
BILGO: Bilateral greedy optimization for large scale
semidefinite programming

Zhifeng Hao a,c, Ganzhao Yuan a,n, Bernard Ghanemb

a School of Computer Science & Engineering, South China University of Technology, China
b King Abdullah University of Science & Technology, KSA, Saudi Arabia
c Faculty of Computer, Guangdong University of Technology, China

a r t i c l e i n f o

Article history:
Received 17 December 2012
Received in revised form
16 July 2013
Accepted 18 July 2013
Communicated by Prof. Zhouchen Lin
Available online 3 October 2013

Keywords:
Semidefinite programming
Low-rank optimization
Rank-1 approximation
Frank–Wolfe algorithm
Leading eigenvector
Metric learning

a b s t r a c t

Many machine learning tasks (e.g. metric and manifold learning problems) can be formulated as convex
semidefinite programs. To enable the application of these tasks on a large-scale, scalability and
computational efficiency are considered as desirable properties for a practical semidefinite programming
algorithm. In this paper, we theoretically analyze a new bilateral greedy optimization (denoted BILGO)
strategy in solving general semidefinite programs on large-scale datasets. As compared to existing
methods, BILGO employs a bilateral search strategy during each optimization iteration. In such an
iteration, the current semidefinite matrix solution is updated as a bilateral linear combination of the
previous solution and a suitable rank-1 matrix, which can be efficiently computed from the leading
eigenvector of the descent direction at this iteration. By optimizing for the coefficients of the bilateral
combination, BILGO reduces the cost function in every iteration until the KKT conditions are fully
satisfied, thus, it tends to converge to a global optimum. In fact, we prove that BILGO converges to the
global optimal solution at a rate of Oð1=kÞ, where k is the iteration counter. The algorithm thus
successfully combines the efficiency of conventional rank-1 update algorithms and the effectiveness of
gradient descent. Moreover, BILGO can be easily extended to handle low rank constraints. To validate the
effectiveness and efficiency of BILGO, we apply it to two important machine learning tasks, namely
Mahalanobis metric learning and maximum variance unfolding. Extensive experimental results clearly
demonstrate that BILGO can solve large-scale semidefinite programs efficiently.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Semidefinite Programming (SDP) is commonly used in machine
learning problems, such as metric learning [1,2], manifold learning
[3–5], linear regression [6], distance matrix completion [7], and
solving Lyapunov equations [8]. Given a convex and continuously
differentiable function F, where F : Rd�d-R, the goal of general
semidefinite programming is to find a positive semidefinite (PSD)
matrix M such that the objective FðMÞ is minimized, as shown
below:

min
MARd�d

FðMÞ s:t: M≽0 ð1Þ

A plethora of approaches have been proposed in the literature
to handle the PSD constraints. (i) Classic interior point methods
convert the original optimization problem to a series of subpro-
blems with LogDet barrier functions. A similar strategy has also

been adopted in studying the matrix nearness problem with linear
constraints via LogDet divergences [9]. (ii) Eigenvalue decomposi-
tion methods, e.g. the projected gradient descent method [1,10],
iteratively trim the negative eigenvalues in order to maintain
positive semidefiniteness. However, full eigenvalue decomposition
is an expensive operator especially at large scales where d is large.
(iii) Block coordinate descent methods, e.g. the method of [11],
update one row or column of the solution matrix at a time by
solving a subproblem, which enforces the PSD condition via the
Schur Complement Decomposition theorem. Due to its memory
complexity of Oðd2Þ, this type of SDP solver is not feasible in large
scale problems. (iv) Low rank methods [12] replace the PSD matrix
with its low-rank decomposition and minimize an unconstrained,
non-convex objective. Despite their significant computational
gains, these methods sacrifice the convexity of the objective and
only local minima are guaranteed.

From above, we observe that existing SDP methods are
either time-consuming, memory-demanding, or suffer from local
minima. In this paper, we theoretically analyze a new SDP method
that applies a bilateral greedy optimization (BILGO) strategy
to efficiently achieve the global minimum of Eq. (1). Inspired by

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

0925-2312/$ - see front matter & 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.neucom.2013.07.024

n Corresponding author. Tel.: þ86 159 158 07902.
E-mail addresses: mazfhao@scut.edu.cn (Z. Hao), y.ganzhao@scut.edu.cn,

yuanganzhao@gmail.com (G. Yuan), b.ghanem@kaust.edu.sa (B. Ghanem).

Neurocomputing 127 (2014) 247–257

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2013.07.024
http://dx.doi.org/10.1016/j.neucom.2013.07.024
http://dx.doi.org/10.1016/j.neucom.2013.07.024
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2013.07.024&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2013.07.024&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2013.07.024&domain=pdf
mailto:mazfhao@scut.edu.cn
mailto:y.ganzhao@scut.edu.cn
mailto:yuanganzhao@gmail.com
mailto:b.ghanem@kaust.edu.sa
http://dx.doi.org/10.1016/j.neucom.2013.07.024


recent work on leading eigenvector updates in SDP (e.g. [13–16])
and the forward greedy selection algorithm [17], BILGO [18,19]
iteratively updates the current solution by searching for the optimal
linear combination of the previous solution and the leading eigen-
vector of the gradient matrix. As compared to existing SDP methods
that perform linear search, BILGO optimizes the linear combination
weights bilaterally, i.e. it solves for both weights simultaneously. The
contributions of this paper are three-fold. (i) We prove that each
iteration of BILGO ensures a decrease in the objective until the KKT
conditions are fully satisfied, thus, it tends to converge to a global
minimum. BILGO converges to the global optimal solution at a rate of
Oð1=kÞ, where k is the iteration counter. Therefore, the algorithm
successfully combines the advantages of existing SDP techniques,
achieving effectiveness and efficiency with a single shot. (ii) The
performance of BILGO can be further enhanced by employing an
efficient closed-form bilateral linear search, an efficient Lanczos-based
method to compute the leading eigenvector, and a simple extension to
handle low-rank matrix constraints, which is a common assumption
adopted in machine learning theory and practise for large-scale
problems. (iii) To validate the effectiveness and efficiency of BILGO,
we apply it to two important machine learning tasks, namely
Mahalanobis metric learning and maximum variance unfolding.
Extensive experimental results clearly demonstrate that BILGO can
solve large-scale semidefinite programs efficiently.

The rest of the paper is organized as follows. Section 2 provides
a detailed description of the BILGO algorithm, as well as an
analysis of its convergence properties. Further computational
enhancements are discussed in Section 3. Section 4 illustrates
connections between BILGO and existing work. Two applications
of BILGO are discussed in Section 5. Section 6 presents our
extensive experimental results that clearly show BILGO's impress-
ive performance on large scale machine learning benchmarks.
Section 7 concludes this work.

2. BILGO algorithm

Mathematical notation: The inner product between two matrices
A and B is defined as 〈A;B〉¼∑ijAijBij, and Frobenius norm of a
matrix A as ‖A‖fro. We use Id to denote the identity matrix of size
d�d and Ω to denote the cone consisting of all PSD matrices.

In this section, we describe a bilateral greedy optimization
(BILGO) method [18,19] and analyze its properties. BILGO is an
iterative algorithm, which generates a sequence of feasible solu-
tions fM0;M1;…;Mk;…g �Ω until convergence to the global
optimum of Eq. (1). One key feature of BILGO lies in its update
strategy, i.e. computing Mkþ1 from Mk. The algorithm design is
based on the following optimality analysis. Given a matrix
MARd�d and by introducing the dual variables SARd�d of
Eq. (1), we easily derive the following KKT optimality conditions:

M≽0 ðFeasibilityÞ
S≽0 ðNon�NegativityÞ
∇FðMÞ�S¼ 0 ðOptimalityÞ
SM¼ 0 ðComplementary SlacknessÞ

Note that the non-negativity constraints are enforced in eigenva-
lues of the dual variables S (refer to [15]). Since FðMÞ is a convex
function with respect to M, these KKT conditions are both
necessary and sufficient for global optimality.

Given a matrix M in the feasible set Ω, a descent direction at M
is another matrix D, such that MþπD always remains in the
feasible set Ω and improves the objective FðMÞ when π40 is
sufficiently small. Fig. 1 shows the feasible direction D at point M.
D is a feasible direction if changing M by a small amount in the

direction D maintains feasibility. We naturally obtain the following
lemma.

Lemma 1. Let MAΩ be any non-stationary point. If (1) there exists
another matrix NAΩ that D¼N�M; and (2) 〈∇FðMÞ;D〉o0, then D
is a descent direction.

