Neurocomputing 450 (2021) 119-128

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Delay-aware model-based reinforcement learning for continuous control

Baiming Chen**, Mengdi Xu®, Liang Li?, Ding Zhao"

2 Tsinghua University, Beijing 100084, China
b Carnegie Mellon University, Pittsburgh, PA 15213, USA

Check for
updates

ARTICLE INFO ABSTRACT

Article history:

Received 17 April 2020

Revised 19 October 2020
Accepted 8 April 2021

Available online 13 April 2021
Communicated by Zidong Wang

Action delays degrade the performance of reinforcement learning in many real-world systems. This paper
proposes a formal definition of delay-aware Markov Decision Process and proves it can be transformed
into standard MDP with augmented states using the Markov reward process. We develop a delay-
aware model-based reinforcement learning framework that can incorporate the multi-step delay into
the learned system models without learning effort. Experiments with the Gym and MuJoCo platforms

show that the proposed delay-aware model-based algorithm is more efficient in training and transferable

Keywords:

Model-based reinforcement learning
Markov decision process
Continuous control

Delayed system

ment learning methods.

between systems with various durations of delay compared with state-of-the-art model-free reinforce-

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Deep reinforcement learning has made rapid progress in games
[1,2] and robotic control [3-5]. However, most algorithms are eval-
uated in turn-based simulators like Gym [6] and MuJoCo [7], where
the action selection and actuation of the agent are assumed to be
instantaneous. Action delay, although prevalent in many areas of
the real world, including robotic systems [8-10], communication
networks [11] and parallel computing [12], may not be directly
handled in this scheme.

Previous research has shown that delays would not only
degrade the performance of the agent but also induce instability
to the dynamic systems [13-15], which is a fatal threat in safety-
critical systems like connected and autonomous vehicles (CAVs)
[16]. For instance, it usually takes more than 0.4 s for the hydraulic
automotive brake system to generate the desired deceleration [10],
which could make a huge impact on the planning and control mod-
ules of CAVs [17]. The control community has proposed several
methods to address this problem, such as using Smith predictor
[18,19], Artstein reduction [20,21], finite spectrum assignment
[22,23], and H,, robust controller [24,25]. Most of these methods
depend on accurate models [26,13], which is usually not available
in the real-world applications.

Recently, DRL has offered the potential to resolve this issue. The
problems that DRL solves are usually modeled as Markov Decision
Process (MDP). However, ignoring the delay of agents violates the

* Corresponding author.
E-mail address: cbom17@mails.tsinghua.edu.cn (B. Chen).

https://doi.org/10.1016/j.neucom.2021.04.015
0925-2312/© 2021 Elsevier B.V. All rights reserved.

Markov property and results in partially observable MDPs, or
POMDPs, with historical actions as hidden states. From [27], it is
shown that solving POMDPs without estimating hidden states
can lead to arbitrarily suboptimal policies. Travnik et al. [28] also
showed that the traditional MDP is problematic with delays. To
retrieve the Markov property, the delayed system was reformu-
lated as an augmented MDP problem such as the work in [29,30].
While the problem was elegantly formulated, the computational
cost increases exponentially as the delay increases, which limits
the application of this framework. To reduce the computational
cost, Walsh et al. [28] proposed a model-based approach to com-
pensating the delay by learning a dynamics model to predict the
future state. However, they mainly focused on discrete tasks and
could suffer from the curse of dimensionality when discretizing
state and action space for continuous control tasks [31]. In addi-
tion, the mechanism of model-based reinforcement learning in
delayed systems is not fully studied. Most recently, Ramstedt &
Pal [32] proposed an off-policy model-free algorithm known as
Real-Time Actor-Critic to address the delayed problem by adapting
Q-learning to state-value-learning. Though performing well in 1-
step delayed systems, this method could still suffer from inefficient
learning when used in multi-step delayed systems. The learned
policy is also not transferable is the delay step changes with most
model-free DRL algorithms. Another direction to address the delay
issue is to utilize robust learning for sim-to-real adaptation with
domain randomization [33-35] and adversarial learning [36],
which can be formalized as a two-player zero-sum game [37,38].
However, most works in this area focus on the noise of physical
parameters [33,34] or destabilizing forces [36] instead of

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2021.04.015&domain=pdf
https://doi.org/10.1016/j.neucom.2021.04.015
mailto:cbm17@mails.tsinghua.edu.cn
https://doi.org/10.1016/j.neucom.2021.04.015
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom

B. Chen, M. Xu, L. Li et al.

time-delay. It is also worth mentioning that introducing robust-
ness will result in degraded performance due to conservatism [39].

The review of the literature indicates the lack of an efficient
algorithm framework to utilize DRL in time-delayed systems for
real-world robotic control tasks. Current methods are either com-
putationally expensive [32,30] or suboptimal [36,34] in tasks with
continuous action space. We argue that this results from the
underutilization of the dynamics of time-delayed systems. In other
words, the mechanism of model-based DRL in delayed systems has
not been comprehensively identified and formulated. In this paper,
we propose a general delay-aware DRL framework to solve contin-
uous control tasks with both high efficiency and optimality. Our
key insight is that the dynamics of time-delayed systems can be
explicitly divided into two parts: the known part caused by delays,
and the unknown part inherited from the original delay-free sys-
tems. Based on this finding, we design an efficient algorithm
framework where the multi-step delay is directly incorporated into
the learned system models without learning effort, such that the
unnecessary computational cost is saved. The main contributions
of this paper are listed below:

e We formally define the Delay-Aware MDP and prove that it can
be converted to standard MDP via the Markov reward process
so that it can be solved within the reinforcement learning
architecture.

e We propose a general framework of delay-aware model-based
reinforcement learning for continuous control tasks with high
efficiency and transferability.

e By synthesizing the state-of-the-art modeling and planning
algorithms, we develop the Delay-Aware Trajectory Sampling
(DATS) algorithm which can efficiently solve delayed MDPs
with minimal degradation of performance.

The rest of the paper is organized as follows. We first review the
preliminaries in Section 2 including the definition of Delay-Aware
Markov Decision Process (DA-MDP). In Section 3, we formally
define the Delay-Aware Markov Reward Process (DA-MRP) and
prove its solidity. In Section 4, we introduce the proposed frame-
work of delay-aware model-based reinforcement learning for DA-
MDPs with a concrete algorithm: Delay-Aware Trajectory Sampling
(DATS). In Section 5.1, we demonstrate the performance of the pro-
posed algorithm in challenging continuous control tasks on Gym
and MuJoCo platforms.

