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a b s t r a c t 

The Nyström method is a popular technique that uses a small number of landmark points to compute a 

fixed-rank approximation of large kernel matrices that arise in machine learning problems. In practice, 

to ensure high quality approximations, the number of landmark points is chosen to be greater than the 

target rank. However, for simplicity the standard Nyström method uses a sub-optimal procedure for rank 

reduction. In this paper, we examine the drawbacks of the standard Nyström method in terms of poor 

performance and lack of theoretical guarantees. To address these issues, we present an efficient modi- 

fication for generating improved fixed-rank Nyström approximations. Theoretical analysis and numerical 

experiments are provided to demonstrate the advantages of the modified method over the standard Nys- 

tröm method. Overall, the aim of this paper is to convince researchers to use the modified method, as 

it has nearly identical computational complexity, is easy to code, has greatly improved accuracy in many 

cases, and is optimal in a sense that we make precise. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Kernel methods are widely used in various machine learning

roblems. Well-known examples include support vector machines

1,2] , kernel clustering [3–6] , and kernel ridge regression [7–10] .

he main idea behind kernel-based learning is to map the input

ata points into a feature space, where all pairwise inner products

f the mapped data points can be computed via a nonlinear kernel

unction that satisfies Mercer’s condition [11] . Thus, kernel meth-

ds allow one to use linear algorithms in the feature space which

orrespond to nonlinear algorithms in the original space. For this

eason, kernel machines have received much attention as an effec-

ive tool to tackle problems with complex and nonlinear structures.

Let x 1 , . . . , x n be a set of n data points in R 

p . The inner products

n feature space are calculated using a nonlinear kernel function

( · , · ): 

 i j 
def = κ(x i , x j ) = 〈 �(x i ) , �(x j ) 〉 , ∀ i, j ∈ { 1 , . . . , n } , (1)

here �: x �→ �( x ) is the kernel-induced feature map. A popu-

ar choice is the Gaussian kernel function κ(x i , x j ) = exp (−‖ x i −
 j ‖ 2 2 

/c) , with the parameter c > 0. In kernel machines, the pairwise

nner products are stored in the symmetric positive semidefinite
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SPSD) kernel matrix K ∈ R 

n ×n . However, it takes O(n 2 ) memory to

tore the full kernel matrix and subsequent processing of K within

he learning process is quite expensive or prohibitive for large data

ets. 

A popular approach to tackle these challenges is to use the best

ank- r approximation � K � r = U r �r U 

T 
r , obtained via the eigenvalue

ecomposition of K , for r ≤ rank( K ). Here, the columns of U r ∈ R 

n ×r 

pan the top r -dimensional eigenspace of K , and the diagonal ma-

rix �r ∈ R 

r×r contains the top r eigenvalues. Since the kernel ma-

rix is SPSD, we have: 

 ≈ � K � r = U r �r U 

T 
r = LL T , (2)

here L 
def = U r �

1 / 2 
r ∈ R 

n ×r . 

When the target rank r is small and chosen independently of

 (e.g., r is chosen according to the degrees of freedom in the

earning problem [12] ), the benefits of the rank- r approximation

n (2) are twofold. First, it takes O (nr ) to store the matrix L which

s only linear in the number of samples n . Second, the rank- r ap-

roximation leads to substantial computational savings within the

earning process. For example, approximating K with LL T means

he matrix inversion ( K + λI n ×n ) 
−1 

in kernel ridge regression can

e calculated using the Sherman–Morrison–Woodbury formula in

 (nr 2 + r 3 ) time compared to O(n 3 ) if done naïvely. Other ex-

mples are kernel K-means clustering, which is performed on the

olumns of the matrix L T ∈ R 

r×n , and so each step of the K-means

lgorithm runs in time proportional to r . 

https://doi.org/10.1016/j.neucom.2019.06.070
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2019.06.070&domain=pdf
mailto:farhad_pourkamali@uml.edu
https://doi.org/10.1016/j.neucom.2019.06.070


262 F. Pourkamali-Anaraki and S. Becker / Neurocomputing 363 (2019) 261–272 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c  

i  

b  

b  

r  

w  

o  

d  

t  

c  

i  

m  

[  

o  

o  

a

1

 

o  

n  

p  

t  

w  

r  

s  

r  

S

2

 

t  

s  

l  

a  

(  

t  

c  

n

Although it has been shown that the fixed-rank approximation

of kernel matrices is a promising approach to trade-off accuracy

for scalability [13–16] , the eigenvalue decomposition of K has at

least quadratic time complexity and takes O(n 2 ) space. To address

this issue, one line of prior work is centered around efficient tech-

niques for approximating the best rank- r approximation when we

have ready access to K ; see [17–19] for a survey. However, K is

typically unknown in kernel methods and the cost to form K using

standard kernel functions is O(pn 2 ) , which is extremely expensive

for large high-dimensional data sets. For this reason, the Nyström

method [20] has been a popular technique for computing fixed-

rank approximations, which eliminates the need to access every

entry of the full kernel matrix. The Nyström method works by se-

lecting a small set of vectors, referred to as landmark points, and

computes the kernel similarities between the input data points and

landmark points. 

To be formal, the standard Nyström method generates a rank-

r approximation of K using m landmark points z 1 , . . . , z m 

in R 

p .

In practice, it is common to choose m greater than r for obtain-

ing higher quality rank- r approximations [21,22] , since the accuracy

of the Nyström method depends on the number of selected land-

mark points and the selection procedure. The landmark points can

be sampled with respect to a uniform or nonuniform distribution

from the set of n input data points [23,24] . Moreover, some recent

techniques utilize out-of-sample landmark points for generating

improved Nyström approximations, e.g., centroids found from K-

means clustering on the input data points [25–28] . For a fixed set

of landmark points, let C ∈ R 

n ×m and W ∈ R 

m ×m be two matrices

with the ( i, j )th entries C i j = κ(x i , z j ) and W i j = κ(z i , z j ) . Then, the

rank- m Nyström approximation has the form G = CW 

† C 

T , where

W 

† is the pseudo-inverse of W . For the fixed-rank case, the stan-

dard Nyström method restricts the rank of the m × m inner ma-

trix W and computes its best rank- r approximation � W � r to obtain

G 

nys 
(r) 

= C � W � 
† 
r C 

T , which has rank no great than r . The manner of

the rank- m to rank- r reduction may appear ad hoc , and improving

this reduction is the topic of the paper. 

Although the rank reduction process in the standard Nyström

method is simple, it disregards the structure of C . This method

generates the rank- r approximation G 

nys 
(r) 

solely based on filtering

W because of its smaller size compared to the matrix C of size

n × m . As a result, the selection of more distinct landmark points in

the standard Nyström method does not guarantee improved rank-r ap-

proximations of kernel matrices . For example, our experimental re-

sults in Section 7 reveal that the increase in the number of land-

mark points may even produce less accurate rank- r approximations

due to the poor rank reduction process, cf. Remarks 7 and 9 . 

This paper considers the fundamental problem of rank reduc-

tion in the Nyström method. In particular, we present an efficient

technique for computing a rank- r approximation in the form of

G 

opt 
(r) 

= � CW 

† C 

T � r , which runs in time comparable with the standard

Nyström method. The modified method utilizes the thin QR de-

composition of the matrix C for computing a more accurate rank- r

approximation of CW 

† C 

T compared to G 

nys 
(r) 

. Moreover, unlike the

standard Nyström method, our results show that both theoretically

and empirically, modified Nyström produces more accurate rank-

r approximations as the number of distinct landmark points in-

creases. 

1.1. Contributions 

In this work, we make the following contributions: 

1. In Algorithm 2 , we present an efficient method for generat-

ing improved rank- r Nyström approximations. The modified

method computes the best rank- r approximation of CW 

† C 

T , i.e.,

G 

opt 
(r) 

= � CW 

† C 

T � r , in linear time with respect to the sample size
n . In Theorem 3 , it is shown that G 

opt 
(r) 

always produces a more

accurate rank- r approximation of K compared to G 

nys 
(r) 

with re-

spect to the trace norm, when m is greater than r and landmark

points are selected from the input data set. Remark 5 shows

this is not necessarily true in the Frobenius norm, although it

is rarely seen in practice. 

2. Theorem 6 proves that the accuracy of the modified rank- r Nys-

tröm approximation always improves (with respect to the trace

norm) as more distinct landmark points are selected from the

input data set. 

3. We provide counter-examples in Remarks 7 and 9 showing that

an equivalent of Theorem 6 cannot hold for the standard Nys-

tröm method. Example 2 shows a situation where the modified

Nyström method is arbitrarily better than the standard method,

with respect to the trace and Frobenius norms. Remark 4 gives

insight into when we expect the standard and modified meth-

ods to differ. 

