthetic datasets in the following website.3

The major conclusions extracted from this experimentation
can be summarised as follows:
1.
Not
As happens in the uni-dimensional framework [12], when
using the real structure to semi-supervisely learnt multi-
dimensional classifiers, the unlabelled data always help.
2.
 There is a tendency to achieve better classifiers in terms of
joint accuracy in the semi-supervised framework when the
used multi-dimensional algorithm can reach the generative
structure.
3.
 In the uni-dimensional approaches, performance degradation
occurs in the semi-supervised framework. This is probably due
to the fact that the uni-dimensional approaches are not able to
match the actual multi-dimensional structure of the problems.
4.
 Although there are small differences between the uni-dimen-
sional and the multi-dimensional approaches in the supervised
framework (only the MD J/K reports statistical differences), in
the semi-supervised framework these differences grow larger
(except for the case of the MDTAN learning algorithm, the
qrest of the multi-dimensional approaches report statistical
differences).
5.
 In the semi-supervised framework, clearly the multi-dimen-
sional classifiers outperform the uni-dimensional techniques,
with the exception of the MDTAN classifier.
6.
 The MDnB learning algorithm [53] is very specific, it obtains
very good results when dealing with problems with an under-
lying MDnB structure, but when the generative models are
more complex, its rigid structure makes the algorithm lead to
very suboptimal solutions.
7.
 The MDTAN algorithm [53] also shows very poor performances
in the semi-supervised framework.
8.
 The MD J/K learning algorithms have great flexibility to
capture different types of complex structures, which results
in an improvement in terms of joint accuracy in the semi-
supervised framework.
3 http://www.sc.ehu.es/ccwbayes/members/jonathan/home/News_and_

ables/Entries/2010/11/30_Artificial_Experiments_2010.html

http://www.sc.ehu.es/ccwbayes/members/jonathan/home/News_and_Notables/Entries/2010/11/30_Artificial_Experiments_2010.html
http://www.sc.ehu.es/ccwbayes/members/jonathan/home/News_and_Notables/Entries/2010/11/30_Artificial_Experiments_2010.html
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In brief, these artificial experiments show that not only the
multi-dimensional approaches statistically outperform the uni-

dimensional approaches in the supervised framework when deal-
ing with multi-dimensional problems, but also more accurate
classifiers can be found using the semi-supervised learning
framework.

7.2. Solving the ASOMO SA problem

Two different series of experiments with the ASOMO corpus
were performed: the first series (Section 7.2.1) shows the com-
parison between the ASOMO features and three different state-of-
the-art feature sets broadly used in the SA domain. The second
series (Section 7.2.2) is devoted to demonstrate that the addition
of unlabelled instances could achieve better results in this very
application. There, a multi-dimensional classification solution for
the ASOMO problem is proposed and analysed. By means of these
experiments in a real SA problem, we would like to shed some
light on the truthfulness of the following hypotheses:
1.
Tab
Esti

A

U

M

The choice of the feature set is a key matter when dealing with
the exposed problem, and in extension, with the SA problems.
2.
 The uni-dimensional models obtained with the common
approaches of the SA domain yield suboptimal solutions to
the ASOMO problem.
3.
 The explicit use of the relationships between the class vari-
ables in this real-world problem can be beneficial to improve
their recognition rates, i.e. multi-dimensional techniques are
able to outperform the most common uni-dimensional
techniques.
4.
 When there is a scarcity of labelled data, multi-dimensional
techniques can work with unlabelled data in order to improve
the classification rates in this context.

7.2.1. Comparison between different feature sets in both

uni-dimensional and multi-dimensional learning scenarios

By means of this experiment, we evaluate the new feature set
proposed in Section 2 (the ASOMO features) with the most
commonly used in the related literature. If we only use them to
test the multi-dimensional Bayesian network classifiers in this
real dataset, it is difficult to assess their efficacy without using
other viable baseline methods. For this reason, we also use three
different commonly used feature sets in order to perform a
benchmark comparison: unigrams, unigramsþbigrams and PoS.
In order to avoid computation burden, we limited consideration
to (1) the 357 unigrams that appear at least five times in our
150-post corpus, (2) the 563 unigrams and bigrams occurring at
le 7
mated accuracy values on the ASOMO dataset using three different types of featur