2. Preliminaries
2.1. Delay-free MDP and reinforcement learning

The Delay-free MDP framework is suitable to model games like
chess and go, where the state keeps still until a new action is exe-
cuted. The definition of a delay-free MDP is [32]:

Definition 1. A Markov Decision Process (MDP) is characterized by
a tuple with

(1) state space %,

(2) action space =7,

(3) initial state distribution p : ¥ — R,

(4) transition probability p: & x ¥ x o/ — R,
(5) reward function r: ¥ x .o« — R.

In the framework of reinforcement learning, the problem is
often modeled as an MDP, and the agent is represented by a policy
7 that directs the action selection, given the current observation.
The goal of reinforcement learning is to find the optimal policy

120

Neurocomputing 450 (2021) 119-128

7* that maximizes the expected cumulative discounted reward

=T ,7'r(s:, a;). Throughout this paper, we assume that we know
the reward function r and do not know the transition probability p.

2.2. Delay-aware MDP

The delay-free MDP is problematic with agent delays and could
lead to arbitrarily suboptimal policies [27]. To retrieve the Markov
property, Delay-Aware MDP (DA-MDP) is proposed [30,32]:

Definition 2. A Delaye-Aware Markov Decision Process
DAMDP(E,n) = (X, </, p,p,r) augments a Markov Decision Process
MDP(E) = (¥, </, p,p,T), such that

(1) state space & = & x /" where n denotes the delay step,
(2) action space of = .o/,
(3) initial state distribution’
P(Xo0) = p(So,Qo, ..., An_1)
where (¢;),_;.,_, denotes the initial action sequence,
(4) transition probability
P(Re1|Xe, @)

t+1
=p(senaly,..

n-1

—P(Stu\st at) (5(

i=1

(t+1)

t
at+n ‘stv a,)7 s 7a£+)n—17at>

(t+1)
t+1> d (at+n - at)

(t+1)
t+i

(5) reward function

F(Xe,Qt) = T(Se, @y, ..., Qrn_1,0;) = T(S¢,0Ay).

The state vector of DA-MDP is augmented with an action
sequence being executed in the next n steps where n € N is the

delay duration. The superscript of aﬁf” means that the action is one
element of x;, and the subscript represents the action executed
time. a; is the action taken at time t in a DA-MDP but executed at
time t + n due to the n-step action delay, i.e. a; = a;p.

Policies interacting with the DA-MDPs, which also need to be
augmented since the dimension of state vectors has changed, are
denoted by bold n. Fig. 1, which compares MDP and DA-MDP,
shows that the state vector of DA-MDP is augmented with an
action sequence being executed in the next n steps.

It should be noted that both action delay and observation delay
could exist in real-world systems. However, it has been proved that
from the point of view of the learning agent, observation and
action delays form the same mathematical problem, since they
both lead to the delay between the moment of measurement and
the actual action [29]. For simplicity, we will focus on the action
delay in this paper, and the algorithm and conclusions should be
able to generalize to systems with observation delays. We divide
the action delay into two main parts into action selection and
action actuation. For action selection, the time length depends on
the complexity of the algorithm and the computing power of the
processor. System users can limit the action selection time by con-
straining the searching depth, as in AlphaGo [2]. For action actua-
tion, on the other hand, the actuators (e.g., motors, hydraulic
machines) also need time to respond to the selected action. For
instance, it usually takes more than 0.4 s for the hydraulic automo-
tive brake system to generate the desired deceleration [10]. The
actuation delay is usually decided by the hardware.

1§ is the Dirac delta function. If y ~ 6(- — x) then y = x with probability one.

B. Chen, M. Xu, L. Li et al.

action

state

action

(b) DAMDP(E, 1

~

® []
®]

.
.
see

state

Y

\@‘@

N
N

action

Q@a:
@
ORT-BE

(¢) DAMDP(E, n)

Fig. 1. Comparison between MDP(E), DMDP(E, 1) and DMDP(E, n). n € N denotes the
action delay step. s; denotes the observed state while a;, denotes the action
executed, both at time t. Arrows represent how the action selected in the current
time step will be included in the future state.

To formulate a delayed system into a DA-MDP, we must select a
proper time step for discretely updating the environment. As
shown in Fig. 1c, the action selected at the current time step a; will
be encapsulated in x;,;. Thus, a; must be accessible at time t + 1
since the agent needs it as the state, which requires the action
selection delay to be at most one time step. We satisfy this require-
ment by making the time step of the DA-MDP larger than the
action selection duration.

The above definition of DA-MDP assumes that the delay time of
the agent is an integer multiple of the time step of the system,
which is usually not true for many real-world tasks like robotic
control. For that, Schuitema et al. [40] has proposed an approxima-
tion approach by assuming a virtual effective action at each dis-
crete system time step, which could achieve first-order
equivalence in linearizable systems with arbitrary delay time. With
this approximation, the above DA-MDP structure can be adapted to
systems with arbitrary-value delays.

3. Delay-aware markov reward process

Our first step is to show that an MDP with multi-step action
delays can be converted to a regular MDP problem by state aug-
mentation. We prove the equivalence of these two by comparing
their corresponding Markov Reward Processes (MRPs). The delay-
free MRP is:

Definition 3. A Markov Reward Process (¥, p,Kk,T)=
MRP(MDP(E),) can be derived from a Markov Decision Process
MDP(E) = (¥, </, p,p,r) with a policy &, such that

K(Sennse) = / P(Seilsi a)(als) da,
A

121

Neurocomputing 450 (2021) 119-128

F(s) = / (s a)m(als,) da,

where K is the sate transition probability and 7 is the state reward
function of the MRP. E is the original environment without delays.

In the delay-free framework, at each time step, the agent selects
an action based on the current observation. The action will imme-
diately be executed in the environment to generate the next obser-
vation. However, if an action delay exists, the interaction manner
between the environment and the agent changes, and a different
MRP is generated. An illustration of the delayed interaction
between agents and the environment is shown in Fig. 2. The agent
interacts with the environment not directly but through an action
buffer.

Based on the delayed interaction manner between the agent
and the environment, the Delay-Aware MRP (DA-MRP) is defined
as below.