4. Theorem 8 shows that, under certain conditions, our theoretical

results are also applicable to more recent selection techniques

based on out-of-sample extensions of the input data, such as

centroids found from K-means clustering. 

5. Finally, we provide experimental results to demonstrate the su-

perior performance and advantages of modified Nyström. 

To our knowledge, the modified Nyström method was not dis-

ussed in the literature until our preliminary preprint [29] , though

ts derivation is straightforward and so we suspect it may have

een previously derived in unpublished work; our main contri-

ution is the mathematical analysis. Due to the importance of

ank reduction in the Nyström method, there are two recent

orks [30,31] that independently study the approximation error

f � CW 

† C 

T � r , when landmark points are selected from the input

ata set. However, there are two principal differences between

his work and the aforementioned references. First, the main fo-

us of this paper is to directly compare the standard and mod-

fied Nyström methods, and provide both theoretical and experi-

ental evidences on the effectiveness of modified Nyström, while

30,31] do not provide results comparing the two methods. Sec-

nd, we present theoretical results for the important class of out-

f-sample landmark points, which often lead to accurate Nyström

pproximations. 

.2. Paper organization 

In Section 2 , we present the notation and give a brief review

f some matrix decomposition and low-rank approximation tech-

iques. Section 3 reviews the standard Nyström method for com-

uting rank- r approximations and we explain the process of ob-

aining approximate eigenvalues and eigenvectors. In Section 4 ,

e present an efficient modified method for computing improved

ank- r approximations of kernel matrices. The main theoretical re-

ults are given in Sections 5 and 6 , and we present experimental

esults comparing the modified and standard Nyström methods in

ection 7 . Section 8 provides a brief conclusion. 

. Notation and preliminaries 

We denote column vectors with lower-case bold letters and ma-

rices with upper-case bold letters. I n × n is the identity matrix of

ize n × n ; 0 n × m 

is the n × m matrix of zeros. For a vector x ∈ R 

p ,

et ‖ x ‖ 2 denote the Euclidean norm, and diag( x ) represents a di-

gonal matrix with the elements of x on the main diagonal. The

 i, j )th entry of A is denoted by A ij , A 

T is the transpose of A , and

r( · ) is the trace operator. We assume scalars, vectors and matri-

es are real-valued, though many of the results extend to complex

umbers. 
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c  

o  
Each n × m matrix A with ρ = rank (A ) ≤ min { n, m } admits a

actorization in the form of A = U �V 

T , where U ∈ R 

n ×ρ and V ∈
 

m ×ρ are orthonormal matrices known as the left singular vec-

ors and right singular vectors, respectively. The diagonal matrix

= diag ([ σ1 (A ) , . . . , σρ(A )]) contains the singular values of A in

escending order, i.e., σ1 (A ) ≥ · · · ≥ σρ(A ) > 0 . This factorization is

nown as the thin singular value decomposition (SVD). 

Throughout the paper, we use several standard matrix norms.

he Frobenius norm of A is defined as ‖ A ‖ 2 
F 

def = 

∑ ρ
i =1 

σi (A ) 2 =
r (A 

T A ) and ‖ A ‖ ∗ def = 

∑ ρ
i =1 

σi (A ) = tr ( 
√ 

A 

T A ) denotes the trace

orm (or nuclear norm) of A . The spectral norm of A is the largest

ingular value of A , i.e., ‖ A ‖ 2 def = σ1 (A ) . It is straightforward to

how that ‖ A ‖ 2 ≤‖ A ‖ F ≤‖ A ‖ ∗ . 

When K is a kernel matrix , meaning it is generated via (1) ,

e assume the kernel function κ satisfies Mercer’s condition and

herefore K is symmetric positive semidefinite (SPSD) [11,32] . Let

 ∈ R 

n ×n be any SPSD matrix with ρ = rank (K ) ≤ n . Similar to the

VD, the matrix K can be factorized as K = U �U 

T , where U ∈ R 

n ×ρ

ontains the orthonormal eigenvectors, i.e., U 

T U = I ρ×ρ, and � =
iag 

(
[ λ1 (K ) , . . . , λρ(K )] 

)
is a diagonal matrix which contains the 

onzero eigenvalues of K in descending order. This factorization

s known as the thin eigenvalue decomposition (EVD). The matri-

es U and � can be partitioned for a target rank r ( r ≤ρ) in the

orm of K = U r �r U 

T 
r + U ρ−r �ρ−r U 

T 
ρ−r , where �r ∈ R 

r×r contains

he r leading eigenvalues and the columns of U r ∈ R 

n ×r span the

op r -dimensional eigenspace, and �ρ−r ∈ R 

(ρ−r) ×(ρ−r) and U ρ−r ∈
 

n ×(ρ−r) contain the remaining (ρ − r) eigenvalues and eigenvec- 

ors. It is well-known that � K � r 
def = U r �r U 

T 
r is the “best rank- r ap-

roximation” to K in the sense that � K � r minimizes ‖ K − K 

′ ‖ F and

 K − K 

′ ‖ ∗ over all matrices K 

′ ∈ R 

n ×n of rank at most r . If λr (K ) =
r+1 (K ) , then � K � r is not unique. The Moore-Penrose pseudo-

nverse of K can be obtained from the EVD as K 

† = U �−1 
U 

T . When

 is full rank, we have K 

† = K 

−1 . 

Another matrix factorization technique that we use is the QR

ecomposition. An n × m matrix A , with n ≥ m , can be decom-

osed as A = QR , where Q ∈ R 

n ×m has m orthonormal columns,

.e., Q 

T Q = I m ×m 

, and R ∈ R 

m ×m is an upper triangular matrix.

ometimes this is called the thin QR decomposition, to distinguish

t from a full QR decomposition which finds Q ∈ R 

n ×n and zero-

ads R accordingly. 

Finally, we state a standard result on the rank- r approximation

f a matrix expressed as a product of two matrices. The proof of

his result can be found in [33] . 

emma 1. Consider the matrix K ∈ R 

n ×n and let Q ∈ R 

n ×m be a ma-

rix that has m < n orthonormal columns. For any positive integer

 ≤ m, we have: 

 Q 

T K � r = arg min 

T : rank (T ) ≤r 
‖ K − QT ‖ 

2 
F . (3)

. The standard Nyström method 

The Nyström method generates a fixed-rank approximation of

he SPSD kernel matrix K ∈ R 

n ×n by selecting a small set of vec-

ors referred to as “landmark points”. The simplest selection tech-

ique is uniform sampling without replacement [20,21] , where

ach data point is sampled with the same probability, i.e., p i = 

1 
n ,

or i = 1 , . . . , n . The advantage of this technique is the low com-

utational complexity associated with sampling landmark points.

owever, uniform sampling does not take into account the nonuni-

orm structure of many data sets and the resulting kernel matrices.

herefore, sampling mechanisms with respect to nonuniform dis-

ributions have been proposed to address this problem. This line

f work requires the computation of statistical leverage scores of

 , which is more expensive than uniform sampling [34–36] . In ad-

ition, leverage score sampling often requires computing the entire
ernel matrix K , which negates one of the principal benefits of the

yström method. A comprehensive review and comparison of uni-

orm and nonuniform landmark selection techniques can be found

n [21,37] . 

More recently, generating landmark points using out-of-sample

xtensions of input data has been shown to be effective for high

uality Nyström approximations. This line of research originates

rom the work of Zhang et al. [25,26] , and it is based on the obser-

ation that the Nyström approximation error depends on the quan-

ization error of encoding the data set with the landmark points.

ence, the landmark points are selected to be the centroids found

rom K-means clustering. In machine learning and pattern recog-

ition, K-means clustering is a well-established technique to parti-

ion a data set into clusters by trying to minimize the total sum of

he squared Euclidean distances of each point to the closest cluster

enter [38] . 