pproach Classifier Feature set #feat. Will to influence

ni-dimen. Multiple classif. Unigrams 357 y51:8372:79

Uni.þbigrams 563 y47:1772:47

PoS 766 y47:5772:52

ASOMO feat. 14 55:0771:32

Cartesian class Unigrams 357 N/A

Uni.þbigrams 563 N/A

PoS 766 N/A

ASOMO feat. 14 N/A

ulti-dimen. MDnB Unigrams 357 y41:6373:74

Uni.þbigrams 563 y38:0373:33

PoS 766 y39:5073:32

ASOMO feat. 14 y53:2371:62
least five times, and (3) the PoS to 766 features. No stemming or
stoplists were used. These benchmark feature sets have been
constructed using the TagHelper tool [46]. Finally, since the
ASOMO features are continuous, they were discretised into three
values using equal frequency discretisation in order to apply the
algorithms proposed in this paper.

To assess the efficacy and efficiency of the exposed multi-
dimensional Bayesian network classifiers in this problem, we
conducted a comparison in the supervised framework between
the presented multi-dimensional classifiers and the two different
uni-dimensional attempts to adapt single-class classifiers to
multi-dimensional problems: (1) develop multiple uni-dimen-
sional classifiers and (2) construct a Cartesian product class
variable. In order to perform such comparison, we use naive
Bayes classifiers in the uni-dimensional attempts (one per each
class variable in the first uni-dimensional approach, and another
one for the compound class of the second) and a MDnB classifier
in the multi-dimensional solution. The parameters of both types
of models are calculated by MLE corrected with Laplace smooth-
ing and the forbidden configurations of the vector of class
variables have been taken into account in the learning process.
Note that this comparison is performed in the supervised
framework, so the 2392 unlabelled posts were not used in this
experiment.

The classification accuracies, which have been estimated via
20 runs of 5-fold non-stratified cross validation (20�5cv) [45],
are shown in Table 7. The results of using the four different
feature sets (unigrams, unigrams þ bigrams, PoS, and the ASOMO
features) in conjunction with the three different learning
approaches (multiple uni-dimensional, Cartesian class variable,
and multi-dimensional classifiers) in a supervised framework are
shown. The first eight rows of Table 7 correspond to the two uni-
dimensional approaches while the last four correspond to the
multi-dimensional approach. In addition to the estimation of
the joint accuracy, the accuracies per each class variable are
also shown.

For each column, the best estimated accuracy rate is highlighted
in bold for each single class variable and the joint accuracy. More-
over, statistical hypothesis tests (Student’s t-test with a¼ 0:05) have
been performed in order to determine if there are significant
statistical differences between the tested accuracies. For each
column, the symbol ‘y’ is used to mark the accuracies that are
statistically outperformed by the highlighted best estimated accu-
racy (in bold). The symbol ‘z’ corresponds to the accuracies that,
despite not being significantly worse, show a p-value on the
significant borderline ð0:05op�valuer0:1Þ. Besides, the CPU time
spent on learning a classification model with the 150 posts (for each
approach and feature set) is shown in the results.
e sets in both uni and multi-dimensional scenarios (20�5cv).

Acc Sentiment P. Acc Subjectivity Acc Joint Acc Time (ms)

33.0071.82 y78:9072:16 y11:7071:68 1011

32.9071.96 y79:4772:75 y9:8071:47 1470

y30:8072:75 y66:3372:96 y9:4371:65 1755

y26:0772:09 y82:1771:35 y10:3772:30 110

N/A N/A y9:9072:35 32

N/A N/A y8:8772:05 74

N/A N/A y10:3372:11 106

N/A N/A z13:7072:60 17

y31:0072:29 y75:3072:20 y10:2371:92 47

33:4072:37 y74:2772:71 y9:6372:05 107

y30:5372:22 y76:4072:47 y9:8671:93 122

y30:8772:52 83:5370:69 14:9771:94 17
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Based on the results of Table 7, different conclusions can be
extracted:
1.
Tab
Esti