Definition 4. A Delay-Aware Markov Reward Process
(&, p,x,T) = DAMRP(MDP(E), ,n) can be derived from a Markov
Decision Process MDP(E) = (¢, </, p,p,r) with a policy = and n-
step action delay, such that

(1) state space
X=9 xA",

(2) initial state distribution

-

n—

P(Xo) = p(So. o, ... An-1) = p(So)] [3(ai —c1)

T
S

where (c;);_;.,_; denotes the initial action sequence,
(3) state transition probability

K(Xe, 1]X;)

t+ (t+1)
=K <st+1 5 a£+1) ’

at+ﬂ

t
..... |s¢, af ,...,a(tjnf,)
n-1

(£+1) t+1
D(Sti1Se,ar) H5< tJ:; t+)l> (a(t++:.)|xt>-,
i=1
(4) state-reward function
sQrin-1) = (S, Gr),

With Def. 1-4, we are ready to prove that DA-MDP is a correct
augmentation of MDP with delay, as stated in Theorem. 1.

Theorem 1. A policy ©: o/ x & — R interacting with DAMDP(E, n)
in the delay-free manner produces the same Markov Reward Process
as m interacting with MDP(E) with n-step action delays, i.e.

DAMRP(MDP(E), ., n) = MRP(DAMDP(E, n),). (1)

Proof. For any MDP(E) = (¢, </, p,p,), we need to prove Eq. 1 by
comparing the elements (i.e., state space, initial distribution, tran-
sition probability and state-reward function) of the above two
MRPs. Referring to Def. 2 and 3, for MRP(DMDP(E, n),), we have

(1) state space & x .o/",
(2) initial distribution

p(Xo) = p(So, 007 -
= p So H5

(3) transition probability

an 1)

_cl7

B. Chen, M. Xu, L. Li et al.

Action buffer

op a,
.%;n da,,

get

-]
-
ao observation o,
Agent Environment

Fig. 2. Interaction manner between a delayed agents and the environment. The
agent interacts with the environment not directly but through an action buffer. At
time t, the agent get the observation o; from the environment as well as a future
action sequences (a, ..., a;,,_1) from the action buffer. The agents then decide their
future action a,, and store them in the action buffer. The action buffer then pops
actions a; to be executed to the environment.

K(Xer1|Xe) = [, D(Xe1|Xe, ac)m(alx;) da

1

= [P(Sti1[S¢, @ H"(~a);)5(“&.)
-1

= P(St-1/Se, @) Hb(aij,) (a,‘j,.’ \&)

(4) state-reward function
(%) = [, r(x a)n(alx,) da
= [, r(s,ar) m(alx;) da
=1(Se,a) [, m(alx,) da
= r(st7 at).

(t+1)

b — a) n(alx;) da

(t+1)
t+i

Since the expanded terms of MRP(DMG(E,n),) match the
corresponding terms of DAMRP(MG(E), , n) (Def. 4), Eq. 1 holds.
O

4. Delay-aware model-based reinforcement learning

Theorem. 1 shows that instead of solving MDPs with action
delays, we can alternatively solve the corresponding DA-MDPs.
From the transition function of a DAMDP(E,n) with multi-step
delays

P(Rei1|Xe, ;) =
n-1 e
P(St11(St, ar) H (H,)(S(“gfn) “t>,
i=1

we see that the dynamics is divided into the unknown original
dynamics D(Sei1(Se, ar) and the known dynamics

T, ¢ ((D) a“)b‘(am —a,) caused by the action delays. Thus,

(2)

(t+1)
t+i

t+i t+1
solving DA-MDPs with standard reinforcement learning algorithms
will suffer from the curse of dimensionality if assuming a com-
pletely unknown environment. In this section, we propose a
delay-aware model-based reinforcement learning framework to
achieve high computational efficiency.

As mentioned, RTAC [32] has been proposed to deal the delay
problem. However, we will show that this method is only efficient
for 1-step delayed systems. When n = 1 for DMDP(E, n), any tran-
sition (s¢, ar,S¢.1) in the replay buffer is always a valid transition
in the Bellman equation with the state-value function as

Va-mpp(en (Xt)

=1(s,a) + Es,, {[Eau [\/DA—MDP(E,n) (Stis @eray - -y

Agyn—1, aﬂ)}] ;

where a; ~ 7(-|x;), and s¢.1 ~ p(-|s, a;). However, when considering
the multi-step delay, i.e., n > 2, it is challenging to use off-policy
model-free reinforcement learning because augmented transitions

122

Neurocomputing 450 (2021) 119-128

need to be stored and we only learn the effect of an action on the
state-value function after n-step updates of the Bellman equation.
Also, the dimension of the state vector x increases with the delay
step n, resulting in the exponential growth of the state-space.

Another limitation of model-free methods for DA-MDPs is that
it can be difficult to transfer the learned knowledge (e.g., value
functions, policies) when the action delay step n changes because
the input dimensions of the value functions and policies depend
on the delay step n. The agent must learn again from scratch when-
ever the system delay changes, which is usual in real-world
systems.

The problems of model-free methods have motivated us to
develop model-based reinforcement learning (MBRL) methods to
combat the action delay. MBRL tries to solve MDPs by learning
the dynamics model of the environment. Intuitively, we can inject
our knowledge into the learned model without leaning effort.
Based on this intuition, in this paper, we propose a delay-aware
MBRL framework to solve multi-step DA-MDPs which can effi-
ciently alleviate the aforementioned two problems of model-free
methods. From Eq. 2, the unknown part is exactly the dynamics
that we learn in MBRL algorithms for delay-free MDPs. In our pro-
posed framework, only p(s¢.1|s¢,a;) is learned and the dynamics
caused by the delay is combined with the learned model by adding
action delays to the interaction scheme. As mentioned, the learned
dynamics model is transferable between systems with different
delay steps, since we can adjust the interaction scheme based on
the delay step (See Section 5.3 for an explanation of the transfer
performance).

The proposed framework of delay-aware MBRL is shown in
Algorithm 1. In the for loop, we are solving a planning problem,
given a dynamics model with an initial action sequence. For that,
the learned model is used not only for the optimal control but also
for the state prediction to compensate for the delay effect. By iter-
atively training, we gradually improve the model accuracy and
obtain better planning performance and, especially in high-
reward regions.

Algorithm 1Delay-Aware Model-Based Reinforcement
Learning

Input: action delay step n, initial actions (a;);_q__, 1, and task

horizon T
Output: learned transition probability p
Initialize replay buffer D with a random policy.
forEpisode k = 1 to Kdo

Train a dynamics model p given D.
Optimize action sequence a,, 1.t with initial actions
(@)i_o. 1 and estimated system dynamics p
Record experience: D «— D U (St, Qr, St41) .7+

end for

4.1. Delay-aware trajectory sampling

Recently, several MBRL algorithms have been proposed to
match the asymptotic performance of model-free algorithms on
challenging benchmark tasks, including probabilistic ensemble
with trajectory sampling (PETS) [41], model-based policy opti-
mization (MBPO) [42], model-based planning with policy networks
(POPLIN) [43], etc. In this section, we will combine the state-of-
the-art PETS algorithm with the proposed delay-aware MBRL
framework to generate a new method for solving DA-MDPs. We
name the method as the Delay-Aware Trajectory Sampling (DATS).
The complete algorithm is shown in Algorithm 2.