In general, assume that a set of m � n landmark points in

 

p , denoted by Z = [ z 1 , . . . , z m 

] ∈ R 

p×m , are given. Let us consider

wo matrices C ∈ R 

n ×m and W ∈ R 

m ×m , where C i j = κ(x i , z j ) and

 i j = κ(z i , z j ) . The Nyström method uses both C and W to con-

truct an approximation of the kernel matrix K in the form of

 ≈ G = CW 

† C 

T , which has rank at most m . For the fixed-rank case,

he Nyström method generates a rank- r approximation of the ker-

el matrix, r ≤ m , by computing the best rank- r approximation of

he inner matrix W [22,23,39] , which results in G 

nys 
(r) 

= C � W � 
† 
r C 

T ,

here � W � 
† 
r represents the pseudo-inverse of � W � r . Thus, the EVD

f the matrix W = V �V 

T should be computed to find the top r

igenvalues �r ∈ R 

r×r and corresponding eigenvectors V r ∈ R 

m ×r :

 

nys 

(r) 
= L nys ( L nys ) 

T 
, L nys = CV r 

(
�−1 

r 

)
1 / 2 . (4)

he time complexity of the Nyström method to form L nys is

(pnm + m 

2 r + nmr) , where it takes O(pnm ) to construct C and

 . It takes O (m 

2 r ) time to perform the partial EVD of W and

 (nmr ) represents the cost of the matrix multiplication CV r . Thus,

or r ≤ m � n , the computation cost to form the rank- r approxima-

ion of the kernel matrix is only linear in the data set size n . The

igenvalues and eigenvectors of K can be estimated by using the

ank- r approximation in (4) , and in fact this approach provides

he exact eigenvalue decomposition of G 

nys 
(r) 

. The first step is to find

he EVD of the r × r matrix: (L nys ) T L nys = ̃

 V ̃

 �˜ V 

T , where ̃  V , ̃  � ∈ R 

r×r .

hen, the estimates of r leading eigenvalues and eigenvectors of K

re obtained as: ̂  U 

nys 
r = L nys ˜ V 

(˜ �
−1 )1 / 2 and 

̂ �
nys 

r = ̃

 �. The procedure

o estimate the r leading eigenvalues/eigenvectors is summarized

n Algorithm 1 . 

lgorithm 1 Standard Nyström. 

nput: data set X , m landmark points Z , kernel function κ , target

ank r 

utput: estimates of r leading eigenvectors and eigenvalues of the

ernel matrix K ∈ R 

n ×n : ̂ U 

nys 
r ∈ R 

n ×r , ̂ �
nys 

r ∈ R 

r×r 

1: Form C and W : C i j = κ(x i , z j ) , W i j = κ(z i , z j ) 

2: Compute EVD: W = V �V 

T 

3: Form the matrix: L nys = CV r ( �
−1 
r ) 1 / 2 

4: Compute EVD: (L nys ) T L nys = ̃

 V ̃

 �˜ V 

T 

5: ̂ U 

nys 
r = L nys ˜ V ( ̃  �

−1 
) 1 / 2 and 

̂ �
nys 

r = ̃

 �

. Improved Nyström approximation via QR decomposition 

In the previous section, we explained the Nyström method for

omputing rank- r approximations of SPSD kernel matrices based

n selecting a small set of landmark points. Although the final goal
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Algorithm 2 Nyström via QR Decomposition (“modified” Nys- 

tröm). 

Input: data set X , m landmark points Z , kernel function κ , target 

rank r 

Output: estimates of r leading eigenvectors and eigenvalues of the 

kernel matrix K ∈ R 

n ×n : ̂ U 

opt 
r ∈ R 

n ×r , ̂ �
opt 

r ∈ R 

r×r 

1: Form C and W : C i j = κ(x i , z j ) , W i j = κ(z i , z j ) 

2: Perform the thin QR decomposition: C = QR 

3: Compute EVD: RW 

† R 

T = V 

′ �′ V 

′ T 
4: ̂ U 

opt 
r = QV 

′ 
r and 

̂ �
opt 

r = �′ 
r 

C  

c  

o  

d  

i  

c  

F

E  

a  

m

K  

O  

n  

a  

c

C  

I  

t  

K

G  

T  

n

G  

c

Q  

T  

E

R

 

is to find an approximation that has rank no greater than r , it is

often preferred to select m > r landmark points and then restrict

the resultant approximation to have rank at most r . The main in-

tuition is that selecting m > r landmark points and then restricting

the approximation to a lower rank- r space has a regularization ef-

fect which can lead to more accurate approximations [21,23] . For

example, when landmark points are chosen to be centroids from

K-means clustering, more landmark points lead to smaller quanti-

zation error of the data set, and thus higher quality Nyström ap-

proximations. 

In the standard Nyström method presented in Algorithm 1 , the

rank of the matrix G is restricted by computing the best rank- r

approximation of the inner matrix W : G 

nys 
(r) 

= C � W � 
† 
r C 

T . Since the

inner matrix in the representation of G 

nys 
(r) 

has rank no greater than

r , it follows that G 

nys 
(r) 

has rank at most r . The main benefit of

this technique is the low computational cost of performing an ex-

act eigenvalue decomposition on a relatively small matrix of size

m × m . However, the standard Nyström method ignores the struc-

ture of the matrix C in the rank reduction process. In fact, since the

rank- r approximation G 

nys 
(r) 

does not utilize the full knowledge of C ,

the selection of more landmark points does not guarantee an im-

proved low-rank approximation in the standard Nyström method,

cf. Remarks 7 and 9 . 

To solve this problem, we present an efficient method to

compute the best rank- r approximation of G = CW 

† C 

T , for given

matrices C ∈ R 

n ×m and W ∈ R 

m ×m . In contrast with the standard

Nyström method, the modified approach takes advantage of both

matrices C and W . To begin, let us consider the best rank- r ap-

proximation of G in any unitarily invariant norm ‖ · ‖ , such as the

Frobenius norm or trace norm: 

G 

opt 

(r) 

def = arg min G ′ : rank (G ′ ) ≤r ‖ CW 

† C 

T − G 

′ ‖ 

(i ) = arg min G ′ : rank (G ′ ) ≤r ‖ Q RW 

† R 

T ︸ ︷︷ ︸ 
m ×m 

Q 

T − G 

′ ‖ 

(ii ) = arg min G ′ : rank (G ′ ) ≤r ‖ 

(
QV 

′ )�′ (
QV 

′ )T − G 

′ ‖ = 

(
QV 

′ 
r 

)
�′ 

r 

(
QV 

′ 
r 

)T 
, 

(5)

where (i) follows from the QR decomposition of C ∈ R 

n ×m ; C = QR ,

where Q ∈ R 

n ×m and R ∈ R 

m ×m . To get (ii), the EVD of the m × m

matrix RW 

† R 

T is computed: RW 

† R 

T = V 

′ �′ V 

′ T , where the diagonal

matrix �′ ∈ R 

m ×m contains m eigenvalues in descending order on

the main diagonal and the columns of V 

′ ∈ R 

m ×m are the corre-

sponding eigenvectors. Moreover, we note that the columns of

QV 

′ ∈ R 

n ×m are orthonormal because both Q and V 

′ have orthonor-

mal columns. Thus, the decomposition ( QV 

′ ) �′ ( QV 

′ ) T contains the

m eigenvalues and orthonormal eigenvectors of the Nyström

approximation CW 

† C 

T . Hence, the best rank- r approximation of

G = CW 

† C 

T is then computed using the r leading eigenvalues

�′ 
r ∈ R 

r×r and corresponding eigenvectors QV 

′ 
r ∈ R 

n ×r , as given (5) .

Thus, the estimates of the top r eigenvalues and eigenvectors of

the kernel matrix K from the Nyström approximation CW 

† C 

T are

obtained as: ̂ U 

opt 
r = QV 

′ 
r and 

̂ �
opt 

r = �′ 
r . 

The modified method for estimating the r leading eigenvalues/

eigenvectors of the kernel matrix is presented in Algorithm 2 .

The time complexity is O(pnm + nm 

2 + m 

3 + nmr ) , where O (pnm )

represents the cost to form C and W . The complexity of the QR

decomposition is O(nm 

2 ) and it takes O(m 

3 ) time to compute the

EVD of RW 

† R 

T . Finally, the cost to compute the matrix multiplica-

tion QV 

′ 
r is O (nmr ) . 

We can compare the computational complexity of Nyström via

QR decomposition with that of the standard Nyström method.

Since our focus in this paper is on large-scale data sets with n

large, we only consider terms involving n which lead to domi-

nant computation costs. Based on our previous discussion, it takes
 nys = O(pnm + nmr + nr 2 ) time to compute the eigenvalue de-

omposition using the standard Nyström method, while the cost

f the modified technique is C opt = O(pnm + nmr + nm 

2 ) . Thus, for

ata of even moderate dimension with p � m , the dominant term

n both C nys and C opt is O(pnm ) . Hence, there is no significant in-

rease in cost, as is the case in our runtime example shown in

ig. 4 . 

xample 2. In the rest of this section, we present a simple ex-

mple to gain some intuition on the superior performance of the

odified technique. 