A

U

M

With respect to the feature set comparison, the ASOMO feature
set significantly outperforms the n-grams, not only in terms of
joint accuracy, but also in terms of accuracy of two (out of the
three) dimensions, i.e. in Will to Influence and in Subjectivity.
Also, as stated in [38], n-grams information is the most
effective feature set in the task of Sentiment Polarity classifi-
cation. However, the unigramsþbigrams feature set outper-
forms unigrams instead of the opposite as reported in [38].
Finally, the PoS approach obtains very low performance.
2.
 According to the comparison between the uni-dimensional and
multi-dimensional approaches, the best joint accuracy is given
by the MDnB model when using the ASOMO features. It signifi-
cantly outperforms both the multi-dimensional approaches with
the state-of-the-art feature sets, and the uni-dimensional
approaches. Looking at the class variables in isolation, the uni-
dimensional approaches only outperform the multi-dimensional
approach in the case of the Will to Influence target dimension.
3.
 An analysis of the CPU computational times show that, as
expected, learning one classifier per each class variable is the
most time-consuming. Next, multi-dimensional Bayesian net-
work classifiers are found. The least-time consuming approach
is the uni-dimensional learning process that uses a compound
class. Moreover, the number of features is also an important
issue with respect to the computational time. The ASOMO
feature set, which has only 14 attributes, is, by far, the least
time-consuming of the four different types of feature set.

However, in this problem, errors are not simply present or
absent, their magnitude can be computed, e.g. it is not the same to
misclassify a negative post as having a very negative sentiment or
misclassify it with a very positive sentiment. For that reason, in
addition to the accuracy term, we also estimate the numeric error
of each classifier. Note that the values of the three class variables
can be trivially translated into ordinal values without changing
their meaning. Therefore, using this approach, the previous exam-
ple could be exposed as: it is not the same misclassify a post, which
has its sentiment equal to 2, with a 1 or misclassify it with a 5.

In order to estimate the numeric error, we use the mean
absolute error (MAE) term [55], which is a measure broadly used
in evaluating numeric prediction. It is defined as the measure that
averages the magnitude of the individual errors without taking
their sign into account. It is given by the following formula:

MAEEjðcÞ ¼

PN
i ¼ 1 9cjðx

ðiÞÞ�cðiÞj 9

N

le 8
mated mean absolute error rates on the ASOMO dataset using three different type

pproach Classifier Feature set #feat. Will to infl

ni-dimen. Multiple classif. Unigrams 357 y0:63270:

Uni.þbigrams 563 y0:70070:

PoS 766 y0:87870:

ASOMO feat. 14 0.56370.0

Cartesian class Unigrams 357 N/A

Uni.þbigrams 563 N/A

PoS 766 N/A

ASOMO feat. 14 N/A

ulti-dimen. MDnB Unigrams 357 y0:78870:

Uni.þbigrams 563 y0:85270:

PoS 766 y0:72870:

ASOMO feat. 14 0.55970.0
where cjðx
ðiÞÞ is the value of the class variable Cj resulting from the

classification of the instance xðiÞ using the classifier cj and cðiÞj is the
actual class value in that instance. N is the number of instances in
the test set. Note that the resulting error varies between 0 and
ð9Cj9�1Þ, where 9Cj9 is the cardinality of the class variable Cj.

In a similar way to the accuracy, we also compute a joint
measure for simultaneously characterising this error in all the
class variables. Due to this, we estimate the joint MAE (JMAE) for
each learning algorithm. It is the sum of the normalised value of
the MAE term in each class variable

JMAEEðcÞ ¼
Xm

j ¼ 1

1

9Cj9�1
MAEEjðcÞ

Note that the JMAE term varies between 0 and m, being m the
number of class variables.

The MAE values of the exposed experimentation setup, which
have also been estimated via 20 runs of 5-fold non-stratified cross
validation [45], are shown in Table 8. It has the same shape as in
Table 7, i.e. each row represents each learning algorithm with a
specific feature set, and each column represents each class
variable and the JMAE value. The best estimated error per
classifier is also highlighted in bold and Student’s t-tests
ða¼ 0:05Þ have been performed in order to study the significance
of estimated differences. Table 8 reports conclusions similar to
the ones extracted with the accuracy term:
1.
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The feature set comparison reports the same conclusions to
those obtained with the accuracy: the ASOMO feature set
significantly outperforms the n-grams and PoS, not only in
terms of joint accuracy, but also in terms of two (out of the
three) dimensions.
2.
 The best joint accuracy is given by the multi-dimensional
approach which uses the ASOMO feature set and it signifi-
cantly outperforms both the multi-dimensional approaches
with the state-of-the-art feature sets, and the uni-dimensional
approaches. With respect to the class variables in isolation, the
only case in which the uni-dimensional approaches outper-
form the multi-dimensional approach is in the Sentiment
Polarity target dimension.