Proof. Because Ω is a convex set, when 0oπo1, MþπðN�MÞ ¼
ð1�πÞMþπNAΩ is also in Ω (1). Moreover, iff M is non-stationary,
the gradient matrix ∇FðMÞa0. Since Fð�Þ is convex and differentiable,
the first-order condition for convexity dictates that the following
inequality holds: FðMþπDÞ�FðMÞZπ〈∇FðMÞ;D〉. Obviously, if 〈∇F
ðMÞ;D〉Z0, then FðMþπDÞZFðMÞ and D is not a descent direction.
Therefore, it must be the case that 〈∇FðMÞ;D〉o0. □

Lemma 1 is crucial because it creates the opportunity for
finding a descent direction D that also ensures the feasibility of
each intermediate solution. As such, BILGO does not involve any
explicit projection onto Ω (e.g. trimming of negative eigenvalues).
Such a projection-free method is also known as conditional
gradient descent or the Frank Wolfe algorithm in some work [20].
In what follows, we use v!max to denote the eigenvector of matrix
�∇FðMÞ corresponding to its largest eigenvalue. Next, we discuss
how to construct a feasible descent direction D using v!max.

Lemma 2. If M is not the global minimum of FðMÞ, there always

exists τZ0 such that D¼ τ v!max v
!T

max�M is a descent direction.

Proof. Let N¼ τ v!max v
!T

max. For any τZ0, NAΩ, implying D satisfies

the first condition of Lemma 1. Let JðτÞ ¼ 〈D;∇FðMÞ〉¼ 〈τ v!max

v!T
max�M;∇FðMÞ〉¼ 〈τ v!max v

!T
max;∇FðMÞ〉� 〈M;∇FðMÞ〉. Using the

eigenvalue decomposition theorem, we have �∇FðMÞ ¼∑iλi v
!

i v
!T

i .

Notice that v!T
i v
!

j ¼ 0 for all ia j and v!T
i v
!

j ¼ 1 for all i¼ j. We thus

obtain JðτÞ ¼ 〈τ v!max v
!T

max;∑iλi v
!

i v
!T

i 〉� 〈M;∑iλi v
!

i v
!T

i 〉¼ �τλmax�
∑iλi v

!T

i Mv!i. Since the KKT optimal conditions imply that
∇FðMÞ≽0 when M is a stationary point and since M≽0, we conclude
that λmaxZ0 for any non-stationary point M. (i) When λmax40, we
can always choose any sufficiently large τ so that JðτÞo0. (ii) When
λmax ¼ 0, ∇FðMÞ≽0, 〈∇FðMÞ;M〉40, since otherwise M satisfies the
KKT optimal condition, implying that M is the global optimal
solution. Therefore, we obtain JðτÞo0 for any τ. Based on the second
condition of Lemma 1, we conclude that there always exists τZ0

such that D¼ τ v!max v
!T

max�M is a descent direction. □

Combining Lemmas 1 and 2 above, we prove Theorem 1 that
ensures the feasibility of the update rule in each iteration of BILGO

M←αMþβ v!max v
!T

max, when coefficients α and β are chosen
appropriately.

Fig. 1. Feasible direction D at point M.

Z. Hao et al. / Neurocomputing 127 (2014) 247–257248



Theorem 1. If M is not the global minimum of FðMÞ, there always
exist 0rαr1; βZ0 such that

FðαMþβ v!max v
!T

maxÞoFðMÞ

Proof. We update the solution M by M←MþπD, where 0rπr1

and D is a valid descent direction. Since D¼ τ v!max v
!T

max�M is a
descent direction (refer to Lemma 2), there always exist τZ0 and

0rπr1 such that FðMÞ4FðMþπDÞ ¼ FðMþπðτ v!max v
!T

max�MÞÞ ¼
Fðð1�πÞMþπτ v!max v

!T
maxÞ. Since τ is dependent on π, we set α and β

as in Eq. (2) to obtain 0rαr1 and βZ0

β¼ πτ; α¼ 1�π □ ð2Þ

The overall BILGO method is summarized in Algorithm 1. In
each iteration, BILGO utilizes Theorem 1 to update the result
matrix. Using the largest vector of the gradient direction as the
improvement direction, a bilateral optimization is conducted to
construct the final update solution. Specifically, in the kth iteration,

BILGO computes the leading eigenvector v!k
max of the gradient

descent direction �∇FðMkÞ, and then finds the bilateral combina-

tion of the current solution Mk and the rank-1 matrix computed

using the leading eigenvector, i.e. v!k
maxð v

!k
maxÞT . Theorem 1 guar-

antees that the objective is decreased in each iteration. To define
stopping criteria, we analyze the relative change in λkmax and

γkslack ¼ ‖∇FðMkÞMk‖fro, which when sufficiently small indicate that
the KKT conditions for global optimality have been satisfied.

Algorithm 1. BILGO method.

1: k¼ 0;Mk ¼ 0ARd�d, ε1; ε2
2: while not converge do
3: Find the largest real eigenvalue λkmax and its

corresponding eigenvector v!k
max of the matrix �∇FðMkÞ

4: if ðλkmax�λk�1
max Þ=λkmaxoε1 and ðγkslack�γk�1

slackÞ=γkslackoε1
then

5: terminate and output Mk

6: end if
7: if ðFðMkÞ�FðMk�1ÞÞ=FðMk�1Þoε2 then
8: terminate and output Mk

9: end if
10: Solve the bilateral search problem to find the optimal

0rαr1 and βZ0 to minimize FðαMkþβ v!k
maxð v

!k
maxÞT Þ.

11: Mkþ1 ¼ αMkþβ v!k
maxð v

!k
maxÞT

12: Increment k by 1
13: end while

2.1. Convergence of BILGO

In the rest of this section, we analyze the convergence proper-
ties of the BILGO algorithm, when the objective Fð�Þ is continuously
differentiable on the convex set Ω with some Lipschitz constant
LZ0. Since Ω is a convex set, Fð�Þ is continuously differentiable [21,
Chapter 2] over Ω if for any R and T in Ω, the following inequality
always holds for some LZ0:

0rFðRÞ�FðTÞ�〈∇FðTÞ;R�T〉r L
2
‖T�R‖2fro

Lemma 3. If F is continuously differentiable with some Lipschitz
constant LZ0, for any M;NAΩ and 〈N�M;∇FðMÞ〉o0, there exists

a positive constant C such that FðMþπðN�MÞÞrFðMÞþπ〈∇FðMÞ;
N�M〉þπ2C.

Proof. By the definition of continuously differentiable function F,
we obtain FðMþπðN�MÞÞ�FðMÞ�π〈∇FðMÞ;N�M〉r ðL=2Þ‖M�
ðMþπðN�MÞÞ‖2fro. Since 〈N�M;∇FðMÞ〉o0, M and MþπðN�MÞ
belong to the descent sequence of the convex function Fð�Þ, clearly
the diameter of such sequence is bounded. In other words, there
exists a constant C such that for M;NAΩ

max
〈N�M;∇FðMÞ〉o0

L
2
‖M�ðMþπðN�MÞÞ‖2fro ¼ π2C □

Similar to C, a constant Cf in [22] is used to denote the “Non-
linearity Measure” of a convex function over the simplex set. Inspired
by this work, we establish the convergence property of BILGO stated
in Lemma 4.

Lemma 4. For a continuously differentiable convex function Fð�Þ, one
iteration of Algorithm1 satisfies

hðMkþ1ÞrhðMkÞ�gðMkÞ2

where hðMkÞ ¼ ðFðMkÞ�FðMnÞÞ=4C and gðMkÞ ¼ 〈τ v!max v
!T

max�Mk;

�∇FðMkÞ〉=4C.