B. Chen, M. Xu, L. Li et al.

Algorithm1: Delay-Aware Trajectory Sampling

horizon T, planning horizonm
Output: learned transition probability p
Initialize transition buffer D with a random policy.
for Episode k =1 to K do

Train a probabilistic dynamics model p given D.
Initialize action buffer A = (a;);_q
for Time t =0to T — ndo
Observe s;
for Sampled a; .t nim ~ CEM(-)do
Concatenate arn.¢inim With Qpein_q

..... n—1

Propagate state particles s; using 5
Evaluate actions as S5/ ™r(s;, a;)
Update CEM(-) distribution.
end for
Pick the first action a;,, from optimal action sequence
and store in A
end for
Record experience: D < D U (St, Qt, St41) .7+
end for

In DATS, the dynamic model is represented by an ensemble of
probabilistic neural networks that output Gaussian distributions
which helps model the aleatoric uncertainty [41]. The negative
log likelihood is used as the loss function. Suppose the output

Gaussian distribution of the learned transition probability p
parameterized by 0 given the state-action pair at time t is:

Po(Se1[Se, @) = A (1y(Se, ac), Zo(Se. ar)),
then the loss is calculated as:

N
10s(0) = > [y(St,ac) — Se1] Ty (e, ae) [(Se, Oe) — Sesr]
t=1

+logdet Zy(s;, ar),

where N is the sample size. The use of the ensemble can help incor-
porate the epistemic uncertainty of the dynamic model and approx-
imate the Bayesian posterior [44,45]. We use ensembles of M
bootstrap models and denotes the parameter of the m-th model
with 0, then the transition probability model is calculated by the

mean of the bootstrap models: p, = L% p,.. Each bootstrap
model is trained with its unique dataset D, generated from the
whole dataset D by random sampling. Throughout this paper, we
set M = 5 since it is sufficient for all experiments.

The planning of action sequences applies the concept of model
predictive control (MPC) with the cross-entropy method (CEM) for
elite selection of the sampled action sequences. In the most inner
for loop of Algorithm 2, with the current state s;, we first propagate
state particles with the same action sequence a..,, 1 to make var-
ious estimates of the future state s, , and then use sampled action
sequences A p.¢inim to predict S¢ ny1.c4nr1+m fOr each particle. In this
way, the uncertainty of the learned model is considered in both
state-prediction and planning phases, which improves the robust-
ness of the algorithm.

Model-based methods have a natural advantage when dealing
with multi-step DA-MDPs when compared with model-free meth-
ods. With model-free methods, the effect of an action on the state-
value function can only be learned after n-time updates of the Bell-
man equation. The agent implicitly wastes both time and effort to
learn the known part of system dynamics caused by action delay
since it does not understand the meaning of the elements in the

123

Neurocomputing 450 (2021) 119-128

state vectors. As mentioned, the advantage of model-based meth-
ods is that they incorporate delay effect into the system dynamics
without extra learning (see Section 5.2 for a performance compar-
ison between model-free and model-based methods).

5. Experiments
5.1. Reinforcement learning in delayed systems

Experiments are conducted across four OpenAl Gym/Mujoco
[6,7] environments for continuous control:
Pendulum, Cartpole,Walker2d and Ant as shown in Fig. 3. The
details of the environments are described below [46]. The reward
functions used in the experiments are shown in Table 1.

Pendulum. A single-linked pendulum is fixed on the one end,
with an actuator located on the joint. In this version of the prob-
lem, the pendulum starts in a random position, and the goal is to
swing it up to keep it upright. Observations include the joint angle
6, and the joint angular velocity 6;. The reward penalizes position
and speed deviations from the upright equilibrium and the magni-
tude of the control input.

Cartpole. A pole is connected to the cart through an un-
actuated joint, and the cart moves along a frictionless track. Con-
trol the system by applying a real-number force to the cart. The
pole starts upright, and the goal is to prevent it from falling over.
Let 0; be the angle of the pole away from the upright vertical posi-
tion, and x, be the position where the cart leaves the center of the
rail at time t. The 4-dimensional observation at time t is
(¢, 0r, %, 0,). A reward of + 1 is provided for every timestep that
the pole remains upright.

Walker2d. Walker2d is a 2-dimensional bipedal robot, consist-
ing of 7 rigid links, including a torso and 2 legs. There are 6 actua-
tors, 3 for each leg. The observations include the (angular) position
and speed of all joints. The reward is the x direction speed plus the
penalty for the distance to a target height and the magnitude of
control input. The goal is to walk forward as fast as possible while
keeping the standing height with minimal control input.

Ant. Ant is a 3-dimensional 4-legged robot with 13 rigid links,
including a torso and 4 legs. There are 8 actuators at the joints, 2
for each leg. The observations include the (angular) position and
speed of all joints. The reward is the x direction speed plus penalty
for the distance to a target height and the magnitude of control
input. The goal is to walk forward as fast as possible, and approx-
imately maintain the normal standing height with minimal control
input.

Among the 4 continuous control tasks, the tasks of Walker2d
and Ant are considered more challenging than Pendulum and
Cartpole indicated by the dimension of dynamics.

In experiments, we add delays manually by revising the interac-
tion framework between the agents and the environments if
needed.

To show the advantage of DATS, we use 6 algorithms:

e DDPG (n =0): Deep deterministic policy gradient [31] is a
model-free reinforcement learning algorithm for continuous
control. Only the performances at the maximum time step are
visualized.

e SAC (n = 0): Soft actor-critic [47] is a state-of-the-art model-
free reinforcement learning algorithm serving as another
model-free baseline. Only the performances at the maximum
time step are visualized.

e PETS (n = 0): The PETS algorithm [41] is implemented in the
non-delayed environment without action delays, providing
the performance upper bound for algorithms in delayed
environments.

B. Chen, M. Xu, L. Li et al.

(a) Pendulum (b) CartPole

Neurocomputing 450 (2021) 119-128

(¢) Walker2d

(d) Ant

Fig. 3. Benchmark environments.

Table 1
Reward Functions.