Let us consider a small kernel matrix of size 3 × 3: 

 = 

[ 

1 0 10 

0 1 . 01 0 

10 0 100 

] 

. (6)

ne can find, for example, a data matrix X that generates this ker-

el matrix as K = X 

T X . Here, the goal is to compute the rank r = 1

pproximation of K . Sample m = 2 columns of K , and suppose we

hoose the first and second columns: 

 = 

[ 

1 0 

0 1 . 01 

10 0 

] 

, W = 

[
1 0 

0 1 . 01 

]
. (7)

n the standard Nyström method, the best rank-1 approximation of

he matrix W is first computed. Then, the rank-1 approximation of

 using standard Nyström is: 

 

nys 

(1) 
= C � W � 

† 
1 
C 

T = 

[ 

0 0 0 

0 1 . 01 0 

0 0 0 

] 

. (8)

he normalized approximation error in terms of the Frobenius

orm and trace norm is large: ‖ K − G 

nys 
(1) 

‖ F / ‖ K ‖ F = 0 . 99 and ‖ K −
 

nys 
(1) 

‖ ∗/ ‖ K ‖ ∗ = 0 . 99 . On the other hand, the modified method first

omputes the QR decomposition of C = QR : 

 = 

⎡ ⎣ 

1 √ 

101 
0 

0 1 

10 √ 

101 
0 

⎤ ⎦ , R = 

[√ 

101 0 

0 1 . 01 

]
. (9)

hen, the product of three matrices RW 

† R 

T is computed to find its

VD: 

W 

† R 

T = 

[√ 

101 0 

0 1 . 01 

][ 

1 0 

0 

1 

1 . 01 

] [√ 

101 0 

0 1 . 01 

]

= 

[
1 0 

0 1 

]
︸ ︷︷ ︸ 

V ′ 

[
101 0 

0 1 . 01 

]
︸ ︷︷ ︸ 

�′ 

[
1 0 

0 1 

]
︸ ︷︷ ︸ 

V ′ T 

. (10)
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inally, the rank-1 approximation of the kernel matrix in the mod-

fied method is: 

 

opt 

(1) 
= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 √ 

101 

0 

0 1 

10 √ 

101 

0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

[
101 0 

0 0 

]⎡ ⎣ 

1 √ 

101 

0 

10 √ 

101 

0 1 0 

⎤ ⎦ 

= 

⎡ ⎣ 

1 0 10 

0 0 0 

10 0 100 

⎤ ⎦ , (11) 

here ‖ K − G 

opt 
(1) 

‖ F / ‖ K ‖ F = 0 . 01 and ‖ K − G 

opt 
(1) 

‖ ∗/ ‖ K ‖ ∗ = 0 . 01 . In

act, one can show that our approximation is the same as the best

ank-1 approximation of K , i.e., G 

opt 
(1) 

= � K � 1 . Furthermore, by tak-

ng K 22 ↘ 1 in (6) , we can make the improvement of the modified

ethod over the standard method arbitrarily large. 

. Main theoretical results 

In order to compare the accuracy of modified Nyström with

tandard Nyström, we first provide an alternative formulation

f these two methods. We assume the landmark points Z =
 z 1 , . . . , z m 

] are in-sample , meaning they are selected in any fashion

deterministic or random) from among the set of input data points,

o that the matrix C ∈ R 

n ×m contains m columns of the kernel ma-

rix K . This column selection process can be viewed as forming a

ampling matrix P ∈ R 

n ×m that has exactly one nonzero entry in

ach column, where its location corresponds to the index of the

elected landmark point. Then, the matrix product C = KP ∈ R 

n ×m 

ontains m columns sampled from the kernel matrix K and W =
 

T KP ∈ R 

m ×m is the intersection of the m columns with the corre-

ponding m rows of K . 

Let us define D 

def = K 

1 / 2 P ∈ R 

n ×m , which means that C = KP =
 

1 / 2 D and W = P 

T KP = D 

T D . Moreover, we consider the SVD of

 = FSN 

T , where the columns of F ∈ R 

n ×m are the left singular vec-

ors of D , and we have S , N ∈ R 

m ×m . Thus, we get the EVD of the

atrix W = D 

T D = NS 2 N 

T . For simplicity of presentation, we as-

ume D and W have full rank, though the results still hold as long

s they have rank greater than or equal to r . 

The rank- r approximation in standard Nyström is G 

nys 
(r) 

=
 

nys (L nys ) T : 

 

nys = C 

(
� W � 

† 
r 

)1 / 2 = 

(
K 

1 / 2 FSN 

T 
)(

N r S 
−2 
r N 

T 
r 

)1 / 2 = K 

1 / 2 F r N 

T 
r , (12)

here we have used (N r S 
−2 
r N 

T 
r ) 

1 / 2 = N r S 
−1 
r N 

T 
r , and the following

wo properties: 

 

T N r = 

[
I r×r 

0 (m −r) ×r 

]
, F 

[
N 

T 
r 

0 (m −r) ×m 

]
= F r N 

T 
r . (13)

ince the columns of N r are orthonormal, i.e., N 

T 
r N r = I r×r , the

ank- r approximation of the kernel matrix K in the standard Nys-

röm method is given by: 

 

nys 

(r) 
= L nys ( L nys ) 

T = K 

1 / 2 F r F 
T 
r K 

1 / 2 . (14)

Next, we present an alternative formulation of the rank- r ap-

roximation G 

opt 
(r) 

in terms of the left singular vectors of D . The

odified Nyström method finds the best rank- r approximation of

W 

† C 

T , and observe that: 

 

(
W 

† 
)

1 / 2 = 

(
K 

1 / 2 FSN 

T 
)(

NS −1 N 

T 
)

= K 

1 / 2 FN 

T . (15)

hus, we get CW 

† C 

T = K 

1 / 2 FF T K 

1 / 2 , and the best rank- r approxi-

ation is: 

 

opt 

(r) 
= � CW 

† C 

T � r = � K 

1 / 2 F � r F 
T F � F T K 

1 / 2 � r , (16)
here we used F T F = I m ×m 

. Based on [30, Lemma 6] , let H ∈ R 

n ×r 

e the orthonormal bases of the rank- r matrix F � F T K 

1 / 2 � r ∈ R 

n ×n .

hen, we have F � F T K 

1 / 2 � r = HH 

T K 

1 / 2 , which allows us to simplify

16) : 

 

opt 

(r) 
= K 

1 / 2 HH 

T K 

1 / 2 . (17)

n the following, we present a theorem which shows that the mod-

fied Nyström method generates improved rank- r approximation of

 compared to standard Nyström. 

heorem 3 (Modified Nyström is more accurate than standard

yström) . Let K ∈ R 

n ×n be an SPSD kernel matrix, and r be the target

ank. Let P be any n × m matrix, with m ≥ r, such that C = KP ∈ R 

n ×m 

nd W = P 

T KP ∈ R 

m ×m . Then, we have: 

 K − G 

opt 

(r) 
‖ ∗ ≤ ‖ K − G 

nys 

(r) 
‖ ∗, (18)

here the Nyström method via QR decomposition generates G 

opt 
(r) 

=
 CW 

† C 

T � r , and the standard Nyström method produces G 

nys 
(r) 

=
 � W � 

† 
r C 

T . 

roof. We start with the alternative formulation of G 

opt 
(r) 

=
 

1 / 2 HH 

T K 

1 / 2 , where the columns of H ∈ R 

n ×r are orthonormal.

ote that K − G 

opt 
(r) 

is an SPSD matrix, and thus its trace norm is

qual to the trace of this matrix: 

 K − G 

opt 

(r) 
‖ ∗ = tr 

(
K 

1 / 2 
(
I n ×n − HH 

T 
)
K 

1 / 2 
)

(i ) = tr 
(
K 

1 / 2 
(
I n ×n − HH 

T 
)

2 K 

1 / 2 
)

= ‖ 

(
I n ×n − HH 

T 
)
K 

1 / 2 ‖ 

2 
F 

(ii ) = ‖ K 

1 / 2 − F � F T K 

1 / 2 � r ‖ 

2 
F 

(iii ) = min 

T : rank (T ) ≤r 

‖ K 

1 / 2 − FT ‖ 

2 
F , 

(19) 

here (i) follows from (I n ×n − HH 

T 
)

2 = (I n ×n − HH 

T 
)
, (ii) is based

n the observation HH 

T K 

1 / 2 = F � F T K 

1 / 2 � r , and (iii) is based on

emma 1 . Let us define the function f (T ) 
def = ‖ K 

1 / 2 − FT ‖ 2 
F 
, and

onsider the matrix T ′ ∈ R 

m ×n with rank no greater than r : T ′ =
 

F T r 
0 (m −r) ×n 

] K 

1 / 2 . Then, we see that: 

 K − G 

opt 

(r) 
‖ ∗ ≤ f ( T 

′ ) 