Proof. At the kth iteration, the update rule is Mkþ1 ¼ αMkþβ v!max

v!T
max. For simplicity, we use π and τ instead of α and β in this

proof. They are transformable by Eq. (2). By Lemma 3, we have

FðMkþ1ÞrFðMkÞþπ〈τ v!max v
!T

max�Mk;∇FðMkÞ〉þπ2C. This leads to
the following inequalities:

hðMkþ1Þ ¼ FðMkþ1Þ�FðMnÞ
4C

rhðMkÞþπ〈τ v!max v
!T

max�Mk;∇FðMkÞ〉
4C

þπ2

4

¼ hðMkÞ�πgðMkÞþπ2

4

¼ hðMkÞþ gðMkÞ�π

2

� �2
�gðMkÞ2

rhðMkÞ�gðMkÞ2

In the last step, we assume 0rgðMkÞr1
2 . This assumption

always holds using an appropriate initialization of M0 and setting
τ and π to suitable values. Suppose we choose τ such that gðM0Þ ¼ 1

2
and π ¼ 1 in the first iteration, the algorithm is guaranteed to
decrease since hðM1ÞrhðM0Þ�1

4 . Moreover, hðMkþ1Þ�hðMkÞ
decreases as k increases, therefore we obtain �1

4 rhðMkþ1Þ�
hðMkÞr hðMkÞ�πgðMkÞþ1

4 π
2�hðMkÞ for all kZ1. Therefore, we

have gðMkÞr1
4 ð1=πþπÞ for all kZ1. Moreover, we set π ¼ 2gðMkÞ1

to obtain gðMkÞr1
4 ð1=2gðMkÞþ2gðMkÞÞ. By combining gðMkÞZ0

and analyzing this simple inequality, we observe gðMkÞr1
2 for all

kZ0. □

Using the previous lemmas, we prove Theorem 2, that BILGO is
guaranteed to converge at a rate of Oð1=kÞ, where k is the iteration
counter.

Theorem 2. For a continuously differentiable convex objective Fð�Þ,
for any kZ1, any iteration of Algorithm1 guarantees that FðMkÞ�
FðMnÞr4C=ðkþ3Þ.

Proof. Since Fð�Þ is a convex function, FðMkÞ�FðMnÞr 〈∇FðMkÞ;
Mk�Mn〉¼ 〈∇FðMkÞ;Mk〉�〈∇FðMkÞ;Mn〉 r 〈∇FðMkÞ;Mk〉� 〈∇FðMkÞ;
τ v!max v

!T

max〉. The last inequality holds because v!max v
!T

max is the

1 Here the line search parameter π ¼ 2gðMkÞ is a conservative estimation. An
exact line search program can be performed to ensure the greatest functional gains.

Z. Hao et al. / Neurocomputing 127 (2014) 247–257 249



maximizer of the linear function 〈�∇FðMkÞ; �〉, thus 〈∇FðMkÞ;
v!max v

!T

max〉r 〈∇FðMkÞ;Mn=τ〉. Therefore, we conclude that gðMkÞ
ZhðMkÞZ0.
Using Lemma 4, we obtain hðMkþ1ÞrhðMkÞ�hðMkÞ2 ¼ hðMkÞ

ð1�hðMkÞÞ. Generally, noting that 1�νr1=ð1þνÞ for ν4�1, we
obtain hðMkþ1ÞrhðMkÞ=ð1þhðMkÞÞ ¼ 1=ð1þ1=hðMkÞÞ. Solving the
recursion problem gives hðMkþ1Þr1=ðkþ3Þ for all kZ1. □

3. Computational enhancements

In this section, we briefly describe some auxiliary enhancements
to BILGO that can further improve its computational footprint.

3.1. Efficient line search

The BILGO line search step (Step 10 in Algorithm 1) can be
solved by coordinate gradient decent or a bisection search. These
traditional methods, however, are only sub-optimal from a con-
vergence perspective. In order to accelerate the line search step,
we apply the projective Newton method [23], which is guaranteed
to achieve a quadratic convergence rate.

Projective Newton: With respect to α and β, the objective

f ðα; βÞ ¼ FðαMkþβ v!k
maxð v

!k
maxÞT Þ is a smooth convex function, and

the variables are bounded, i.e. 0rαr1, β40. By defining the
variable vector s!¼ ½α; β�T and the upper bound u!¼ ½1;1�T , the
line search problem becomes equivalent to finding the optimal
0r s!r u! that minimizes the objective f ð s!Þ. By employing the
Projective Newton method, we update s! by applying s!lþ1 ¼
s!lþγð b!l� s!lÞ, where b

!
l is the solution to the box-constrained

quadratic program in the following equation:

min
0r b

!
r u!

1
2
ð b!� s!lÞT∇2f ð s!lÞð b

!� s!lÞþ∇f ð s!lÞT ð b
!� s!lÞ ð3Þ

here ∇f ð s!lÞ and ∇2f ð s!lÞ are the gradient and Hessian of f ð�Þ
evaluated at s!l respectively. γ is a step-size parameter that is
often set to 1 in practice. It can be shown that b

!
l has a closed form

solution, since Eq. (3) only contains two variables. Additionally, we
also observe that when the objective function FðMÞ is strictly
quadratic (e.g. the KTA Mahalanobis metric learning model in
Eq. (5)), the line search can be obtained exactly in one iteration.

Two Variables Box-Constrained Quadratic Programming: In what
follows, we discuss how to solve Eq. (3) analytically. We notice
that Eq. (3) can be formulated as the following two variables box-
constrained quadratic problem, as shown below:

min
b
!

AR2�1

1
2
b
!T

Q b
!þ p!T

b
!

s:t: u!Z b
!

Z0 ð4Þ

where QAR2�2 and p!AR2�1. Introducing the dual variables
w!AR2�1 and z!AR2�1 for the upper bound and lower bound
constraints, we obtain the Karush–Kuhn–Tucker (KKT) condition
for Eq. (4) as follows:

z!Z0; w!Z0; b
!

Z0

Q b
!þ p!� z!þw!¼ 0

zibi ¼ 0; i¼ 1;2
wiðui�biÞ ¼ 0; i¼ 1;2

When the matrix Q is rank deficient, Eq. (4) reduces to a single
variable non-negative quadratic problem which is trivial to com-
pute. When the matrix Q is full rank, we observe that the optimal
solution bn must satisfy the following conditions for i¼1, 2:

zi40; wi ¼ 0; bi ¼ 0
zi ¼ 0; wi40; bi ¼ ui

zi ¼ 0; wi ¼ 0; 0obioui

Therefore, the optimal solution bn can be obtained by enumer-
ating all the 9 candidate solutions and picking the one that leads to
the smallest objective value in Eq. (4).

3.2. Computing the leading eigenvector

BILGO needs to find the leading eigenvector of the negative
gradient direction (Step 3 in Algorithm 1) in each iteration. Instead
of using full-rank decomposition techniques, we develop a novel and
efficient Lanczos-based Hessian-free Newton method to accelerate
this procedure. Given a symmetric matrix A¼ �∇FðMkÞ, we let

f ð v!Þ¼ 1
4 ‖ v

! v!T �A‖2fro. v
!k

max is the leading eigenvector, if and only if

v!k
max ¼ vn

�!
=J vn

�!
J and vn

�!
¼ arg min

v!f ð v!Þ. Although the objec-

tive f ð�Þ is non-convex, we use the following proposition to find a
local minimum.

Proposition 1. For any v!a0, any local minimum of f ð v!Þ is a
global minimum.2

To find a non-zero local minimum, the gradient and Hessian
matrices with respect to v! can be computed as

∇f ð v!Þ¼ v!T
v! v!�A v!

∇2f ð v!Þ¼ 2 v! v!T þ v!T
v!Id�A

In order to minimize f ð v!Þ efficiently, we use the Hessian-free
Newton method, which builds a quadratic model to find a search
direction that provides a reasonable trade-off between accuracy
and computational cost. The proposed method is summarized in
Algorithm 2. The fundamental idea here is to compute the
approximate Newton direction using the traditional Lanczos [24]
or Conjugate Gradient (CG) method. However, since the Hessian
∇2f ð v!Þ may not be PSD, the algorithm terminates as soon as
negative eigenvalues are detected in the Hessian, and the most
recently available descent direction is returned. After the Newton
direction has been approximated, the algorithm performs an exact
line search (with step size μ) using the first order optimality

condition (Step 4 of Algorithm 2). It can be shown that f ð v!tþμ d
!t

Þ
is a 4th order polynomial in μ. Therefore, the line search step can
be obtained by solving a cubic equation and selecting the solution
that leads to the greatest descent. Although our proposed method
for computing the leading eigenvector is simple greedy gradient
descent, it exhibits excellent convergence empirically.

Algorithm 2. A Lanczos-based Hessian-free Newton method to
find leading eigenvector.