Environment Reward Function

Pendulum —cos 0 — 0.16? — 0.001a?
CartPole cos 0 — 0.01x?
Walker2d % — 0.1[|ac| — 3.0 x (z: — 1.3)%
Ant %t — 0.1jar| — 3.0 x (z: — 0.57)%

e PETS (n = 1): The PETS algorithm is blindly implemented in the
1-step delayed environment without modeling action delays,
which makes it delay-unaware.

e W-PETS (n = 1): The PETS algorithm is augmented to solve DA-
MDPs with n = 1. However, it inefficiently tries to learn the
whole dynamics p(X:.1|xc,a;) as shown in Eq. 2 including the
known part caused by actions delays.

o DATS (n = 1): DATS is our proposed method as in Algorithm 2. It
incorporates the action delay into the framework and only
learns the unknown original dynamics p(St.1|St,ar) as shown
in Eq. 2.

Each algorithm is run with 10 random seeds in each environ-
ment. Fig. 4 shows the algorithmic performances. As the model-
free baseline, DDPG and SAC are not as efficient as PETS in the four
environments when there are no delays. Providing the perfor-
mance upper bound, PETS (n = 0) achieves the best performance
in all tasks. However, when the action delay exists, the delay-
unaware algorithm PETS (n = 1) has the worst performance in all
experiments. It fails to learn policies for challenging tasks that
need accurate transition dynamics for planning in Walker2d
(Fig. 4c) and Ant (Fig. 4d). W-PETS achieves similar performance
with PETS (n = 0) in Pendulum and Cartpole. But its performance
also degrades a lot when the task gets more difficult since it has to
learn the dynamics of the extra n dimensions of states caused by
the n-step action delays (Fig. 4c and 4d). DATS performs the same
as PETS (n = 0) for the four tasks, i.e., action delays do not affect
DATS.

The reason why DATS in delayed environment matches the
asymptotic performance of PETS in the non-delayed environment
is that the quality and quantity of transitions (s¢,a,S;.1) used for
model training in DATS are almost the same with PETS, despite
the action delay. The slight difference is due to the distribution
shift caused by the predefined initial actions, which has minimal
influence on the overall performance if the task horizon is long
enough compared to the action delay step.

Our codes are available online? and can be directly used for any
continuous control tasks on the OpenAl Gym/Mujoco platform. The
reward functions are set consistent with the benchmark paper
[46].The results on 8 representative environments are summarized
in Table 2. The algorithms are trained with 10,000 timesteps in
Pendulum and Cartpole and 200,000 timesteps in other environ-

2 https://github.com/baimingc/delay-aware-MBRL.

124

ments. The results show the advantage of the proposed algorithm
DATS in one-step-delayed (n = 1) systems, as well as the sample-
efficiency of model-based algorithms (DATS, PETS) compared to
model-free ones (DDPG, SAC).

5.2. Model-based vs model-free

To show the advantage of the proposed delay-aware MBRL
framework when dealing with multi-step delays, we compare the
model-free algorithm RTAC [32] and the proposed model-based
DATS. RTAC is suitable for solving DA-MDPs and is modified based
on SAC, but as explained in Section 4, RTAC can avoid extra learn-
ing only when the action delay is exactly one-step.

We test them in the simple environment Pendulum and the
complex environment Walker2d with various delay step n. The
learning curves in Fig. 5. show that DATS outperforms RTAC in effi-
ciency and stability. RTAC degrades significantly as the delay step
increases, even for the simple task Pendulum, as shown in
Fig. 5b. The reason is that with the original dynamics of
Pendulum and Walker2d fixed, the extra dynamics caused by
the action delay rapidly dominates the dimension of the state
space of the learning problem as the delay step increases, and
exponentially more transitions are needed to sample and learn.

5.3. Transferable knowledge

In this section, we show the transferability of the knowledge

learned by DATS. We first learn several dynamics models {p;} in
Pendulum and Walker2d with DATS, where i = 1,2,4,8 denotes
the action delay step during training. The learned models are then
tested in environments with n-step action delays (n = 1,2,4, 8, 16).
We train the dynamics model in each environment with the same
amount of transitions (¢, d, St.1): 2,000 for Pendulum and 200,000
for Walker2d. The planning method and hyper-parameters stay
the same as those in Algorithm2. RTAC provides the model-free
baseline for each environment. Recall that since RTAC is a model-
free algorithm, when changing the delay steps, it must learn from
scratch.

The reward matrix in Table 3 shows that DATS performs well
even when the delay step is twice larger than the maximum step
during model-training (n = 16) for Pendulum and Walker2d. We
infer that the learned knowledge (dynamics in this case) is trans-
ferable, i.e., when the action delay of the system changes, the esti-
mated dynamics are still useful by simply adjusting the known
part of the dynamics caused by the action delay. On the other hand,
RTAC performs poorly as the delay step increases since the dimen-
sion of the state space grows and the agent has to spend more
effort to learn the delay dynamics. Notably, the learned knowledge
of model-free methods cannot transfer when the delay step
changes.

The results suggest that the transferability of DATS makes it
suitable for Sim-to-Real tasks when there are action delays in real
systems, and that the delay step during model training does not

https://github.com/baimingc/delay-aware-MBRL

B. Chen, M. Xu, L. Li et al.

180
160
140
R i =
= | I R —= DDPG (n=0)
[100 / -== SAC (n=0)
80 —— PETS (n=0)
60 PETS (n=1)
— W-PETS (n=1)
40 — DATS (n=1)
0 1000 2000 3000 4000 5000 6000
timesteps
(a) Pendulum-v0
50041 " DDPG (n=0)
—== SAC (n=0)
Q1 — PETSin=0)
PETS (n=1)
o =500 1 — wpeTS (n=1)
S _1000 {7 2DV
T W™ T e e R
~1500
—2000{ £ —
—2500

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
timesteps (10°)

(c) Walker2d-v1

Neurocomputing 450 (2021) 119-128

200
150 1
= 100 1 -
g / /1 —-= DDPG (n=0)
2 50 = === SAC(n=0)
=== PETS (n=0)
0 PETS (n=1)
—— W.PETS (n=1)
501 —— DATS (n=1)
0 2000 4000 6000 8000 10000
timesteps
(b) CartPole-v1
—-= DDPG (n=0)
14001 ___ sac =0y
= PETS (n=0)
1200 PETS (n=1)
E 1000 —— W.PETS (n=1)
g —— DATS (n=1)]
@ 800
600
400

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
timesteps (10°)

(d) Ant-vl

Fig. 4. Performances (means and standard deviations of rewards) of different MBRL algorithms in Gym environments. The environment is non-delayed for DDPG, SAC and
PETS (n =0) and is one-step-delayed for other algorithms. DATS is the proposed algorithm. The results indicate that the performance degradation resulting from the
environment action delay is minimal when using DATS, while the delay-unaware algorithm PETS (n = 1) fails to learn good polices for challenging tasks like Walker2d and

Ant.