In brief and regarding the feature set, for this specific problem,
we strongly recommend the use of the ASOMO features, not only
because of their performance, but also for their lower learning
times. The results also show that the multi-dimensional classifi-
cation approach to SA is a novel attractive point of view that
needs to be taken into account due to the fact that it could lead to
better results in terms of accuracy as well as in MAE. In addition,
learning a multi-dimensional classifier is faster than learning
feature sets in both uni and multi-dimensional scenarios (20�5cv).

ce MAE Sentiment P. MAE Subjectivity MAE JMAE

y1:04870:042 y0:21170:017 y0:68470:025

0:95670:043 y0:19670:014 y0:66970:023

y1:14770:052 y0:33970:043 y0:91870:054

y1:03670:036 y0:17370:011 y0:62070:014

N/A N/A y0:65070:026

N/A N/A y0:68070:030

N/A N/A y0:75770:040

N/A N/A y0:64070:060

y1:10470:039 y0:24770:026 y0:78970:031

y1:10770:042 y0:26370:040 y0:82470:049

y1:03770:040 y0:24070:020 y0:74270:029

y1:01970:027 0.16770.009 0.60870.016
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different classifiers for each dimension. Although the reported
times are not a problem in the current supervised learning
settings, in the semi-supervised framework, where the computa-
tion time increases dramatically with the number of instances,
the learning process could be intractable.
7.2.2. Experiments with the ASOMO corpus in the supervised and

semi-supervised learning frameworks

With the knowledge that the ASOMO features can lead us to
better classification rates in this problem, we evaluated their
performance in both supervised and semi-supervised frame-
works. With this experiment we want to determine if the use of
unlabelled examples when learning a classifier can lead to better
solutions to the ASOMO problem. In order to do so, the following
experiment was performed: the ASOMO dataset has been used to
learn three different (uni-dimensional) Bayesian network classi-
fiers and three different sub-families of multi-dimensional classi-
fiers in both frameworks.

For uni-dimensional classification, naive Bayes classifier (nB),
tree-augmented Bayesian network classifier (TAN) [24] and a
2-dependence Bayesian classifier (2 DB) [47] have been chosen.
The uni-dimensional approach selected for these experiments is
that which consists of splitting the problem into three different
uni-dimensional problems (this is because it is more common in
the state-of-the-art solutions to solve different problems rather
than create an artificial class variable by means of the Cartesian
product). From the multi-dimensional aspect, MDnB, MDTAN,
MD1/1 and MD2/K (with K¼2,3,4) structures have been selected.
MD1/1 is included as an algorithm able to learn MDTAN struc-
tures due to the poor performance shown by the MDTAN learning
algorithm [53] in the artificial experiments. Although both multi-
dimensional learning approaches learn MDTAN structures, each
learning algorithm follows a different path to come to that end.
Fig. 8. Applying 3-fold cross validation to a data
While the MD 1/1 uses a filter approach, the MDTAN learning
algorithm follows a wrapper scheme.

The supervised learning procedure only uses the labelled
dataset (consisting of 150 documents), whilst the semi-super-
vised approach uses the 2532 posts (2392 unlabelled). Our multi-
dimensional extension of the EM algorithm is used in the latter
approach and it terminates after finding a local likelihood maxima
or after 250 unsuccessful trials.

Finally, the performance of each model has been estimated via 20
runs of 5-fold non-stratified cross validation. Due to fact that, in semi-
supervised learning, the labels of the unlabelled subset of instances
are unknown, only the labelled subset is divided into five folds to
estimate the performance of the proposed approaches. So, in each
iteration of the cross validation, a classifier is learnt with four labelled
folds and the whole unlabelled subset, and then it is tested in the
remaining labelled fold. This modified cross validation is illustrated in
Fig. 8 for the case of three folds. As done in the previous experiments,
we use the accuracy and the MAE terms as evaluation measures.