1: Initialize v!0
to a random vector and set t¼0

2: while not converge do
3: Use the iterative Lanczos (or CG) method to

approximately solve ∇2f ð v!tÞ d!
t
¼ �∇f ð v!tÞ

4:
Solve the cubic equation df ð v!tþμ d

!t
Þ=dμ¼ 0 ð0oμo1Þ

to get a set of candidate steps: cstep
5: Set μ to the element in cstep that leads to the greatest

descent
6:

Update v!tþ1 ¼ v!tþμ d
!t

7: Increment t by 1
8: end while

2 This is because the original optimization problem 1
4‖V�A‖2fro is convex and

has a unique minimum. When the matrix rank-1 factorization V¼ v! v!T
is used,

there is a surjection between solutions using v! and those using V.

Z. Hao et al. / Neurocomputing 127 (2014) 247–257250



3.3. Low-rank optimization

As mentioned before, one advantage of BILGO is that it can be
easily extended to handle low-rank matrix constraints, as in [17].
At each BILGO iteration, the solution is updated by a rank-1
matrix: M←αMþβ v!max v

!T
max. By using the low rank representa-

tion M¼ LLT , this update rule becomes equivalent to adding a new
column to L, i.e. L←½ ffiffiffi

α
p

Lj ffiffiffi
β

p
v!max�. Since L is generated by a

greedy algorithm, it is not necessarily the solution which leads to
the greatest descent on the objective. Therefore, we need to refine
L to improve the baseline BILGO implementation. However, since
the low rank representation M¼ LLT is used, the objective FðLLT Þ is
non-convex in general. This may pose some difficulty in optimiza-
tion. Fortunately, there exist efficient methods to find a local
minimum of this non-convex problem. For example, Burer and
Monteiro [12] use a first-order L-bfgs approach that employs a
strong Wolfe–Powell line search. Also, the methods in [8,15] use a
Riemannian trust region approach that is based on a second-order
model of the objective defined on the manifold. Clearly, these
methods can be incorporated into the BILGO algorithm to improve
its baseline implementation. The result is an algorithm that is
numerically robust and fast.

4. Connections to existing work

In this section, we illustrate connections between the BILGO
algorithm and prior work.

1. Connection with Hazan's update rule: Sparse SDP approximation
was initially proposed in [13], applied to nuclear norm regular-
ized problems [14], and then applied to boosting metric
learning [16]. Methods of this type mainly use Hazan's update
rule to solve an SDP with a trace-one constraint: M←MþπD¼
Mþπð v!max v

!T
max�MÞ. These methods enforce the constraint

implicitly. After initializing M0 with an arbitrary trace-one
matrix, these methods converge to the global minimum. In
fact, when τ¼ 1, the BILGO update rule reduces to the afore-
mentioned one. However, Hazan's rule cannot be directly used
to solve the unconstrained SDP, since it does not guarantee that

D¼ v!max v
!T

max�M is a descent direction for Eq. (1) during
every iteration. This will occur at a non-stationary point M

where 〈D;∇FðMÞ〉¼ �λmax�∑iλi v
!T

i Mv!iZ0. In comparison,
Theorem 1 guarantees that BILGO always generates a descent
direction for Eq. (1) at every iteration.

2. Connection with Journée et al.'s update rule: The update rule
below is used in [15] to solve SDP problems, i.e. M←MþπD¼
Mþπð v!max v

!T
maxÞ. This optimization method uses the smallest

algebraic eigenvalue of the gradient direction to monitor the
convergence of the algorithm. Here, we point out that (i) this
update rule does not follow the second condition of Lemma 1,
i.e. it may not be able to decrease the objective when 〈∇FðMÞ;
v!max v

!T
max〉¼ λmax ¼ 0. (ii) Moreover, such a way of monitoring

the convergence of the algorithm may be problematic, because
λmax ¼ 0 does not necessarily indicate that the algorithm has
converged (refer to the experiment in Section 6.1).

3. Connection with Random Conic Pursuit: Random Conic Pursuit
was proposed in [18] for SDP problems with linear constraints.
Their bilateral update rule is similar to that of BILGO: M←αMþ
βD¼ αMþβ x! x!T

, but where x! is a random vector sampled
from a multivariate normal distribution and α; βZ0. Moreover,
their proof of convergence rate is based on the assumption that
β¼ 1=k and α¼ 1�1=k. It is not necessarily the optimal choice

for α, β and x!, but it turns out that their stochastic sampling
algorithm can also converge at a rate of Oð1=kÞ. Actually, the
main problem with Random Conic Pursuit is the large hidden
constants in the O-notation which makes it slow in practice
(refer to the experiment in Section 6.1).

4. Connection with classical Frank–Wolfe algorithm: The BILGO
optimization is built on the classical Frank–Wolfe algorithm
[20] (also known as conditional gradient descent) framework.
Given a non-stationary solution M, classical Frank–Wolfe algo-
rithm finds a descent direction D¼N�M by solving N¼
arg minN′AΩ〈∇FðN′Þ;N′�M〉. Unlike the constraint set is closed
in [20,22], the constraint set Ω we consider is open. So the
optimization problem above is unbounded if we simply con-
sider a full rank matrix N. However, one does not need to use a
full-rank matrix to minimize a linear function but a rank-1
matrix suffices. To allow a bounded solution, we restrict N
within a rank-1 unit conic space and show that it can always
decrease the objective function. In fact, this is the same property
that we use in computing the rank-1 factorization (refer to
footnote 2).

5. Connection with Shalev-Shwartz et al.'s algorithm: Shalev-Shwartz
et al. proposed an efficient forward greedy selection algorithm
[17] for solving large-scale matrix minimization problems with a
low-rank constraint. Based on the smoothness and strong
convexity of the objective function, they also derived its formal
approximation guarantees for the greedy algorithm. Their algo-
rithm mainly focused on a low rank matrix completion problem,
i.e. minX∑ði;jÞAΨ ðXij�YijÞ2; s:t: rankðXÞrk, where Ψ is the set of
all given entries of Y. It can be shown that this low rank matrix
completion can be transformed into the equivalent semidefinite
optimization problem below [25]: minX̂∑ði;jÞAΨ ðX̂ ij� Ŷ ijÞ2; s:t:
rankðX̂Þrk, where X̂ ¼ ½AjX;XT jB� and Ŷ ¼ ½0jY;YT j0�. Further-
more, ‘j’ and ‘;’ in ½�� denote respectively the column-wise and
row-wise partitioning indicator, A and B are the outputs of the
optimization program. What we need above is to make sure the
matrix solution is symmetric and hence, right and left eigenvec-
tors are the same. To sum up, the semidefinite optimization
problem is more general.

6. Connection with non-negatively constrained convex programming:
While the semidefinite program in Eq. (1) forces non-negativity
constraints on the eigenvalues of a matrix, non-negatively con-
strained convex programming forces non-negativity constraints
on the elements of a vector, i.e. min f ðw!Þ; s:t: w!Z0, where f ð�Þ
is a convex smooth objective function. This optimization problem
has been extensively studied with the best-known example of
non-negative matrix factorization [26] and quadratic hinge loss
support vector machines [27]. Clearly, the bilateral line search,
local minimization and convergence analysis can be naturally also
extended to this problem of vector space. In every iteration, one
can pick the coordinate of the largest real value in the descent
direction �∇f ðw!Þ and greedily decrease the objective function.
Similar to the low-rank factorization M¼ LLT , one can employ
the non-negative representation w!¼ v! � v! and refine v! using
some efficient non-convex optimization approaches [2].

7. Connection with Sören Laue's algorithm: We are also aware of
the recent proposed hybrid algorithm for convex semidefinite
optimization [19]. Both approaches suggest using bilateral line
search and local minimization. Both proofs look different, but
are actually equivalent. Firstly, one of the linear search variables
α in BILGO is further constrained to be αr1. Although we can
still further constraint it, such a constraint may not be needed.
This is because with a descent direction D in Theorem 1, the
convex optimization will find a non-negative step length
π(πZ0) which will naturally lead to α¼ 1�πr1 (refer to the
experiment in Section 6.1). Secondly, it appears that their

Z. Hao et al. / Neurocomputing 127 (2014) 247–257 251



convergence analysis works by constructing a duality gap that
is an upper bound on the primal error, and our analysis is based
on the KKT optimal condition theory of convex optimization.
However, it is known that the relaxed complementary slack-
ness condition as part of KKT can be shown to be equivalent to
a duality gap. Generally speaking, both proofs are in fact
equivalent to each other. However, our research on the similar
problem is independent of theirs. We think our theoretical
analysis here is of independent interest.

5. Applications

In this section, we discuss two important applications of the
bilateral greedy optimization: Mahalanobis metric learning and
maximum variance unfolding for manifold learning.