Table 2

Final performance for Gym environments.
Environment DDPG (n = 0) SAC (n=0) PETS (n = 0) PETS (n=1) W-PETS (n=1) DATS (n=1)
Pendulum 103.1 +£25.3 121.6 + 28.1 188.7 +£ 8.3 1710 £+ 114 180.1 £9.8 185.6 + 9.6
CartPole 106.5 + 29.6 1173 £27.0 197.7 £ 1.3 180.0 + 8.5 196.6 + 2.6 198.1 £ 1.2
Walker2d —1722.4 + 363.0 -1257.5 + 328.2 465.8 + 182.2 -1510.7 + 261.0 -515.4 + 275.9 386.2 + 224.1
Ant 813.3 + 145.0 869.4 + 120.8 1406.8 + 96.0 575.2 + 62.6 861.4 + 49.5 1215.8 + 114.7
Hopper 927.4 + 429.8 729.4 + 3779 1124.9 + 3203 507.4 +441.2 846.2 + 396.2 1194.1 + 317.2
HalfCheetah 1277.1 £ 580.1 1780.7 + 697.2 2686.3 + 420.9 1281.8 + 640.7 1840.3 + 548.2 2404.0 + 485.7
Swimmer 250.6 + 22.4 2279 + 31.6 308.3 +37.1 160.3 + 39.2 244.7 + 26.8 285.3 +33.5
SlimHumanoid 1219.1 +719.4 1228.4 + 592.8 2085.3 + 671.5 451.9 + 497.2 1588.2 + 621.7 1894.5 + 640.7

have to be equal to the delay step in a real system. Therefore, if the
delay steps of the real-world tasks are known and fixed, we can
incorporate the delay effect with the original dynamics learned
in the delay-free simulator, and obtain highly efficient Sim-to-
Real transformations.

6. Conclusion and discussion

This paper proposed a general delay-aware MBRL framework
which solves multi-step DA-MDPs with high efficiency and trans-
ferability. Our key insight is that the dynamics of DA-MDPs can
be divided into two parts: the known part caused by delays, and
the unknown part inherited from the original delay-free MDP.
The proposed delay-aware MBRL framework learns the original
unknown dynamics and incorporates the known part of the
dynamics explicitly. We also provided an efficient implementation
of delay-aware MBRL as DATS by combining a state-of-the-art

125

modeling and planning method, PETS. The experiment results
showed that the performance of PETS in instantaneous environ-
ments is similarly to the performance of DATS in delayed environ-
ments with respect to delay duration. Moreover, the learned
dynamics by DATS is transferable when the time of action delay
changes, thus making DATS the preferred algorithm for tasks in
real-world systems.

There are two promising directions to extend this study. 1) The
delay effect needs to be further explored in multi-agent systems,
where the delay of one agent could spread to other coupled agents.
For example, in tasks involving communications between agents,
the action delay of a speaker would give rise to observation delays
of all listeners subscribing to this speaker. 2) It is worth studying
how to estimate the delay time if it is not known a priori. This
problem is highly related to online system identification, but it is
unclear how to efficiently incorporate it with DRL in delayed
systems.

B. Chen, M. Xu, L. Li et al.

200 —
100
T
5 0
=
e
—100 { — pats (n=1)
DATS {n=2)
_200]— DpATS (0=2)
—— DATS (n=8)
0 1000 2000 3000 4000 5000 6000
timesteps (10%)
(a) DATS in Pendulum-v0
2000
1000
o 0
©
=
@ -1000
—— DATS (n=1)
—2000 DATS (n=2)
= DATS (n=4)
3000 === DATS (n=8)
0 2 4 6 8 10

timesteps (10%)

(c¢) DATS in Walker2d-v1

Neurocomputing 450 (2021) 119-128

200
100
G -
= 0
=
g
-100 RTAC (n=1)
RTAC (n=2)
~200 — RTAC (n=4)
= RTALC (n=8)
0 1000 2000 3000 4000 5000 6000
timesteps
(b) RTAC in Pendulum-v0
2000 1 grac =)
RTAC (n=2)
1000 T — RTAC (n=4)
- RTAC (n=8)
ko] 0
©
=
@ —-1000
—2000
-3000

timesteps (10%)

(d) RTAC in Walker2d-v1

Fig. 5. Performances (means and standard deviations of rewards) of DATS and RTAC in Gym environments with different action delay steps. The model-based algorithm DATS
outperforms the model-free algorithm RTAC in terms of efficiency and stability. RTAC degrades significantly as the delay step increases.

Table 3
Reward matrix of DATS and RTAC.

(a) Pendulum-v0

n DATS RTAC
51 ﬁZ 54 58
1 154.10 + 14.86 156.37 + 13.29 163.29 + 16.03 149.78 + 13.778 121.36 + 12.63
2 163.92 + 15.23 162.93 + 14.26 155.90 + 16.11 160.07 + 18.30 109.44 + 12.58
4 160.39 + 12.63 162.87 + 16.21 171.53 + 10.85 166.29 + 14.22 80.15 + 27.94
8 163.29 + 15.53 151.20 + 13.44 166.37 + 13.32 166.59 + 10.59 -110.28 + 58.89
16 153.41 + 17.35 159.09 + 19.88 153.89 + 14.22 149.90 + 16.86 -122.98 + 64.82
(b) Walker2d-v1
n DATS RTAC
P P P Ps
1 471.34 + 426.26 524.76 + 387.67 496.13 + 442.89 395.78 + 409.98 -471.13 + 896.28
2 549.73 + 410.76 487.32 + 334.49 527.98 + 477.19 492.56 + 490.01 -754.42 + 722.79
4 485.29 + 438.98 439.23 + 529.39 248.60 + 611.82 55291 + 410.76 -1252.47 + 710.10
8 356.93 + 431.58 438.82 + 563.13 482.09 + 316.34 247.97 + 595.63 -1766.85 + 404.28
16 292.38 + 521.86 311.44 + 409.80 473.97 + 309.81 401.34 + 634.12 -2173.87 + 625.76
CRediT authorship contribution statement Acknowledgment

Baiming Chen: Conceptualization, Methodology, Software, Val-
idation, Writing - original draft, Funding acquisition. Mengdi Xu:
Methodology, Formal analysis. Liang Li: Resources, Supervision.
Ding Zhao: Resources, Writing - review & editing, Supervision, Pro-
ject administration.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

126

This work was supported in part by China Scholarship Council.