Table 9 shows the results of applying the different uni-
dimensional and multi-dimensional algorithms over the ASOMO
dataset in terms of accuracy and Table 10 in terms of MAE. Both
tables can be described as follows: for each classifier (row), the
joint performance and the single evaluation measure (for each
class variable) are shown. In order to simultaneously compare
uni-dimensional with respect to multi-dimensional approaches,
and supervised with respect to semi-supervised learning, the
results are highlighted as follows:
1.
set
In order to compare the supervised and the semi-supervised
frameworks, for each type of classifier and accuracy measure
(class variable and joint performance), we have highlighted the
best single value and joint performance in bold (analysed per
row). Note that, in the case of the accuracy term (Table 9),
the highlighted values are the greatest values, while in the
with labelled and unlabelled instances.



Table 9
Accuracies on the ASOMO dataset with the ASOMO features in the supervised and the semi-supervised learning frameworks (20�5cv).

Classif. Labelled data (supervised learning) Labelledþunlabelled data (semi-supervised learning)

W. influence Acc Sentiment P. Acc Subjectivity Acc Joint Acc W. influence Acc Sentiment P. Acc Subjectivity Acc Joint Acc

nB yz55:0771:32 z26:0772:09 z82:1771:35 z10:3772:30 56:7072:85 yz21:9773:11 yz58:0773:78 yz7:4372:27

TAN z52:9373:23 yz26:3072:16 z80:1071:46 z9:4771:29 yz48:7773:44 z29:0073:69 yz75:1073:42 z9:8771:79
2DB 57:1371:85 z27:4372:82 z82:3071:57 z13:1771:59 yz54:1373:37 yz24:8072:95 yz61:3074:83 yz8:6072:08

MDnB z53:2371:62 y30.8772.52 83.5370.69 y14:9771:94 z54:0072:08 32:2771:41 83:6370:55 16:8371:14
MDTAN z52:6073:48 yz27:1372:43 z82:5771:72 z12:8072:38 yz31:1074:37 z29:4372:48 z82:6071:37 yz8:9771:70

MD 1/1 56:6772:93 29:9773:75 78:1772:59 15:6372:00 yz53:2772:78 z29:1772:54 z77:9072:20 z15:3371:37

MD 2/2 56:6073:63 z28:9372:36 z77:4772:24 15.1771.99 yz53:3072:08 z28:7772:37 z76:9372:97 z15:5070:94
MD 2/3 56:7072:87 29.8773.20 z77:0371:41 15.9072.67 yz52:7771:53 z30:7772:25 z77:9072:20 16.6371.32
MD 2/4 56.9772.11 z28:5373:13 z76:8772:39 15.5772.41 yz52:4772:05 29.3073.02 z75:2773:24 z15:4371:28

Table 10
Mean absolute error rates on the ASOMO dataset with the ASOMO features in the supervised and the semi-supervised learning frameworks (20�5cv).

Classif. Labelled data (supervised learning) Labelledþunlabelled data (semi-supervised learning)

W. influence MAE Senti. P. MAE Subject. MAE JMAE W. influence MAE Senti. P. MAE Subject. MAE JMAE

nB z0:56370:014 1:03670:036 0:17370:011 z0:62070:014 yz0:61370:040 yz1:20970:069 yz0:42170:036 yz0:98670:041

TAN z0:61470:041 yz1:04470:043 z0:20470:015 z0:67070:029 yz0:66470:055 0:99170:041 yz0:22570:038 yz0:71870:039

2DB z0:55370:028 1:03570:053 0:17170:009 0:61470:018 yz0:63670:041 yz1:11470:082 yz0:38770:048 yz0:88570:056

MDnB z0:55970:029 1.01970.027 y0.16770.009 y0.60870.016 0:54970:019 1:00270:028 0:61270:005 0:59670:007
MDTAN z0:56770:045 z1:10170:052 z0:18070:015 z0:64470:026 yz0:87870:075 z1:10270:028 z0:17270:011 yz0:75070:027