5.1. Mahalanobis metric learning

For Mahalanobis metric learning, we mainly focus on two
learning models: the Kernel Target Alignment (KTA) model [28]
and the Large Margin Nearest Neighbor (LMNN) model [29].

KTA model: Let c be the number of classes and let Y¼ ½ y!i

j…j y!m� denote the class labels assigned to all training data

X¼ f x!T
1 ;…; x!T

mg. Each yi ¼ ðy1i …yci ÞT Af0;1gc is a binary vector of
c elements. The model compares two kernel matrices, one is based

on class labels: KD ¼ YYT , the other on the distance metric
KX ¼XMXT . The loss model computes the dissimilarity between
two zero-mean Gaussian distributions with covariance matrices
KD and KX respectively. Here we use the Frobenius norm to
measure the distance between KD and KX . By employing the
information-theoretic regularizer [9] ‖M�Id‖2fro, the objective
function of the SDP can be written as

FKTAðMÞ ¼min
M≽0

‖M�Id‖2froþλreg‖XTMX�YTY‖2fro ð5Þ

The gradient of FKTA with respect to M can be computed respec-
tively as

∂FKTA
∂M

¼ 2λregXTXMXTXþ2M�2Id�2λregXTYYTX ð6Þ

To allow efficient low-rank optimization, we use the change of

variable M¼ LLT and reformulate the SDP problem FKTAðMÞ as a
non-convex optimization problem FKTAðLLTÞ. Once the gradient of
FKTA with respect to L has been computed, as in Eq. (7), we can
utilize a first-order local search strategy (see Section 3.3) to refine
the solution L

∂FKTA
∂L

¼ 4λregXTXLLTXTXLþ4LLTL�4L�4λregXTYYTXL ð7Þ

LMNN model: LMNN metric learning has two objectives. The
first is to minimize the average distance between instances and
their target neighbors. The second goal is to constrain impostors to
be further away from target neighbors, thus, pushing them out of
the local neighborhood. There exists a distant constraint set R and

a neighbor constraint set S, where 8ði; j; kÞð x!i; x
!

j; x
!

kÞAR and

8ði; jÞð x!i; x
!

jÞAS, yi¼yj and yiayk. After defining Xij ¼ ð x!i� x!jÞ
ð x!i� x!jÞT , we write the distance between x!i and x!j as

dMð x!i; x
!

jÞ ¼ ð x!i� x!jÞTMð x!i� x!jÞ ¼ trðMXijÞ. Using a quadratic
hinge loss function, the optimization problem and the gradient
with respect to M can be written as shown in Eqs. (8) and (9),
where ST denotes the support triple set which generates an l2 loss

value greater than zero, i.e. ð x!i; x
!

j; x
!

kÞ belongs to ST if

1�trðMXikÞþtrðMXjkÞ40

FLMNNðMÞ ¼min
M≽0

∑
ð x!i ; x

!
jÞAS

trðMXijÞ

þλreg ∑
ð x!i ; x

!
j ; x
!

kÞAR

maxð0;1�trðMXikÞþtrðMXjkÞÞ2 ð8Þ

∂FLMNN

∂M
¼ ∑

ð x!i ; x
!

jÞAS

Xij

þ2λreg ∑
ð x!i ; x

!
j ; x
!

kÞAST

ð1�trðMXikÞþtrðMXjkÞÞðXik�XijÞ

ð9Þ
Again, when the change of variable M¼ LLT is used, the gradient

of FLMNN with respect to L can be computed as shown below:

∂FLMNN

∂L
¼ ∑

ð x!i ; x
!

jÞAS

2XijLþ4λreg ∑
ð x!i ; x

!
j ; x
!

kÞAST

ð1�trðLTXikLÞ

þtrðLTXjkLÞÞðXikL�XijLÞ ð10Þ

5.2. Maximum variance unfolding

Maximum variance unfolding (MVU) or semidefinite embed-
ding (SDE) [3–5] is among the state of the art manifold learning
algorithms and experimentally proven to be the best method to
unfold a manifold to its intrinsic dimension. The main intuition
behind MVU is to exploit the local linearity of manifolds and create
a mapping that preserves local neighborhoods at every point of
the underlying manifold. It creates a mapping from the high
dimensional input vectors to some low dimensional Euclidean
vector space in the following steps. Firstly, a neighborhood graph
is created. Each input is connected with its k-nearest input vectors
(according to Euclidean distance metric) and all k-nearest neighbors
are connected with each other. The neighborhood graph is
‘unfolded’ with the help of semidefinite programming. The low-
dimensional embedding is finally obtained by application of
multidimensional scaling on the learned inner product matrix.
Specifically, given a 0/1 binary indicator matrix UARn�n, an
Euclidean distance matrix DARn�n and WARn�n, MUV can be
formulated as the optimization problem3 shown below:

FMVUðMÞ ¼min
M≽0

‖U � ð bM e!T þ e! bMT �2M�DÞ‖2fro�ν trðWMÞ ð11Þ

When W¼ In, it is plain MVU. When W¼ Y,4 it is the ‘colored’
variant of MVU, which produces low-dimensional representations
subject to class labels or side information [4]. We let M¼ LLT ,
o!¼ diagðMÞ and write the gradient of FMVUðMÞ with respect to M
and L as shown below5:

∂FMVU

∂M
¼ ð4dbeUoþ4dboUeÞ�ð4Uboþ4boUÞ�ð4ddUD�4U � DÞ

�ð8ddUM�8U � MÞ�νW ð12Þ

∂FMVU

∂L
¼ ð8dbeUoþ8dboUe�8Ubo�8boU�8

ddUDþ8U � D�16
ddULLT

þ16U � LLT ÞL�2νWL ð13Þ

3 Here � denotes the Hadamard product. e! denotes a column vector having
all elements equal to one. 4̂ is the diagonal operator, it is equivalent to the ‘diag’
Matlab function: when Δ is a matrix, bΔ denotes a column vector formed from the
main diagonal of Δ, when Δ is a vector, bΔ denotes a diagonal matrix with Δ in the
main diagonal entries.

4 Y is the label matrix defined earlier in Section 5.1.
5 Here we use the property of Hadamard product: x!T ðA � BÞ y!¼ trðcx!Acy!BT Þ.

Z. Hao et al. / Neurocomputing 127 (2014) 247–257252



This formulation allows us to run the L-bfgs algorithm and
iteratively improves the result. After the algorithm terminates,
the final configuration L is used as the optimal solution to the
program.

6. Experimental results

In this section, we demonstrate the effectiveness and efficiency
of BILGO algorithm on the two learning tasks: Mahalanobis metric
learning and maximum variance unfolding. All algorithms are
implemented in Matlab on an Intel 2.50 GHz CPU with 4 GB
RAM. We test on 12 well-known real-world benchmark datasets,6

which contain high dimensional (dZ103) data vectors and are
usually large scale (more than 104 elements each). Some Matlab
codes and sample datasets for tests are available at: http://
yuanganzhao.weebly.com/.

6.1. Global convergence

In this section, we verify the global convergence property of
BILGO. We demonstrate the asymptotic behavior of BILGO using
the Kernel Target Alignment metric learning model (BILGO-KTA)
on ‘w1a’ and ‘a1a’ datasets. In Fig. 2, we compare Journée et al.'s
update rule [15] and Random Conic Pursuit [18] against that of
BILGO-KTA. We plot the values fFKTAðMkÞ, γkslack, λkmax, α, β, testing
accuracy, training accuracy g at every iteration k (k¼1,…,300). For
Random Conic Pursuit, we use Matlab function ‘mvnrnd’ to sample
a random vector x!ARd�1 from the multivariate normal distribu-
tion with mean zero and covariance Σ. Here Σ¼ ð1�χÞMkþχId,
where χ is set to 0.5 in our experiments. For BILGO, we only
constrain α to be αZ0 instead of 1ZαZ0. The results in Fig. 2
lead to several interesting observations. Firstly, we observe that
Journée et al.'s method gets stuck at a critical point where λmax � 0
and γslack⪢0, while BILGO-KTA converges to the global minimum
where the KKT conditions are fully satisfied, i.e. λmax � 0; γslack � 0.
Secondly, although Random Conic Pursuit selects the rank-1 conic
randomly, it can still decrease the objective function iteratively
and tends to converge the global minimum with both λmax and
γslack decreasing to 0. This phenomenon is more pronounced
on ‘a1a’ dataset. We attribute this phenomenon to the bilateral

strategy used in Random Conic Pursuit. However, Random Conic
Pursuit converges much slower than BILGO-KTA. Thirdly, we
observe that as BILGO iterates, α is approaching to 1 and β is
approaching to 0. Moreover, we find that αr1 always holds. This
observation indicates that further constraining αr1 is not needed
in practice. Finally, as for efficacy of the learning tasks, we find that
BILGO achieves the lowest objective, thus it results in the best
training accuracy. However, BILGO does not necessarily obtain the
best testing accuracy while Journée et al.'s approach does. The
regularization function of the learning task is responsible for these
results.