References

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, . Antonoglou, D. Wierstra, M.
Riedmiller, Playing atari with deep reinforcement learning, arXiv preprint
arXiv:1312.5602.

[2] D. Silver, A. Huang, CJ. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,].
Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., Mastering
the game of go with deep neural networks and tree search, Nature 529(7587)
(2016) 484.

[3] J. Schulman, S. Levine, P. Abbeel, M. Jordan, P. Moritz, Trust region policy
optimization, in: International Conference on Machine Learning, 2015, pp.
1889-1897.

http://refhub.elsevier.com/S0925-2312(21)00542-7/h0015
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0015
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0015
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0015

B. Chen, M. Xu, L. Li et al.

[4] Y. Duan, X. Chen, R. Houthooft, J. Schulman, P. Abbeel, Benchmarking deep
reinforcement learning for continuous control, in: International Conference on
Machine Learning, 2016, pp. 1329-1338.

[5] J. Hwangbo, 1. Sa, R. Siegwart, M. Hutter, Control of a quadrotor with
reinforcement learning, IEEE Robot. Autom. Lett. 2 (4) (2017) 2096-2103.

[6] G. Brockman, V. Cheung, L. Pettersson, J. Schneider,]. Schulman, J. Tang, W.
Zaremba, Openai gym, arXiv preprint arXiv:1606.01540.

[7] E. Todorov, T. Erez, Y. Tassa, Mujoco: a physics engine for model-based control,
in: 2012 IEEE/RS] International Conference on Intelligent Robots and Systems,
IEEE, 2012, pp. 5026-5033.

[8] T. Imaida, Y. Yokokohji, T. Doi, M. Oda, T. Yoshikawa, Ground-space bilateral
teleoperation of ets-vii robot arm by direct bilateral coupling under 7-s time
delay condition, IEEE Trans. Robot. Autom. 20 (3) (2004) 499-511.

[9] M. Jin, S.H. Kang, P.H. Chang, Robust compliant motion control of robot with
nonlinear friction using time-delay estimation, IEEE Trans. Industr. Electron.
55 (1) (2008) 258-269.

[10] E.P. Bayan, A.D. Cornetto, A. Dunn, E. Sauer, Brake timing measurements for a
tractor-semitrailer under emergency braking, SAE International Journal of
Commercial Vehicles 2 (2009-01-2918) (2009) 245-255.

[11] S.B. Moon, P. Skelly, D. Towsley, Estimation and removal of clock skew from
network delay measurements, in: IEEE INFOCOM’'99. Conference on Computer
Communications. Proceedings. Eighteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. The Future is Now (Cat. No.
99CH36320), vol. 1, IEEE, 1999, pp. 227-234.

[12] R. Hannah, W. Yin, On unbounded delays in asynchronous parallel fixed-point
algorithms, J. Sci. Comput. 76 (1) (2018) 299-326.

[13] K. Gu, S.-I. Niculescu, Survey on recent results in the stability and control of
time-delay systems, J. Dyn. Syst. Meas. Control 125 (2) (2003) 158-165.

[14] L. Dugard, E.I. Verriest, Stability and Control of Time-Delay Systems, vol. 228,
Springer, 1998.

[15] L. Chung, C. Lin, K. Lu, Time-delay control of structures, Earthq. Eng. Struct.
Dyn. 24 (5) (1995) 687-701.

[16] S. Gong,]. Shen, L. Du, Constrained optimization and distributed computation
based car following control of a connected and autonomous vehicle platoon,
Transp. Res. Part B: Methodol. 94 (2016) 314-334.

[17]]. Ploeg, N. Van De Wouw, H. Nijmeijer, Lp string stability of cascaded systems:
application to vehicle platooning, IEEE Trans. Control Syst. Technol. 22 (2)
(2013) 786-793.

[18] K. Astrom, C.C. Hang, B. Lim, A new smith predictor for controlling a process
with an integrator and long dead-time, IEEE Trans. Autom. Control 39 (2)
(1994) 343-345.

[19] M.R. Matausek, A. Micic, On the modified smith predictor for controlling a
process with an integrator and long dead-time, IEEE Trans. Autom. Control 44
(8) (1999) 1603-1606.

[20] Z. Artstein, Linear systems with delayed controls: a reduction, IEEE Trans.
Autom. Control 27 (4) (1982) 869-879.

[21] E. Moulay, M. Dambrine, N. Yeganefar, W. Perruquetti, Finite-time stability and
stabilization of time-delay systems, Syst. Control Lett. 57 (7) (2008) 561-566.

[22] A. Manitius, A. Olbrot, Finite spectrum assignment problem for systems with
delays, IEEE Trans. Autom. Control 24 (4) (1979) 541-552.

[23] S. Mondié, W. Michiels, Finite spectrum assignment of unstable time-delay
systems with a safe implementation, IEEE Trans. Autom. Control 48 (12)
(2003) 2207-2212.

[24] E.T. Jeung, J.H. Kim, H.B. Park, et al., Robust controller design for uncertain
systems with time delays: Lmi approach, Automatica 32 (8) (1996) 1229-
1231.

[25] L. Mirkin, On the extraction of dead-time controllers from delay-free
parametrizations, IFAC Proc. Vol. 33 (23) (2000) 169-174.

[26] S.-I. Niculescu, Delay Effects on Stability: A Robust Control Approach, vol. 269,
Springer Science & Business Media, 2001.

[27] S.P. Singh, T. Jaakkola, M.I. Jordan, Learning without state-estimation in
partially observable markovian decision processes, Machine Learning
Proceedings 1994, Elsevier (1994) 284-292.

[28] J.B. Travnik, K.W. Mathewson, R.S. Sutton, P.M. Pilarski, Reactive reinforcement
learning in asynchronous environments, Front. Robot. Al 5 (2018) 79.

[29] K.V. Katsikopoulos, S.E. Engelbrecht, Markov decision processes with delays
and asynchronous cost collection, IEEE Trans. Autom. Control 48 (4) (2003)
568-574.

[30] TJ. Walsh, A. Nouri, L. Li, M.L. Littman, Learning and planning in environments
with delayed feedback, Auton. Agent. Multi-Agent Syst. 18 (1) (2009) 83.

[31] T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D.
Wierstra, Continuous control with deep reinforcement learning, arXiv preprint
arXiv:1509.02971.

[32] S. Ramstedt, C. Pal, Real-time reinforcement learning, Advances in Neural
Information Processing Systems (2019) 3067-3076.