MD 1/1 0:52970:034 z1:05670:032 z0:21970:022 z0:65970:029 y0:55670:031 z1:06170:054 z0:21670:018 z0:66670:015

MD 2/2 0:52570:033 z1:05770:054 z0:22270:021 z0:66070:034 y0:56070:040 z1:07570:050 z0:22770:023 yz0:68270:022

MD 2/3 0:53170:032 z1:06170:032 z0:23770:034 z0:67970:037 y0.54970.016 z1:04870:049 z0:22370:033 z0:67870:033
MD 2/4 0:52970:041 z1:06970:058 z0:22770:020 z0:67070:031 yz0:57970:038 z1:04770:038 z0:22570:023 z0:68070:021
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case of the MAE (Table 10) they are the lowest. Pairwise
statistical hypothesis tests (Student’s t-test with a¼ 0:05) have
been performed in order to determine if there are significant
statistical differences between the values of the tested tech-
niques. We use the symbol ‘y’ to mark the values that are
statistically outperformed by the highlighted best estimated
measure (in bold).
2.
 To compare the performance between the uni-dimensional
and the multi-dimensional approaches, the best accuracy per
class variable, as well as the joint performance, has been
highlighted in italics. For each column, statistical hypothesis
tests (Student’s t-test with a¼ 0:05) have been performed in
order to determine if there are significant statistical differ-
ences. The symbol ‘z’ is used to mark the values that are
statistically worse than the best estimated value (in italics).

Several conclusions can be extracted from the supervised and
semi-supervised comparison in Tables 9 and 10 (analysed per
row):
1.
 The uni-dimensional models tend to perform worse when they
are learnt using the semi-supervised learning framework. This
could be due to the fact that incorrect models tend to lead to
performance degradation in the semi-supervised framework
due to the fact that they are not able to match the underlying
generative structure [12]. This phenomenon occurs in both
evaluation measures.
2.
 As occurs in the artificial experiments, the MDTAN approach
[53] tends to behave more similarly to the uni-dimensional
approaches rather than to the multi-dimensional approaches.
3.
 With respect to the accuracy measure, in the multi-dimen-
sional scenario, the Will to Influence class variable tends to
degrade its performance in the semi-supervised scenario,
whilst Sentiment Polarity and Subjectivity tend to achieve
better single accuracies. In the uni-dimensional approach, the
opposite happens.
4.
 The MAE results show that, unlike what happens in the uni-
dimensional framework where the semi-supervised degrada-
tion is significant, in the multi-dimensional scenario similar
results are reported for supervised and semi-supervised learn-
ing. However, there are cases in which the semi-supervised
learning algorithms obtain better results and in one case there
is a significant statistical gain.
5.
 The MDnB method in its semi-supervised framework is the
best solution for the ASOMO problem. In terms of accuracy, it
obtains statistically significant better results in joint accuracy
and in the Sentiment Polarity target variable, as well as better
results in the other two variables. With respect to the MAE,
MDnB obtains statistically significant better results in joint
accuracy and in the Subjectivity dimension, as well as better
results in the other dimensions.

Regarding the comparison of the uni-dimensional and multi-
dimensional approaches (for each column), the following com-
ments can be extracted:
1.
 With the exception of Will to Influence, the single class
variables tend to achieve better accuracies in the multi-
dimensional approaches.
2.
 The MAE terms show similar results to those found with the
accuracy evaluation measure. However, in this case, the
exception is provided by the estimated MAE obtained in the
Sentiment Polarity dimension in the semi-supervised version
of the uni-dimensional TAN algorithm.
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3.
 The multi-dimensional classification approach statistically
outperforms the uni-dimensional framework in terms of joint
accuracy.
4.
 MDnB is also the best technique in terms of global perfor-
mance, i.e. in accuracy and in MAE metrics.

One explanation for the surprising success of the MDnB could
be the use of the knowledge of the experts in engineering the
features, as stated in [28]: when applying rational criteria in
determining the predictive features of a problem, the resulting
features are usually probabilistically independent given the class
variables. This characteristic favours the learning scheme pro-
vided by the MDnB algorithm. Moreover, this is crucial in the
success obtained in the semi-supervised framework due to the
fact that it matches the actual underlying domain structure [12].