= ‖ K 

1 / 2 − F r F 
T 
r K 

1 / 2 ‖ 

2 
F 

= tr 
(
K 

1 / 2 
(
I n ×n − F r F 

T 
r 

)
2 K 

1 / 2 
)

= ‖ K − G 

nys 

(r) 
‖ ∗, (20) 

here we used FT ′ = F r F 
T 
r K 

1 / 2 , (I n ×n − F r F 
T 
r 

)
2 = (I n ×n − F r F 

T 
r 

)
, the

lternative formulation of G 

nys 
(r) 

= K 

1 / 2 F r F 
T 
r K 

1 / 2 , cf. (14) , and that

 − G 

nys 
(r) 

is SPSD. �

In Example 2 , we showed that the modified method outper-

orms the standard Nyström method. The essential structural fea-

ure of the example was the presence of a large-magnitude block

f the kernel matrix, denoted K 21 below. The following remark

hows that when this block is zero, the two methods perform the

ame. 

emark 4. Let P ∈ R 

n ×m be the sampling matrix, where m columns

f the kernel matrix K ∈ R 

n ×n are sampled according to any distri-

ution. Without loss of generality, the matrices C and K can be

ermuted as follows: 

 = 

[
W K 

T 
21 

K 21 K 22 

]
, C = 

[
W 

K 21 

]
, (21)

here K 21 ∈ R 

(n −m ) ×m and K 22 ∈ R 

(n −m ) ×(n −m ) . If K 21 = 0 (n −m ) ×m 

,

hen Nyström via QR decomposition and the standard Nyström
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method generate the same rank- r approximation of the kernel ma-

trix K , i.e., G 

opt 
(r) 

= G 

nys 
(r) 

. 

Proof. Given that K 21 = 0 (n −m ) ×m 

, we have K 

1 / 2 =
[ 

W 

1 / 2 0 m ×(n −m ) 

0 (n −m ) ×m 

K 

1 / 2 
22 

] and D = K 

1 / 2 P = [ 
W 

1 / 2 

0 (n −m ) ×m 

] . Let us

consider the EVD of W = V �V 

T , where V , � ∈ R 

m ×m . Then,

the left singular vectors of D have the following form:

F = [ 
V 

0 (n −m ) ×m 

] . Thus, we get F T K 

1 / 2 = [ V 

T W 

1 / 2 , 0 m ×(n −m ) ] . Note

that V 

T W 

1 / 2 = �1 / 2 V 

T , and the best rank- r approximation of

F T K 

1/2 can be written as: 

� F T K 

1 / 2 � r = 

[
Y �1 / 2 

r V 

T 
r , 0 m ×(n −m ) 

]
, (22)

where Y 

def = [ 
I r×r 

0 (m −r) ×r 
] ∈ R 

m ×r . Next, we compute the matrix T ′ =

[ 
F T r 

0 (m −r) ×n 
] K 

1 / 2 in the proof of Theorem 3 by first simplify-

ing F T r K 

1 / 2 = 

[
V 

T 
r W 

1 / 2 , 0 r×(n −m ) 

]
. Since V 

T 
r W 

1 / 2 = �1 / 2 
r V 

T 
r , we have

T ′ = [ 
F T r K 

1 / 2 

0 (m −r) ×n 
] = [ Y �1 / 2 

r V 

T 
r , 0 m ×(n −m ) ] . Thus, we get T ′ = � F T K 

1 / 2 � r 

and this completes the proof. �

Remark 5. In Theorem 3 , we showed that Nyström via QR decom-

position generates improved rank- r approximation of kernel matri-

ces with respect to the trace norm. However, this property is not

always satisfied in terms of the Frobenius norm. For example, con-

sider the following 4 × 4 SPSD matrix: 

K = 

⎡ ⎢ ⎣ 

1 . 0 0 . 7 0 . 9 0 . 4 

0 . 7 1 . 0 0 . 6 0 . 6 

0 . 9 0 . 6 1 . 0 0 . 6 

0 . 4 0 . 6 0 . 6 1 . 0 

⎤ ⎥ ⎦ 

. (23)

If we sample the first and second column of K to form C ∈
R 

4 ×2 , i.e., m = 2 , then we get ‖ K − G 

nys 
(1) 

‖ ∗ = 1 . 3441 and ‖ K −
G 

opt 
(1) 

‖ ∗ = 1 . 3299 . Thus, we have ‖ K − G 

opt 
(1) 

‖ ∗ ≤ ‖ K − G 

nys 
(1) 

‖ ∗, as ex-

pected by Theorem 3 . If we compare these two error terms based

on the Frobenius norm, then we see that ‖ K − G 

nys 
(1) 

‖ F = 0 . 9397 and

‖ K − G 

opt 
(1) 

‖ F = 0 . 9409 . Thus, in this example, the standard Nyström

method has slightly better performance in terms of the Frobenius

norm. To explain this observation, let us define g(T ) 
def = ‖ (K 

1 / 2 −
FT )(K 

1 / 2 − FT ) T ‖ 2 
F 

for an input matrix T ∈ R 

m ×n and fixed matrices

K and F . Based on the proof of Theorem 3 , it is straightforward to

show that ‖ K − G 

nys 
(r) 

‖ 2 
F 

= g(T nys ) , where T nys = [ 
F T r 

0 (m −r) ×n 
] K 

1 / 2 . Also,

we have ‖ K − G 

opt 
(r) 

‖ 2 F = g(T opt ) , T opt = � F T K 

1 / 2 � r . Additionally, we

can express the error term g ( T ) as the sum of the following three

terms: 

g(T ) = ‖ 

(
K 

1 / 2 −
[
F F ⊥ 

][T 

0 

])(
K 

1 / 2 −
[
F F ⊥ 

][T 

0 

])
T ‖ 

2 
F 

= ‖ (F T K 

1 / 2 − T )(F T K 

1 / 2 − T ) T ‖ 

2 
F ︸ ︷︷ ︸ 

= g 1 (T ) 

+ 2 ‖ (F T K 

1 / 2 − T )(K 

1 / 2 F ⊥ ) ‖ 

2 
F ︸ ︷︷ ︸ 

= g 2 (T ) 

+ g 3 , (24)

where F ⊥ ∈ R 

n ×(n −m ) is the orthogonal complement of F , we

used the unitary invariance of the Frobenius norm, and g 3 =
‖ (F ⊥ ) T KF ⊥ ‖ 2 

F 
is independent of T . For the given kernel matrix

in (23) , we have g 1 (T opt ) = 0 . 2524 , g 2 (T opt ) = 0 . 0274 , g 1 (T nys ) =
0 . 2669 , g 2 (T nys ) = 0 . 0191 , and g 3 = 0 . 5780 . Since g 1 ( T 

opt ) < g 1 ( T 
nys )

and g 2 ( T 
opt ) > g 2 ( T 

nys ) in this example, it is clear that the modified

Nyström method does not necessarily lead to more accurate ap-

proximations with respect to the Frobenius norm. 
Even though it possible that the standard Nyström can out-

erform Nyström via QR decomposition in the Frobenius norm,

ur substantial numerical experiments on real-world data sets in

ection 7 show that this does not happen in practice. 

Next, we present an important theoretical result on the quality

f rank- r Nyström approximations when the number of landmark

oints are increased. Specifically, let us first sample m 1 ≥ r land-

ark points from the set of input data points to generate the rank-

 approximation using the modified Nyström method, namely G 

opt 
(r) 

.

f we sample (m 2 − m 1 ) ∈ N additional landmark points to form

he new rank- r approximation ̃

 G 

opt 
(r) 

using the total of m 2 landmark

oints, the following result states that ‖ K − ˜ G 

opt 
(r) 

‖ ∗ ≤ ‖ K − G 

opt 
(r) 

‖ ∗.

herefore, increasing the number of distinct landmark points in the

odified Nyström method leads to improved rank- r approximation.

heorem 6 (More landmark points help) . Let K ∈ R 

n ×n be an SPSD

ernel matrix, and r be the target rank. Consider a sampling ma-

rix P ∈ R 

n ×m 1 , with m 1 ≥ r, such that C = KP ∈ R 

n ×m 1 and W =
 

T KP ∈ R 

m 1 ×m 1 . Then, the modified Nyström method generates the

ank-r approximation of K as G 

opt 
(r) 

= � CW 

† C 

T � r . Increase the num-

er of distinct landmark points by concatenating the matrix P with

 

new ∈ R 

n ×(m 2 −m 1 ) with m 2 > m 1 , i.e., ̃  P = [ P , P 

new ] ∈ R 

n ×m 2 . The re-

ulting matrix ˜ P can be used to form 

˜ C = K ̃

 P ∈ R 

n ×m 2 and ˜ W =
 

 