6.2. Accuracy and efficiency on metric learning

In this section, we demonstrate the accuracy and efficiency of
BILGO by applying it to metric learning tasks. We use BILGO-KTA
and BILGO-LMNN to denote the BILGO solver for the two metric
learning optimization problems respectively. Moreover, we use “L-
bfgs þ exact line search” as it is suggested in [2] to improve the
intermediate result in every 5 iterations of BILGO-KTA, giving rise
to its local search version BILGO-KTA-LS.

After learning the optimal Mahalanobis distance function from
the training set, we use a k NN classifier (k¼3) to classify each test
sample. The hyper-parameter λreg is set by a typical two-fold cross-
validation procedure searching over the values λreg ¼ f10�3;10�2;

10�1;100;101;102;103g.
We compare our BILGO-KTA metric learning method against

three full rank methods: ITML7 [9], Boost-Metric8 [16], LMNN9 [29],
and two low rank methods: SURF10 [6] and KTA-Lbfgs.11 We use the
default stopping criterion for each of these methods. BILGO is
terminated when the relative change in fλmax; γslackg or Fð�Þ is small
enough. We find ε1 ¼ 10�3 and ε2 ¼ 10�5 to be a good trade-off
between accuracy and runtime. Since SURF uses a low rank
representation, we have M¼ LLT ; LARd�r . To make a fair compar-
ison, we set r¼maxð15; kÞ, where k is the number of iterations
required by BILGO-KTA-LS to converge. k takes on values between

Fig. 2. Convergence behavior of BILGO, Journée et al.'s method and Random Conic Pursuit method on the ‘w1a’ and ‘a1a’ dataset. (a) on ‘w1a’ dataset and (b) on ‘a1a’ dataset.

6 www.csie.ntu.edu.tw/	cjlin/libsvmtools/datasets/

7 http://www.cs.utexas.edu/	pjain/itml/
8 http://code.google.com/p/boosting/
9 http://www.cse.wustl.edu/	kilian/
10 http://www.montefiore.ulg.ac.be/	meyer/
11 This is a metric learning algorithm that minimizes the objective in Eq. (5)

using the local-search L-bfgs method described in [12] with a random initial
solution.

Z. Hao et al. / Neurocomputing 127 (2014) 247–257 253

http://yuanganzhao.weebly.com/
http://yuanganzhao.weebly.com/
www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.cs.utexas.edu/~pjain/itml/
http://www.cs.utexas.edu/~pjain/itml/
http://code.google.com/p/boosting/
http://www.cse.wustl.edu/~kilian/
http://www.cse.wustl.edu/~kilian/
http://www.montefiore.ulg.ac.be/~meyer/
http://www.montefiore.ulg.ac.be/~meyer/


8 and 30 in our experiments.12 We select 2000 pairs/triplets of
constraints for training all algorithms except the KTA-based algo-
rithms. The experimental results are reported in Tables 1 and 2.
Several conclusions can be drawn here.

1. As for efficiency, it is demonstrated in Table 1 that BILGO
significantly outperforms the full rank methods. While ITML
remains competitive in efficiency on low dimensional datasets,
it cannot utilize the low rank property of the solution and thus
rapidly becomes intractable as the dimensionality d grows (e.g.
in the realsim dataset). Moreover, the greedy BILGO-LMNN
method gives comparable results to the low rank method SURF,
which suffers from slow convergence, if the randomized initial
solution is far from the global solution. Since BILGO implicitly
stores M using the low rank representation L and uses a sparse
eigenvalue solver, it usually obtains a good solution in a few
iterations (also see Fig. 2).

2. In terms of accuracy, we observe in Table 2 that LMNN is still
one of the most accurate metric learning solvers. However, it
lacks stability, especially for large scale datasets, mainly due to
the large number of constraints. As opposed to LMNN that
picks and cycles through a subset of metric constraints, the KTA
model can handle all the constraints implicitly. That explains
why KTA implementations (BILGO-KTA and BILGO-KTA-LS) are
faster and more stable. We observe that BILGO-KTA-LS and
BILGO-KTA perform with consistently high stability in both
problem domains.

3. We study the impact of the local search on a metric learning
classifier. Although BILGO-KTA-LS iteratively reduces the objective,

it does not necessarily achieve better accuracy than BILGO-KTA.
Thus, an approximate solution is often good enough for a metric
learning task. Moreover, BILGO-KTA-LS often takes less time to
converge than BILGO-KTA, because the use of L-bfgs enables its
convergence rate to be super-linear.

4. Finally, we study the impact of the greedy strategy on a metric
learning classifier. Note that BILGO-KTA-LS and KTA-Lbfgs use
the same objective function and stopping criterion. We observe
that BILGO-KTA-LS is about 2 times faster than KTA-Lbfgs. This
is the case because KTA-Lbfgs is initialized randomly leading to
slow convergence, while BILGO-KTA-LS benefits greatly from
the efficient matrix-free sparse eigenvalue solver and quickly
obtains a good solution.

6.3. Efficiency on maximum variance unfolding

In this section, we demonstrate the efficiency of BILGO by apply-
ing it to maximum variance unfolding (MVU) for manifold learning.
The MVU problem, as we have mentioned in Section 1, can be solved
by an interior point method or projected gradient descent [1,10].
However, the interior point method will become rapidly intractable
as the number of training instances becomes large due to its time
complexity of Oðn6:5Þ. Therefore, we drop the comparisons with
the interior point method and only compare against Nesterov's
first order optimal method [30,10], which is known to achieve a
much faster convergence rate than the traditional methods such
as subgradient or naïve projected gradient descent methods. So,
comparison with the BILGO algorithms is meaningful.

We verify the efficiency of BILGO-LS by demonstrating the
asymptotic behavior of both BILGO-LS (BILGO with local search)
and Nesterov-PG (Nesterov's projective gradient method) on two
datasets: ‘w1a’ and ‘mnist’. To generate data, we randomly sample

Table 1
Comparison of running times (in s) with state-of-the-art metric learning solvers. OOM indicates “out of memory” and OOT indicates “out of time”.

Dataset SURF ITML Boost-Metric LMNN BILGO-LMNN KTA-Lbfgs BILGO-KTA BILGO-KTA-LS

splice 873 2.871 874 18710 1576 0.870.5 0.270.1 0.270.1
isolet 1072 2307112 3027140 5107121 107716 157720 56710 107712
optdigits 170.5 0.570.1 1773 1775 3379 170.3 0.870.2 0.370.1
dna 2374 1074 83730 232750 202732 371 272 271
a1a 1573 1576 4507213 138736 310723 1074 872 672
protein 35711 100711 17497351 23107412 76723 51716 50714 3174
mushrooms 773 673 79722 1474 50714 572 371 271
w1a 2676 2076 25887153 8307112 213735 1871 1573 872
usps 3575 450787 5787121 120721 53711 3979 2574 2875
mnist 612787 740781 OOT 12867174 612777 6017121 361731 301731
gisette 411758 OOT OOT OOT 489764 138735 89713 5879
realsim 9927243 OOM OOM OOM 25457312 108731 220756 68714

Table 2
Comparison of error rates with state-of-the-art metric learning solvers. OOM indicates “out of memory” and OOT indicates “out of time”.