The MDnB assumes conditional independence between the
three class variables. In spite of this assumption, we cannot talk
about independence between the class variables as happens when
the problem is approached by several uni-dimensional classifiers.
Each class variable in this model uses the information of the
remaining class variables when it carries out the classification
task. It also simultaneously uses all the class variables to learn the
parameters of the structure. The success of this algorithm can
shed some light on the relation between the three variables used
in this problem: the multi-dimensional framework achieves
better results than the uni-dimensional counterparts. Therefore,
it seems that there is a certain relation between them. Further-
more, it can be seen that simultaneously using the information
of these class variables in the same classification task by means
of a multi-dimensional technique conceives better predictive
classifiers.

In conclusion, we show that the proposed semi-supervised
multi-dimensional formulation designs a novel perspective for
this kind of SA problems, opening new ways to deal with this
domain. In addition, it can also be seen that the explicit use of the
different class variables in the same classification task has
successfully solved the ASOMO problem, where the MDnB in a
semi-supervised framework is the best solution.

In conclusion, we show that the proposed semi-supervised
multi-dimensional formulation designs a novel perspective for
this kind of SA problems, opening new ways to deal with this
domain. In addition, it can also be seen that the explicit use of the
different class variables in the same classification task has
successfully solved the ASOMO problem, where the MDnB in a
semi-supervised framework is the best solution.

8. Conclusions and future work

In this paper, we solve a real-world multi-dimensional SA
problem. This real problem consists of characterising the attitude
of a customer when he writes a post about a particular topic in a
specific forum through three differently related dimensions: Will
to Influence, Polarity and Subjectivity.

Due to the fact that it has three different target variables, the
SA (uni-dimensional) state-of-the-art classification techniques
seem inappropriate. They do not match the underlying multi-
dimensional nature of this problem. The problem also cannot be
directly tackled by multi-label techniques. For that reason, we
propose the use of multi-dimensional Bayesian network classi-
fiers as a novel methodological tool which joins the different
target variables in the same classification task in order to exploit
the potential relationships between them. Within this methodol-
ogy, in this paper, we have proposed a new filter algorithm to
learn multi-dimensional J/K dependences Bayesian network struc-
tures in order to explore a wider range of structures while dealing
with this application.
Moreover, in order to avoid the arduous and time-consuming
task of labelling examples in this field, we extend, by means of the
EM algorithm, these multi-dimensional techniques to semi-
supervised learning framework so as to make use of the huge
amount of unlabelled data available on the Internet.

Experimental results of applying the proposed battery of
multi-dimensional learning algorithms to a corpus consisting of
2542 posts (150 manually labelled and 2392 unlabelled) show
that: (1) the uni-dimensional approaches cannot capture the
multi-dimensional underlying nature of this problem, (2) engi-
neering a suitable feature set is a key factor for obtaining better
solutions, (3) more accurate classifiers can be found using the
multi-dimensional approaches which perform a simultaneous
classification task, (4) the use of large amounts of unlabelled data
in a semi-supervised framework can be beneficial to improve the
recognition rates, and (5) the MDnB classifier in a semi-super-
vised framework is the best solution for this problem because it
matches the actual underlying domain structure [28,12].

The proposed multi-dimensional methodology can be improved
or extended in several ways. For instance, in the ASOMO multi-
dimensional problem, the values of all class variables are missing in
each sample of the unlabelled subset. However, by means of the EM
algorithm, the learning algorithms can be easily generalised to the
situation where not all the class variables are missing in all the
samples of the unlabelled data subset.

Besides, we are concerned about the scalability of the multi-
dimensional Bayesian network classifiers in the semi-supervised
framework. The computational burden is not a problem when dealing
with these datasets, but it could happen when the number of
variables increases. This could open a line in researching feature
subset selection techniques for multi-dimensional classification.