T K ̃

 P ∈ R 

m 2 ×m 2 , and the modified Nyström method generates ˜ G 

opt 
(r) 

=
 ̃

 C ̃

 W 

† ˜ C 

T � r . Then this new approximation is better in the sense that: 

 K − ˜ G 

opt 

(r) 
‖ ∗ ≤ ‖ K − G 

opt 

(r) 
‖ ∗. (25)

roof. Let F ∈ R 

n ×m 1 and ̃

 F ∈ R 

n ×m 2 be the left singular vectors of

 

1 / 2 P ∈ R 

n ×m 1 and K 

1 / 2 ˜ P = [ K 

1 / 2 P , K 

1 / 2 P 

new ] ∈ R 

n ×m 2 , respectively.

hen, we get: 

 K − ˜ G 

opt 

(r) 
‖ ∗ = min ˜ T : rank ( ̃ T ) ≤r 

‖ K 

1 / 2 −˜ F ̃  T ‖ 

2 
F 

≤ min 

T : rank (T ) ≤r 

‖ K 

1 / 2 − FT ‖ 

2 
F = ‖ K − G 

opt 

(r) 
‖ ∗ (26)

here both equalities follow from (19) and the inequality follows

rom the fact that Range (F ) ⊂ Range ( ̃  F ) . �

emark 7. Theorem 6 is not true for the standard Nyström

ethod. Consider the kernel matrix from Example 2 . By sampling

he first two columns, the standard Nyström method gave relative

rrors of 0.99 in both the trace and Frobenius norms. Had we sam-

led just the first column, the standard Nyström method would

ave 0.01 relative error in these norms, meaning that adding ad-

itional landmark points leads to a worse approximation. See also

emark 9 for experiments. 

. Extension to out-of-sample landmark points 

The main component in our theoretical results is the existence

f P ∈ R 

n ×m such that C and W can be written as: C = KP and

 = P 

T KP . As mentioned, this assumption holds true if the land-

ark points are selected (randomly or arbitrarily) from the set of

nput data points, since then P is a sampling matrix consisting of

olumns of the identity matrix. However, some recent selection

echniques utilize out-of-sample extensions of the input data to

mprove the accuracy of the Nyström method, e.g., centroids found

rom K-means clustering. In this case, the matrix C ∈ R 

n ×m , where

 i j = κ(x i , z j ) , does not necessarily contain the columns of K . Thus,

e cannot hope for a sampling matrix P that satisfies C = KP . In

his section, we present two techniques to show that our theoreti-

al results hold for the case of out-of-sample landmark points. 
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Ẽ  

T  

(  

w  

u

‖  

w  

t  

p  

w  

C

C  

T

C  

T  

w

‖  

N  

c

 

e  

u  

w  

t  

c  

t  

F  

p  

E  

w  

o  

l  

b  

C  
.1. Approach 1: full-rank kernel matrices 

We show that, under certain conditions, our theoretical results

n Section 5 are applicable to the case of out-of-sample landmark

oints. To be formal, consider a set of n distinct data points in R 

p ,

.e., X = [ x 1 , . . . , x n ] ∈ R 

p×n , and the Gaussian kernel of the form

(x i , x j ) = exp (−‖ x i − x j ‖ 2 2 
/c) , c > 0, which leads to the kernel

atrix K ∈ R 

n ×n . Let Z = [ z 1 , . . . , z m 

] ∈ R 

p×m be m cluster centroids

rom K-means clustering on x 1 , . . . , x n , and we form C ∈ R 

n ×m and

 ∈ R 

m ×m with C i j = κ(x i , z j ) and W i j = κ(z i , z j ) . 

Based on [11, Theorem 2.18] , the kernel matrix K defined on a

et of n distinct data points using the Gaussian kernel function has

ull rank. Thus by defining P = K 

−1 C ∈ R 

n ×m , we can write C = KP ,

ut because this P is not a sampling matrix, it does not follow

hat W = P 

T KP , so our aim is to show that W ≈ P 

T KP . Let us con-

ider the empirical kernel map �e , defined on the set of input data

oints: 

e (z ) : z �→ K 

−1 / 2 [ κ(x 1 , z ) , . . . , κ(x n , z ) ] 
T ∈ R 

n . (27)

his map approximates the kernel-induced map � for out-

f-sample data points z 1 , . . . , z m 

such that 〈 �e (z i ) , �e (z j ) 〉 ≈
 �(z i ) , �(z j ) 〉 = κ(z i , z j ) [11] . Since P 

T = C 

T K 

−1 and the j th col-

mn of C is [ κ(x 1 , z j ) , . . . , κ(x n , z j )] T , we have: 

 

T KP = 

(
C 

T K 

−1 / 2 
)(

K 

−1 / 2 C 

)
= [ �e (z 1 ) , . . . , �e (z m 

) ] 
T 

[ �e (z 1 ) , . . . , �e (z m 

) ] 
def = W e ∈ R 

m ×m . 

(28) 

herefore, if we use out-of-sample landmark points with the Gaus-

ian kernel function, there exists a matrix P that satisfies C = KP

nd W = W e + E = P 

T KP + E , where E ∈ R 

m ×m represents the ap-

roximation error. It is known that when the relative amount of

rror is small (e.g., with respect to the spectral norm), W and

 e are close to one another and their eigenvalues and eigenvec-

ors are perturbed proportional to the relative error [40,41] . How-

ver, in this work, our goal is to prove that the approximations

W 

† C 

T and CW 

† 
e C 

T are close to one another when the relative

mount of error is small. To demonstrate the importance of this

esult, note that for any invertible matrices M and M 

′ , we have the

dentity M 

′−1 − M 

−1 = −M 

′−1 (M 

′ − M ) M 

−1 . Thus, the small norm

f M 

′ − M cannot be directly used to conclude M 

′−1 and M 

−1 

re close to one another. In the following, we present an error

ound for the difference between the Nyström approximations, i.e.,

W 

† C 

T − CW 

† 
e C 

T , in terms of the relative amount of error caused

y the empirical kernel map. 

heorem 8. Consider a set of n distinct data points X =
 x 1 , . . . , x n ] ∈ R 

p×n , and the Gaussian kernel function of the form

(x i , x j ) = exp (−‖ x i − x j ‖ 2 2 /c) , c > 0, which leads to the kernel ma-

rix K ∈ R 

n ×n . Let Z = [ z 1 , . . . , z m 

] ∈ R 

p×m be arbitrary (e.g., m dis-

inct cluster centroids from K-means clustering on x 1 , . . . , x n ), and

e form C ∈ R 

n ×m and W ∈ R 

m ×m with C i j = κ(x i , z j ) and W i j =
(z i , z j ) . Then, there exists a matrix P ∈ R 

n ×m such that C = KP and

 = W e + E , where W e = P 

T KP and E ∈ R 

m ×m represents the ap-

roximation error of the empirical kernel map defined in (27) . As-

uming that η
def = ‖ W 

−1 / 2 
e EW 

−1 / 2 
e ‖ 2 < 1 for the positive definite ma-

rix W e , then: 

‖ CW 

† C 

T − CW 

† 
e C 

T ‖ 2 

‖ K ‖ 2 

≤ η

1 − η
. (29) 

roof. The kernel matrix K using the Gaussian kernel function has

ull rank. Thus, there exists a matrix P such that C = KP and the

mpirical kernel map �e can be defined as in (27) . Recall the

VD of D = K 

1 / 2 P = FSN 

T , and the EVD of W e = P 

T KP = NS 2 N 

T . Let

 = ̃

 N ̃

 S 2 ˜ N 

T be the EVD of W (since W is also SPSD). Moreover, let
s define: 

 

 

def = SN 

T ˜ N ̃

 S −2 ˜ N 

T NS − I m ×m 

∈ R 

m ×m . (30)

f we have E = 0 m ×m 

, i.e., the approximate kernel map �e is equal

o the kernel-induced map, then ̃

 N = N , ̃  S = S , and ̃

 E = 0 m ×m 

. Next,

e find an upper bound for ‖ ̃  E ‖ 2 in terms of the relative error η.

onsider the EVD of W = W e + E : 

 

 ̃

 S 2 ˜ N 

T = NS 2 N 

T + E = NS ( I m ×m 

+ O ) SN 

T , (31)

here O 

def = S −1 N 

T ENS −1 ∈ R 

m ×m is a symmetric matrix. Note that

 O ‖ 2 = ‖ NON 

T ‖ 2 = η, because of the unitary invariance of the

pectral norm. If we multiply (31) on the left by N 

T and on the

ight by ˜ N , we get: 

 