Dataset SURF ITML Boost-Metric LMNN BILGO-LMNN KTA-Lbfgs BILGO-KTA BILGO-KTA-LS

splice 21.571.1 32.371.8 16.871.0 19.671.2 18.171.9 19.471.4 18.971.0 20.471.6
isolet 5.571.3 7.8703.2 9.470.7 8.571.1 7.872.1 5.471.2 5.971.5 5.471.2
optdigits 2.470.3 1.970.1 1.870.1 1.470.0 2.470.2 2.370.5 2.470.1 2.570.5
dna 8.271.0 9.870.9 6.271.1 4.871.0 5.270.5 4.870.4 5.970.5 4.870.2
a1a 18.371.9 18.370.3 18.171.2 20.372.1 18.371.2 19.071.0 17.970.1 18.271.0
protein 38.273.3 41.372.8 36.172.4 39.173.2 40.172.3 37.972.3 36.373.3 36.972.3
mushrooms 0.070.0 0.070.0 0.070.0 0.070.0 0.070.0 0.170.1 0.070.0 0.070.0
w1a 2.170.1 1.570.0 1.870.0 2.470.1 1.270.1 2.170.0 1.570.1 2.170.0
usps 4.671.0 5.071.5 5.070.0 4.370.1 5.271.0 5.070.9 4.971.1 5.170.9
mnist 6.370.4 3.570.4 OOT 7.372.3 6.170.8 5.171.2 5.170.1 5.371.2
gisette 5.071.0 OOT OOT OOT 4.571.0 4.071.1 4.371.2 4.071.1
realsim 4.071.5 OOM OOM OOM 4.270.5 3.871.0 3.071.5 3.771.1

12 Since the required rank of BILGO-KTA-LS is often small, which may not be
suitable for SURF, we assume that r is lower-bounded by 15.

Z. Hao et al. / Neurocomputing 127 (2014) 247–257254



n points from the datasets. To generate the indicator matrix U, we
use the 3-NN graph. We have verified that the 3-NN graph derived
from our data is connected. We solve the plain MVU optimization
problem using both methods. For BILGO-LS, we use low-rank optimi-
zation to accelerate the algorithm. In every 5 iterations, a local-search
L-bfgs is performed to refine the solution L. The computational results

of both methods are shown in Figs. 3 and 4. We observe that the
objective values of BILGO-LS converge more quickly than those of
Nesterov-PG. For a small-scale MVU problem, Nesterov-PG is compar-
able to BILGO-LS. However, since full eigenvalue decomposition is an
expensive operator especially for high dimensional matrix spaces,
Nesterov-PG shows poor performance for large scale problems. We

100 200 300 400 500 600

Time (seconds)

O
bj

ec
tiv

e

BILGO−LS
Nesterov−PG

200 400 600 800 100012001400

102

104

Time (seconds)

O
bj

ec
tiv

e

BILGO−LS
Nesterov−PG

500 1000 1500 2000 2500

Time (seconds)

O
bj

ec
tiv

e

BILGO−LS
Nesterov−PG

1000 2000 3000 4000

102

104

106

Time (seconds)

O
bj

ec
tiv

e

BILGO−LS
Nesterov−PG

102

104

106

102

104

Fig. 3. Convergence behavior of BILGO (red) and Nesterov's projective gradient (blue) on the ‘w1a’ dataset. (a) n¼1500, (b) n¼2000, (c) n¼2500, and (d) n¼3000.
(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

100 200 300 400 500 600

Time (seconds)

O
bj

ec
tiv

e

BILGO−LS
Nesterov−PG

500 1000 1500 2000 2500
100

105

Time (seconds)

O
bj

ec
tiv

e

BILGO−LS
Nesterov−PG

500 1000 1500

102

104

106

Time (seconds)

O
bj

ec
tiv

e

BILGO−LS
Nesterov−PG

1000 2000 3000 4000

100

105

Time (seconds)

O
bj

ec
tiv

e

BILGO−LS
Nesterov−PG

100

105

Fig. 4. Convergence behavior of BILGO (red) and Nesterov's projective gradient (blue) on the ‘mnist’ dataset. (a) n¼1500, (b) n¼2000, (c) n¼2500, and (d) n¼3000.
(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Z. Hao et al. / Neurocomputing 127 (2014) 247–257 255



also report the objectives and run-times for both BILGO-LS and
Nesterov-PG, as n is increased in Table 3. Here, the improvement of
BILGO algorithm over that of Nesterov-PG, in terms of efficiency, is
more obvious. For example, for an MVU problem of size 3000 (on
‘mnist’ dataset), BILGO-LS is six times faster than Nesterov-PG while
also achieving a lower objective value.

6.4. Hessian-free Newton for computing the leading eigenvector

Finally, we evaluate the efficiency of our Hessian-free Newton
method in computing the leading eigenvector of a large-scale
matrix. Two versions of this method (denoted ‘Newton-Lanczos’
and ‘Newton-CG’ respectively) are tested in this experiment. For
comparison, we include the popular Matlab function ‘eigs’ [31].
We simply initialize v0¼rand(d, 1) in MATLAB and stop the
algorithm when the relative change in f is less than 10�12. We
use the default stopping criterion for ‘eigs’. The matrix A is
generated randomly and the three algorithms {‘eigs’, ‘Newton-
CG’, ‘Newton-Lanczos’} are used to estimate the leading eigenvec-
tor of A. Given the true eigenvector v!max and the output v! from
the algorithms, the accuracy is defined as 1� v!T

maxA v!max= v
!T

A v!.
The results in Table 4 show that the Newton-Lanczos is consis-
tently more than two times faster than Newton-CG. Newton-
Lanczos is also reasonably faster than the Matlab solver for large
dimensional matrices.

7. Conclusions and future work

In this paper, we theoretically analyze a new bilateral greedy
optimization (denoted BILGO) strategy in solving general semide-
finite programs on large-scale datasets. Utilizing a new bilateral
greedy optimization strategy, BILGO is capable of efficiently find-
ing the global minimum of the SDP problem. When the objective
is continuously differentiable, BILGO enjoys a sublinear conver-
gence rate. However, exploiting a well designed local-search
low-rank optimization strategy, BILGO can provide huge savings

in computational cost and achieve a superlinear convergence rate.
We apply BILGO to two important machine learning tasks:
Mahalanobis metric learning and maximum variance unfolding.
Extensive experiments show that BILGO is effective in efficiently
solving large-scale machine learning tasks (e.g. metric and mani-
fold learning) that can be formulated as SDP problems.

Our future work is most likely to proceed along three direc-
tions. Firstly, past study [32,33] has shown that many non-smooth
and linear constrained optimization problems with an appropriate
simple primal–dual minimax structure can be solved by Nesterov's
smoothing technique. We plan to apply the bilateral and low-rank
optimization to solve non-smooth and linear constrained semi-
definite programming problems [18]. Secondly, BILGO is a greedy
monotone algorithm with a sublinear convergence rate, it is
equally interesting to study the theoretical behavior of the addi-
tional ‘away’ step [34,22] in BILGO and consider boosting BILGO to
achieve the linear convergence rate. Finally, we are also interested
in extending the rank-1 matrix update scheme to linear support
vector machines [27] and tensor subspace analysis [35].

Acknowledgments

Wewould like to thank Dr. Zhenjie Zhang (ADSC, Singapore) for
his helpful discussions and suggestions on this paper. Hao and
Yuan are supported by NSF-China (61070033, 61100148), NSF-
Guangdong (9251009001000005, S2011040004804).

References

[1] A. Globerson, S. Roweis, Metric learning by collapsing classes, in: NIPS, 2006,
pp. 451–458.

[2] G. Yuan, Z. Zhang, B. Ghanem, Z. Hao, Low-rank quadratic semidefinite
programming, Neurocomputing 106 (0) (2013) 51–60.

[3] K.Q. Weinberger, F. Sha, L.K. Saul, Learning a kernel matrix for nonlinear
dimensionality reduction, in: ICML, 2004, pp. 106–113.

[4] L. Song, A.J. Smola, K.M. Borgwardt, A. Gretton, Colored maximum variance
unfolding, in: NIPS, 2007, pp. 1385–1392.

[5] X.-M. Wu, A.M.-C. So, Z. Li, S.-Y.R. Li, Fast graph Laplacian regularized kernel
learning via semidefinite-quadratic-linear programming, in: NIPS, 2009,
pp. 1964–1972.

[6] G. Meyer, S. Bonnabel, R. Sepulchre, Regression on fixed-rank positive
semidefinite matrices: a Riemannian approach, Journal of Machine Learning
Research (JMLR) 12 (2011) 593–625.

[7] B. Mishra, G. Meyer, R. Sepulchre, Low-rank optimization for distance matrix
completion, in: Proceedings of the 50th IEEE Conference on Decision and
Control and European Control Conference (CDC-ECC), 2011.

[8] B. Vandereycken, S. Vandewalle, A Riemannian optimization approach for
computing low-rank solutions of Lyapunov equations, SIAM Journal on Matrix
Analysis and Applications (SIMAX) 31 (5) (2010) 2553–2579.