Regarding the application of multi-dimensional classification
to the SA domain, this work can be extended in a number of
different ways:
�
 The proposed multi-dimensional Bayesian network classifiers
can be directly applied to Affect Analysis. This area is con-
cerned with the analysis of text containing emotions and it is
associated with SA [1]. However, Affect Analysis tries to
extract a large number of potential emotions, e.g. happiness,
sadness, anger, hate, violence, excitement, fear, etc, instead of
just looking at the polarity of the text. Additionally, in the case
of Affect Analysis, the emotions are not mutually exclusive
and certain emotions may be correlated. So, this can easily be
viewed as a multi-label classification problem, a type of
problem in which multi-dimensional Bayesian network classi-
fiers have reported good results in the recent past [5].

�
 Within SA, the same corpus can be used to deal with different

target dimensions. This could open different research lines in
adding more target variables in the same classification task so
as to take advantage of these existing relationships, engineering
a suitable feature set for working with several dimensions, etc.
For instance, in the works where the need to predict both the
Sentiment Polarity and the Subjectivity has been noticed [21].
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Iñaki Inza received his PhD in computer science from
The University of the Basque Country in 2002 and he is a
member of the Intelligent Systems Group research team.
He is an associate professor in The University of the
Basque Country. Some of his main interests are in
feature selection methods, Bayesian networks and
applications to biological domains. He has eight book
chapters in six books and 31 publications in refereed
journals and conferences, some of them in top
machine learning and biology journals such as Bioin-
formatics, Machine Learning, IEEE TPAMI or Artificial
Intelligence in Medicine. www.sc.ehu.es/ccwbayes/

members/inaki.htm
Jose A. Lozano received an MSc degree in mathematics
and an MSc degree in computer science from the The
University of the Basque Country, Spain, in 1991 and
1992 respectively, and a PhD degree in computer
science from the University of the Basque Country,
Spain, in 1998. Since 2008 he is s full professor in the
Department of Computer Science and Artificial Intelli-
gence in The University of the Basque Country, where he
leads the Intelligent Systems Group. He is the co-author
of more than 50 ISI journal publications and co-editor
of the first book published about Estimation of Dis-
tribution Algorithms. His major research interests

include machine learning, pattern analysis, evolution-

ary computation, data mining, metaheuristic algorithms, and real-world applica-
tions. Prof. Lozano is associate editor of IEEE Transactions on Evolutionary
Computation and a member of the editorial board of Evolutionary Computation
journal, Soft Computing and another three journals. www.sc.ehu.es/ccwbayes/
members/jalozano

http://www.sc.ehu.es/ccwbayes/members/juandiego/
http://www.sc.ehu.es/ccwbayes/members/juandiego/
www.sc.ehu.es/ccwbayes/members/inaki.htm
www.sc.ehu.es/ccwbayes/members/inaki.htm
www.sc.ehu.es/ccwbayes/members/inaki.htm
www.sc.ehu.es/ccwbayes/members/inaki.htm
www.sc.ehu.es/ccwbayes/members/inaki.htm
www.sc.ehu.es/ccwbayes/members/jalozano
www.sc.ehu.es/ccwbayes/members/jalozano
www.sc.ehu.es/ccwbayes/members/jalozano
www.sc.ehu.es/ccwbayes/members/jalozano
www.sc.ehu.es/ccwbayes/members/jalozano

	Approaching Sentiment Analysis by using semi-supervised learning of multi-dimensional classifiers
	Introduction
	Problem statement and state-of-the-art review
	The Sentiment Analysis domain
	The ASOMO problem: a multi-dimensional perspective of SA
	The ASOMO SA dataset

	The need for multi-dimensional classification techniques

	Multi-dimensional classification
	Multi-dimensional supervised classification problems
	Related areas
	Multi-dimensional classification rule
	Multi-dimensional classification evaluation

	Multi-dimensional Bayesian network classifiers
	Bayesian network classifiers
	Structure of multi-dimensional class Bayesian network classifiers

	Learning multi-dimensional Bayesian network classifiers
	Multi-dimensional J/K dependences Bayesian classifier

	Semi-supervised multi-dimensional classification
	Learning multi-dimensional Bayesian network classifiers in the semi-supervised framework

	Experimentation
	Artificial experimentation
	Solving the ASOMO SA problem
	Comparison between different feature sets in both uni-dimensional and multi-dimensional learning scenarios
	Experiments with the ASOMO corpus in the supervised and semi-supervised learning frameworks


	Conclusions and future work
	Acknowledgements
	References