T ˜ N ̃

 S 2 = S ( I m ×m 

+ O ) SN 

T ˜ N . (32)

ext, we multiply (32) on the left by ˜ N 

T N , and we see that: 

 

 

2 = ̃

 N 

T NS 2 N 

T ˜ N + ̃

 N 

T NSOSN 

T ˜ N . (33)

inally, we multiply (33) on the left and right by ̃  S −1 : 

 m ×m 

= 

(̃
 S −1 ˜ N 

T NS 
)(

I m ×m 

+ O 

)(
SN 

T ˜ N ̃

 S −1 
)
. (34)

hus, we observe that SN 

T ˜ N ̃

 S −1 = (I m ×m 

+ O ) −1 / 2 T , where T ∈
 

m ×m is an orthogonal matrix. Thus, we have: 

 

 = 

(
I m ×m 

+ O 

)−1 − I m ×m 

. (35)

o find an upper bound for the spectral norm of ˜ E , we simplify

35) by using the Neumann series (I m ×m 

+ O ) −1 = 

∑ ∞ 

n =0 (−1) n O 

n ,

here ‖ O ‖ 2 = η < 1 by assumption. Hence, we get the following

pper bound for the spectral norm of ̃  E = 

∑ ∞ 

n =1 (−1) n O 

n : 

 ̃

 E ‖ 2 ≤
∞ ∑ 

n =1 

‖ O 

n ‖ 2 ≤
∞ ∑ 

n =1 

‖ O ‖ 

n 
2 ≤

∞ ∑ 

n =1 

ηn = 

η

1 − η
, (36)

here we have used the convergence of the Neumann series and

he continuity of norms in the first inequality and the submulti-

licativity property of the spectral norm in the second. To finish,

e relate the difference between the two Nyström approximations

W 

† C 

T and CW 

† 
e C 

T to the norm of ̃  E : 

 

(
W 

† 
)

1 / 2 = K 

1 / 2 D 

(˜ N ̃

 S −1 ˜ N 

T 
)

= K 

1 / 2 FSN 

T ˜ N ̃

 S −1 ˜ N 

T . (37)

hen, given the definition of ̃  E in (30) , we observe that: 

W 

† C 

T − CW 

† 
e C 

T = K 

1 / 2 F ̃  E F T K 

1 / 2 . (38)

hus, using the submultiplicativity property of the spectral norm,

e have: 

 CW 

† C 

T − CW 

† 
e C 

T ‖ 2 ≤ ‖ K 

1 / 2 ‖ 

2 
2 ‖ F ‖ 

2 
2 ‖ ̃

 E ‖ 2 . (39)

ote that ‖ K 

1 / 2 ‖ 2 
2 

= ‖ K ‖ 2 , and ‖ F ‖ 2 = 1 since F has orthonormal

olumns. �

To gain some intuition for Theorem 8 , we present a numerical

xperiment on the pendigits data set ( p = 16 and n = 10 , 992 )

sed in Section 7 . Here, the Gaussian kernel function is employed

ith the parameter c chosen as the averaged squared distances be-

ween all the data points and sample mean. The standard K-means

lustering algorithm is performed on the input data points to select

he landmark points z 1 , . . . , z m 

for various values of m = 2 , . . . , 10 .

or each value of m , we form two matrices C and W . Also, we com-

ute W e = P 

T KP and η = ‖ W 

−1 / 2 
e EW 

−1 / 2 
e ‖ 2 , where P = K 

−1 C and

 = W − W e ; calculating W e is impractical for larger data sets and

e do so only to support our theorem. Fig. 1 reports the mean

f ‖ CW 

† C 

T − CW 

† 
e C 

T ‖ 2 / ‖ K ‖ 2 over 50 trials for varying number of

andmark points. The figure also plots the mean of our theoretical

ound in Theorem 8 , i.e., η/ (1 − η) . We observe that CW 

† C 

T and

W 

† 
e C 

T provide very similar Nyström approximations of K , such
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Fig. 1. Mean of the relative error and the theoretical error bound η/ (1 − η) . 
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that the relative error with respect to the spectral norm is less

than 0.002. Furthermore, it is clear that Theorem 8 provides a

meaningful upper bound for the relative error of the Nyström ap-

proximations. 

Based on Theorem 8 , the closeness of CW 

† C 

T and CW 

† 
e C 

T 

with respect to the spectral norm is a function of the quan-

tity η. Note that η measures the relative amount of perturba-

tion of the eigenvalues and eigenvectors of W e , and we have

η = ‖ W 

−1 / 2 
e EW 

−1 / 2 
e ‖ 2 ≤ ‖ W 

−1 
e E ‖ 2 ≤ ‖ W 

−1 
e ‖ 2 ‖ E ‖ 2 [41, Lemma 2.2] .

Therefore, when ‖ E ‖ 2 is small, CW 

† C 

T and CW 

† 
e C 

T lead to simi-

lar low-rank approximations of the kernel matrix. In particular, as

‖ E ‖ 2 goes to zero, CW 

† 
e C 

T converges to CW 

† C 

T . Hence, we expect

our theoretical results on the rank- r Nyström approximations to be

valid for the case out-of-sample landmark points for small values

of η. 

6.2. Approach 2: clustered Nyström 

We present an alternative to our previous approach that does

not require full-rank kernel matrices. This technique is motivated

by the clustered Nyström method of Zhang et al. [25,26] , which

shows that the Nyström error can be bounded by the quantiza-

tion error of the input data using landmark points. Assume that

the kernel function κ satisfies: (κ(a , b ) − κ(c , d )) 2 ≤ η(‖ a − c ‖ 2 2 +‖ b − d ‖ 2 
2 
) , where η is a constant depending on κ . It is shown

that for a number of widely used kernel functions, such as Gaus-

sian and polynomial kernels, this property is satisfied. Then, the

Nyström approximation error is upper bounded: ‖ K − CW 

† C 

T ‖ F ≤
η1 

√ 

φ + η2 φ, where φ
def = 1 /n · ∑ n 

i =1 ‖ x i − μ(x i ) ‖ 2 2 
, μ(x i ) ∈ R 

p is

the closest landmark point to each data point x i , and η1 , η2 are

two constants. 

Given out-of-sample landmark points, this approach approxi-

mates the landmark points with in-sample points, and pays just

a factor of 2 on the quantization error. To prove this, without loss

of generality and to simplify notation, we consider a single clus-

ter since we can work cluster-by-cluster. If the cluster assignments

change after selecting the new landmark points, that can only re-

duce the quantization error further. Thus, let s be the (possibly

out-of-sample) center of mass for the points x i , i = 1 , . . . , n, i.e.,

s = 1 /n · ∑ n 
i =1 x i . As observed in [42, Lemma 2.1] , for any vector

t ∈ R 

p : 

1 

n 

n ∑ 

i =1 

‖ x i − t ‖ 

2 
2 = 

1 

n 

n ∑ 

i =1 

‖ x i − s ‖ 

2 
2 + ‖ t − s ‖ 

2 
2 . (40)

We will choose a new in-sample cluster center: t = x j for j ∈
arg min i ∈{ 1 , ... ,n } ‖ x i − s ‖ 2 2 . Let ̂ φ denote the quantization error with

this new in-sample center, and φ be the original quantization error
sing s as the cluster center. Then 

̂ 

def = 

1 

n 

n ∑ 

i =1 

‖ x i − t ‖ 

2 
2 = 

1 

n 

n ∑ 

i =1 

‖ x i − s ‖ 

2 
2 + ‖ t − s ‖ 

2 
2 

≤ 1 

n 

n ∑ 

i =1 

‖ x i − s ‖ 

2 
2 + 

n ∑ 

i =1 

1 

n 

‖ x i − s ‖ 

2 
2 = 2 φ, 

(41)

here the first line follows from (40) . Note that the computational

ost is small, since choosing an in-sample cluster center is O(np) . 

. Experimental results 

We present experimental results on the fixed-rank approxi-

ation of kernel matrices using the standard and modified Nys-

röm methods, and show evidence to (1) corroborate our theory of

ection 5 , (2) suggest that our theory of Section 6 still holds even

f the assumptions are not exactly satisfied (e.g., out-of-sample

andmark points), and (3) highlight the benefits of the modified

ethod. In order to illustrate the effectiveness of modified Nys-

röm, we compare its accuracy to that of the standard Nyström

ethod for the target rank r = 2 and varying number of landmark

oints m = r, . . . , 5 r. To provide a baseline for the comparison, we

eport the accuracy of the best rank-2 approximation obtained via

he eigenvalue decomposition (EVD), which requires the computa-

ion and storage of full kernel matrices and hence is impractical

or very large data sets. 