[33] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bohez, V. Vanhoucke,
Sim-to-real: learning agile locomotion for quadruped robots, arXiv preprint
arXiv:1804.10332.

[34] A. Rajeswaran, S. Ghotra, B. Ravindran, S. Levine, Epopt: learning robust
neural network policies wusing model ensembles, arXiv preprint
arXiv:1610.01283.

[35] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, P. Abbeel, Domain
randomization for transferring deep neural networks from simulation to the
real world, in: 2017 IEEE/RS] international conference on intelligent robots and
systems (IROS), IEEE, 2017, pp. 23-30.

127

Neurocomputing 450 (2021) 119-128

[36] L. Pinto, J. Davidson, R. Sukthankar, A. Gupta, Robust adversarial reinforcement
learning, in: Proceedings of the 34th International Conference on Machine
Learning-Volume 70, JMLR. org, 2017, pp. 2817-2826.

[37] Z. Cao, C.-T. Lin, Reinforcement learning from hierarchical critics, arXiv
preprint arXiv:1902.03079.

[38] Z. Cao, K. Wong, Q. Bai, C.-T. Lin, Hierarchical and non-hierarchical multi-agent

interactions based on unity reinforcement learning, in: Proceedings of the

19th International Conference on Autonomous Agents and MultiAgent

Systems, 2020, pp. 2095-2097.

H. Zhang, Y. Yu,]. Jiao, E.P. Xing, LE. Ghaoui, M.l. Jordan, Theoretically

principled trade-off between robustness and accuracy, arXiv preprint

arXiv:1901.08573.

E. Schuitema, L. Busoniu, R. Babuska, P. Jonker, Control delay in reinforcement

learning for real-time dynamic systems: a memoryless approach, in: 2010

IEEE/RS] International Conference on Intelligent Robots and Systems, IEEE,

2010, pp. 3226-3231.

K. Chua, R. Calandra, R. McAllister, S. Levine, Deep reinforcement learning in a

handful of trials using probabilistic dynamics models, Advances in Neural

Information Processing Systems (2018) 4754-4765.

[42] M. Janner,]. Fu, M. Zhang, S. Levine, When to trust your model: Model-based
policy optimization, arXiv preprint arXiv:1906.08253.

[43] T. Wang,]. Ba, Exploring model-based planning with policy networks, arXiv
preprint arXiv:1906.08649.

[44] 1. Osband, C. Blundell, A. Pritzel, B. Van Roy, Deep exploration via bootstrapped
dqn, in: Advances in Neural Information Processing Systems, 2016, pp. 4026-
4034.

[45] B. Lakshminarayanan, A. Pritzel, C. Blundell, Simple and scalable predictive
uncertainty estimation using deep ensembles, Advances in Neural Information
Processing Systems (2017) 6402-6413.

[46] T. Wang, X. Bao, I. Clavera, J. Hoang, Y. Wen, E. Langlois, S. Zhang, G. Zhang, P.
Abbeel,]J. Ba, Benchmarking model-based reinforcement learning, arXiv
preprint arXiv:1907.02057.

[47] T.Haarnoja, A. Zhou, P. Abbeel, S. Levine, Soft actor-critic: off-policy maximum
entropy deep reinforcement learning with a stochastic actor, arXiv preprint
arXiv:1801.01290.

[39]

[40]

[41]

Baiming Chen received his B.S. degree from Tsinghua
University in 2017. He is now working towards Ph.D.
degree in mechanical engineering from the School of
Vehicle and Mobility at Tsinghua University, Beijing,
China. His research interests include autonomous driv-
ing, reinforcement learning and control, multi-agent
systems.

Mengdi Xu is a PhD student in Mechanical Engineering,
Carnegie Mellon University. She received her Master in
Robotics degree from the Johns Hopkins University and
Bachelor degree in Vehicle Engineering from Tsinghua
University. Her research interests lie in Robotics, Cog-
nitive Science, Machine Learning and design, with
applications on human-robot interaction, medical
robots and autonomous driving.

Liang Li received his Ph.D. degree from the Department
of Automotive Engineering at Tsinghua University in
2008. Since 2017, he has been a tenured professor in
Tsinghua University. From November 2011 to December
2012, he was a researcher with the Institute for Auto-
mobile Engineering, RWTH Aachen University, Aachen
Germany. His research interests mainly include vehicle
dynamics and control, adaptive and nonlinear system
control, and hybrid vehicle develop and control. Dr. Li
received the China Automotive Industry Science and
Technology Progress Award for his achievements in
hybrid electrical bus in 2012, and won the National
Science Fund for Excellent Young Scholars of the Peoples
Republic of China in 2014.

http://refhub.elsevier.com/S0925-2312(21)00542-7/h0025
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0025
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0035
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0035
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0035
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0035
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0040
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0040
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0040
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0045
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0045
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0045
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0050
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0050
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0050
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0060
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0060
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0065
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0065
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0070
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0070
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0070
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0075
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0075
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0080
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0080
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0080
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0085
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0085
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0085
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0090
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0090
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0090
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0095
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0095
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0095
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0100
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0100
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0105
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0105
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0110
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0110
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0115
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0115
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0115
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0120
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0120
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0120
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0125
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0125
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0135
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0135
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0135
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0140
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0140
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0145
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0145
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0145
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0150
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0150
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0160
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0160
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0190
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0190
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0190
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0190
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0190
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0200
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0200
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0200
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0200
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0200
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0200
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0205
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0205
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0205
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0225
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0225
http://refhub.elsevier.com/S0925-2312(21)00542-7/h0225

B. Chen, M. Xu, L. Li et al.

Ding Zhao received his Ph.D. degree in 2016 from the
University of Michigan, Ann Arbor. He is currently an
Assistant Professor at Department of Mechanical Engi-
neering, Carnegie Mellon University. His research focu-
ses on the intersection of robotics, machine learning,
and design, with applications on autonomous driving,
connected/smart city, energy efficiency, human-
machine interaction, cybersecurity, and big data ana-
lytics.

128

Neurocomputing 450 (2021) 119-128

	Delay-aware model-based reinforcement learning for continuous control
	1 Introduction
	2 Preliminaries
	2.1 Delay-free MDP and reinforcement learning
	2.2 Delay-aware MDP

	3 Delay-aware markov reward process
	4 Delay-aware model-based reinforcement learning
	4.1 Delay-aware trajectory sampling

	5 Experiments
	5.1 Reinforcement learning in delayed systems
	5.2 Model-based vs model-free
	5.3 Transferable knowledge

	6 Conclusion and discussion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgment
	References