[9] J. V. Davis, B. Kulis, P. Jain, S. Sra, I.S. Dhillon, Information-theoretic metric
learning, in: ICML, 2007, pp. 209–216.

[10] J. Liu, S. Ji, J. Ye, Multi-task feature learning via efficient l2;1-norm minimiza-
tion, in: UAI, 2009, pp. 339–348.

[11] Z. Wen, D. Goldfarb, K. Scheinberg, Block coordinate descent methods for
semidefinite programming, in: Handbook on Semidefinite, Conic and Poly-
nomial Optimization, 2012, pp. 533–564.

[12] S. Burer, R.D.C. Monteiro, Local minima and convergence in low-rank semi-
definite programming, Mathematical Programming 103 (2005) 427–444.

[13] E. Hazan, Sparse approximate solutions to semidefinite programs, in: Proceed-
ings of Latin American Conference on Theoretical INformatics (LATIN), 2008,
pp. 306–316.

[14] M. Jaggi, M. Sulovsky, A simple algorithm for nuclear norm regularized
problems, in: ICML, 2010, pp. 471–478.

[15] M. Journée, F. Bach, P.-A. Absil, R. Sepulchre, Low-rank optimization on the
cone of positive semidefinite matrices, SIAM Journal on Optimization (SIOPT)
20 (2010) 2327–2351.

[16] C. Shen, J. Kim, L. Wang, A. van den Hengel, Positive semidefinite metric
learning using boosting-like algorithms, The Journal of Machine Learning
Research (JMLR) 98888 (2012) 1007–1036.

[17] S. Shalev-Shwartz, A. Gonen, O. Shamir, Large-scale convex minimization with
a low-rank constraint, in: ICML, 2011, pp. 329–336.

[18] A. Kleiner, A. Rahimi, M.I. Jordan, Random conic pursuit for semidefinite
programming, in: NIPS, 2010, pp. 1135–1143.

[19] S. Laue, A hybrid algorithm for convex semidefinite optimization, in: ICML,
2012.

[20] D.P. Bertsekas, Nonlinear Programming, 2nd edition, Athena Scientific, 1999.

Table 3
Comparisons with Nesterov's projective gradient method. The results separated by
‘/’ are objective and time (in s) respectively.

n w1a mnist

BILGO-LS Nesterov-PG BILGO-LS Nesterov-PG

500 4.95/23.67 9.23/28.07 0.35/20.57 0.11/22.96
1000 0.48/124.81 4.01/207.01 0.29/123.28 0.48/203.57
1500 6.04/252.35 22.24/680.23 0.25/251.10 0.64/693.59
2000 1.56/398.39 2.45/1488.12 1.16/437.90 1.16/1527.46
2500 10.05/1133.15 11.33/2936.65 0.44/619.67 1.29/2882.82
3000 6.60/1290.15 8.00/4150.07 0.29/795.64 0.65/4880.54

Table 4
Comparisons with ‘eigs’. The results separated by ‘/’ are accuracy and time (in s)
respectively.

d eigs Newton-CG Newton-Lanczos

1000 0.00e�00/00.23 2.17e�16/00.72 2.77e�16/00.41
2000 0.00e�00/01.35 1.11e�15/02.80 1.55e�15/01.30
3000 1.58e�16/03.91 6.61e�15/06.19 0.00e�00/03.51
4000 3.57e�15/16.01 0.00e�00/14.62 3.16e�15/11.00
5000 1.71e�15/09.82 2.08e�14/19.38 0.00e�00/09.44
6000 0.00e�00/17.35 1.24e�14/41.65 1.67e�15/12.72
7000 4.13e�16/37.31 7.22e�15/49.76 0.00e�00/26.66
8000 0.00e�00/39.42 2.07e�14/75.19 8.87e�15/27.03
9000 3.82e�15/65.56 5.10e�15/120.1 0.00e�00/46.17

Z. Hao et al. / Neurocomputing 127 (2014) 247–257256



[21] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course,
Kluwer Academic Publishers, 2004.

[22] K.L. Clarkson, Coresets, sparse greedy approximation, and the Frank–Wolfe
algorithm, ACM Transactions on Algorithms (TALG) 6 (4) (2010) 63:1–63:30.

[23] J.C. Dunn, Newton's method and the Goldstein step-length rule for con-
strained minimization problems, SIAM Journal on Control and Optimization
(SICON) (1980) 659–674.

[24] C.C. Paige, M.A. Saunders, Solution of sparse indefinite systems of linear
equations, SIAM Journal on Numerical Analysis (SINUM) 12 (1975) 617–629.

[25] E.J. Candès, B. Recht, Exact matrix completion via convex optimization,
Foundations of Computational Mathematics (FoCM) 9 (6) (2009) 717–772.

[26] D.D. Lee, H.S. Seung, Learning the parts of objects by non-negative matrix
factorization, Nature 401 (6755) (1999) 788–791.

[27] C. Hsieh, K. Chang, C. Lin, S. Keerthi, S. Sundararajan, A dual coordinate descent
method for large-scale linear SVM, in: ICML, 2008, pp. 408–415.

[28] S. Wang, R. Jin, An information geometry approach for distance metric
learning, in: AISTATS, vol. 5, 2009, pp. 591–598.

[29] K. Weinberger, L. Saul, Distance metric learning for large margin nearest
neighbor classification, The Journal of Machine Learning Research (JMLR) 10
(2009) 207–244.

[30] Y.E. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course,
Applied Optimization, vol. 87, Kluwer Academic Publishers, Boston, 2003.

[31] D.C. Sorensen, Implicit application of polynomial filters in a k-step Arnoldi
method, SIAM Journal on Matrix Analysis and Applications (SIMAX) 13 (1992)
357–385.

[32] Y. Nesterov, Smooth minimization of non-smooth functions, Mathematical
Programming 103 (1) (2005) 127–152.

[33] Y. Nesterov, Primal–dual subgradient methods for convex problems, Mathe-
matical programming 120 (1) (2009) 221–259.

[34] S. Damla Ahipasaoglu, P. Sun, M.J. Todd, Linear convergence of a modified
Frank–Wolfe algorithm for computing minimum-volume enclosing ellipsoids,
Optimisation Methods and Software 23 (1) (2008) 5–19.

[35] Z. Hao, L. He, B. Chen, X. Yang, A linear support higher-order tensor machine
for classification, IEEE Transactions on Image Processing (TIP) 22 (2013)
2911–2920 〈http://dx.doi.org/10.1109/TIP.2013.2253485〉.

Zhifeng Hao received the B.S. degree in Mathematics
from the Sun Yat-Sen University in 1990, and the Ph.D.
degree in Mathematics from Nanjing University in
1995. He is currently a full Professor in School of
Computer Science and Engineering, South China Uni-
versity of Technology. He has a variety of research
interests which include bioinformatics, kernel learning,
nonlinear optimization, evolutionary algorithms and
intelligence computation. He has published more than
50 research papers in various refereed international
journals.

Ganzhao Yuan received his B.S. degree in Computer
Science at Tianjin Polytechnic University in 2008. He
then continued on to complete his M.Sc. degree and his
Ph.D. degree in Machine Learning and Computational
Intelligence at South China University of Technology.
He was a research assistant at Nanyang Technological
University (NTU) in 2012. His research interests include
kernel learning, semidefinite programming, nonlinear
optimization and differential privacy. He is expected to
graduate in June 2013.

Bernard Ghanem earned his Ph.D. in Department of
Electrical and Computer Engineering, University of
Illinois at Urbana-Champaign (UIUC). He is currently a
Researcher Scientist at King Abdullah University of
Science and Technology (KAUST). He is involved in
several interesting projects that focus on exploiting
techniques in computer vision and machine learning
for real-world applications including semantic sports
video analysis, large-scale 3D reconstruction of cities,
and biomedical image analysis for diagnostics and
discovery.

Z. Hao et al. / Neurocomputing 127 (2014) 247–257 257

http://dx.doi.org/10.1109/TIP.2013.2253485

	BILGO: Bilateral greedy optimization for large scale semidefinite programming
	Introduction
	BILGO algorithm
	Convergence of BILGO

	Computational enhancements
	Efficient line search
	Computing the leading eigenvector
	Low-rank optimization

	Connections to existing work
	Applications
	Mahalanobis metric learning
	Maximum variance unfolding

	Experimental results
	Global convergence
	Accuracy and efficiency on metric learning
	Efficiency on maximum variance unfolding
	Hessian-free Newton for computing the leading eigenvector

	Conclusions and future work
	Acknowledgments
	References