.1. Fixed-rank approximation error 

Experiments are conducted on four data sets from the LIB-

VM archive [43] : (1) pendigits ( p = 16 and n = 10 , 992 ); (2)

atimage ( p = 36 and n = 6435 ); (3) w6a ( p = 300 and n =
3 , 267 ); and (4) E2006-tfidf ( p = 150 , 360 and n = 30 0 0 ). In all

xperiments, the Gaussian kernel κ
(
x i , x j 

)
= exp 

(
−‖ x i − x j ‖ 2 2 /c 

)
is

sed with the parameter c chosen as the averaged squared dis-

ances between all the data points and sample mean. We consider

wo landmark selection techniques: (1) uniform sampling, where

 landmark points are selected uniformly at random without re-

lacement from n data points; and (2) out-of-sample landmark

oints obtained via K-means clustering on the original data set,

s in [26] . To perform the K-means clustering algorithm, we use

ATLAB’s built-in function kmeans and the maximum number of

terations is set to 10. A MATLAB implementation of modified and

tandard Nyström is available at https://github.com/pourkamali/

andomizedClusteredNystrom . 

We measure the quality of fixed-rank approximations using the

elative error with respect to the trace norm, i.e., ‖ K − G 

nys 
(r) 

‖ ∗/ ‖ K ‖ ∗
s. ‖ K − G 

opt 
(r) 

‖ ∗/ ‖ K ‖ ∗, and thus in this metric, no method can ever

utperform the EVD baseline. In Fig. 2 , the mean and standard

eviation of relative error over 50 trials are reported for all four

ata sets and varying number of landmark points m = r, . . . , 5 r.

odified Nyström and the standard Nyström method have iden-

ical performance for m = r because no rank restriction step is in-

olved in this case. As the number of landmark points increases

eyond the rank parameter r = 2 , Nyström via QR decomposition

lways generates better rank-2 approximations of the kernel ma-

rix than the standard method does. This observation is consistent

ith Theorem 3 , which states that for the same landmark points,

 K − G 

opt 
(r) 

‖ ∗ ≤ ‖ K − G 

nys 
(r) 

‖ ∗ (one can divide both sides by constant

 K ‖ ∗ for the relative error). Even with out-of-sample landmark

oints, the modified method can be drastically better. In the right

lot of Fig. 2 (b), the modified method achieves a mean error of

.47 (compared to the 0.45 EVD baseline) from just m = 2 r land-

ark points, while the standard method has a higher mean error

https://github.com/pourkamali/RandomizedClusteredNystrom
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Fig. 2. Mean and standard deviation of the relative error with respect to the trace 

norm. For each case, the left plot uses in-sample landmark points while the right 

plot uses out-of-sample points. 
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Fig. 3. Mean and standard deviation of the relative error with respect to the Frobe- 

nius norm. 
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Fig. 4. Running time results for standard Nyström and the modified technique. 
0.50) even using m = 5 r landmark points. This exemplifies the im-

ortance and effectiveness of the precise rank restriction step in

he Nyström via QR decomposition method. Fig. 3 is generated the

ame as Fig. 2 but the error is reported in the Frobenius norm. The

attern of behavior is very similar to that in Fig. 2 even though

e lack theoretical guarantees. In fact, neither method dominates

he other for all kernel matrices (cf. the adversarial example in

emark 5 ), but in these practical data sets, the modified method

lways performs better. 

emark 9. Remark 7 showed that in both the trace and Frobenius

orms, the standard Nyström method can perform worse when we

ample additional landmark points. Figs. 2 and 3 show that a sim-

lar effect happens with the standard Nyström method when we

se out-of-sample landmark points selected via K-means (in this

ase, as we increase m , we do not necessarily include the landmark

oints selected for smaller m ). For example, according to Fig. 2 (b)
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Fig. 5. Normalized mutual information using three landmark selection techniques. 

-1 -0.8 -0.6 -0.4 -0.2
-1

-0.5

0

0.5

(a) EVD

-1 -0.8 -0.6 -0.4 -0.2
-1

-0.5

0

0.5
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mörtsyNdradnatS)c(

Fig. 6. Visualization of the columns of L T that correspond to clusters 4 and 7. 
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(right), the mean relative error of standard Nyström is increased

from 0.56 to 0.61 when we increase from m = 2 to m = 4 land-

mark points selected via K-means centroids. 

This counter-intuitive effect of decreased accuracy even with

more landmark points ( Remarks 7 and 9 ) is due to the sub-optimal
estriction procedure of standard Nyström. Theorem 6 proves that

he modified Nyström method does not suffer from the same effect

n terms of the trace norm and in-sample landmark points, and

igs. 2 and 3 do not show any evidence of this effect even if we

witch to the Frobenius norm or consider out-of-sample landmark

oints. 



F. Pourkamali-Anaraki and S. Becker / Neurocomputing 363 (2019) 261–272 271 

 

p  

s  

t  

t  

c  

a  

c  

p  

m  

c  

t  

d

7

 

m  

t  

a  

p  

v  

l  

n  

n  

b  

d  

o  

fi  

t  

L  

c  

f  

c

 

N  

t  

m  

o  

p  

m  

f  

m  

l

 

p  

s  

m  

W  

t  

t  

t  

o

8

 

i  

o  

p  

w  

a  

t  

c  

c  

s  

t  

l

D

 

c  

i

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

[  

 

[  

 

 

[  

 

[  

 

 

We also demonstrate the efficiency of Nyström via QR decom-

osition by plotting the averaged running time on a logarithmic

cale for E2006-tfidf . The running time results are omitted for

he remaining data sets because the average running time was less

han one second. Fig. 4 shows that the dominant computational

ost is related to constructing C and W in step 1 of both standard

nd modified Nyström methods. Moreover, given these two matri-

es, the cost of finding the best rank- r approximation in our pro-

osed method is only slightly higher than the standard Nyström

ethod, as explained in Section 4 . Thus, the overall computational

ost of modified method is almost identical to the standard Nys-

röm method and our method achieves superior performance as

emonstrated in Figs. 2 (d) and 3 (d). 

.2. Application to kernel clustering 

In the last experiment, we demonstrate the performance of

odified Nyström on a kernel K-means clustering task. We use

he segment data set ( p = 19 and n = 2 , 310 ) from the LIBSVM

rchive that consists of 7 clusters. We choose the homogeneous

olynomial kernel function of order 2, i.e., κ(x i , x j ) = 〈 x i , x j 〉 2 . Pre-

iously, we considered Gaussian kernel functions and we would

ike to show the performance of our method for polynomial ker-

els as well [44] . In addition to the two landmark selection tech-

iques used in Section 7.1 , we consider another recent technique

ased on Determinantal Point Processes (DPP) that was intro-

uced in [45] . Fig. 5 reports the mean and standard deviation

f normalized mutual information (NMI) [46] over 200 trials for

xed rank r = 2 and various number of landmark points, where

he standard K-means algorithm is performed on the columns of

 

T ∈ R 

r×n after computing the fixed-rank approximation K ≈ LL T ,

f. (2) . NMI is a popular clustering quality metric which ranges

rom 0 to 1, and larger values of NMI indicate the higher quality of

lustering. 

As we see in Fig. 5 , the modified method outperforms standard

yström when m > r , which is necessary for obtaining accuracies

hat are close to the baseline EVD. Furthermore, it is observed that

odified Nyström leads to higher accuracy results as the number

f distinct landmark points increases. In particular, when landmark

oints are K-means centroids in Fig. 5 (b), the mean NMI of our

ethod reaches EVD with very small standard deviation. However,

or all three landmark selection techniques, the standard Nyström

ethod does not necessarily provide better results when more

andmark points are used. 

To further illustrate the importance of modified method, we

lot the columns of L T (known as virtual samples [15] ) that corre-

pond to two of the 7 clusters in Fig. 6 . In this case, m = 10 land-

ark points are sampled uniformly at random from the input data.

e see that the EVD and our modified method have almost iden-

ical results. However, the standard Nyström method spreads out

he virtual samples, which justifies its lower accuracy compared to

he modified Nyström method and the best rank-2 approximation

btained via EVD. 

. Conclusion 

In this paper, we have presented a modified technique for the

mportant process of rank reduction in the Nyström method. The-

retical analysis shows that: (1) the modified method provides im-

roved fixed-rank approximations compared to standard Nyström

ith respect to the trace norm; and (2) the quality of fixed-rank

pproximations generated via the modified method improves as

he number of distinct landmark points increases. Our theoreti-

al results are accompanied by illustrative numerical experiments

omparing the modified method with standard Nyström. We also
howed that the modified method has almost the same computa-

ional complexity as standard Nyström, which makes it suitable for

arge-scale kernel machines. 
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