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Abstract 

In this paper, we propose a kernel for nonlinear dimensionality reduction over the manifold of 

Symmetric Positive Definite (SPD) matrices in a Motor Imagery (MI)-based Brain Computer 

Interface (BCI) application. The proposed kernel, which is based on Riemannian geometry, tries 

to preserve the topology of data points in the feature space. Topology preservation is the main 

challenge in nonlinear dimensionality reduction (NLDR). Our main idea is to decrease the non-

Euclidean characteristics of the manifold by modifying the volume elements. We apply a 

conformal transform over data-dependent isometric mapping to reduce the negative eigen 

fraction to learn a data dependent kernel over the Riemannian manifolds. Multiple experiments 

were carried out using the proposed kernel for a dimensionality reduction of SPD matrices that 

describe the EEG signals of dataset IIa from BCI competition IV. The experiments show that this 

kernel adapts to the input data and leads to promising results in comparison with the most 

popular manifold learning methods and the Common Spatial Pattern (CSP) technique as a 

reference algorithm in BCI competitions. The proposed kernel is strong, particularly in the cases 

where data points have a complex and nonlinear separable distribution. 

Keywords: Brain computer interface, nonlinear dimensionality reduction, kernel learning, 

Riemannian geometry. 

1. Introduction 

In Brain-Computer Interface systems that use motor imagery, brain activity is usually captured 

in the form of EEG signals and is transferred to an external device (Lotte et al., 2011). Extracting 

information from EEG signals is carried out by using different pattern recognition methods 

involving feature extraction, dimensionality reduction, and classification (Nicolas-Alonso et al. 

2015; Zhang et al. 2013, 2014) to ultimately determine the user’s mental state (Pfurtscheller et 

al., 2001; Lotte et al., 2007).  

Several techniques are available for extracting features from EEG signals (Li et al., 2015; 

Brodu et al., 2012; Blankertz et al., 2008; Barachant et al., 2012). A common spatial pattern 

algorithm (Ramoser et al., 2000;Blankertz et al., 2008) and a  spatial covariance matrix of a 

signal (Barachant et al., 2012, 2013; Congedo et al., 2013) are two major approaches to represent 

EEG signals in BCI applications. CSP can be considered to be a dimensionality reduction 



technique that learns spatial filters that maximize class separability. A spatial covariance matrix 

of the EEG signal, which lies in the space of symmetric positive definite matrices, can be 

formulated as a connected Riemannian manifold (Barachant et al., 2010). In recent years, 

methods using a spatial covariance matrix have attracted considerable attention (Barachant et al., 

2012, 2013; Congedo et al., 2013, 2015). 

In BCI application, samples are usually represented by large feature vectors. Therefore, these 

problems suffer from the curse of dimensionality (Lotte et al., 2007). Different research efforts 

have attempted to overcome the problem of the curse of dimensionality in the BCI literature. 

Zhang et al.(2013) introduced Spatial-Temporal Discriminant Analysis (STDA) as a multiway 

extension of Linear Discriminant Analysis (LDA). They attempted to maximize the 

discrimination between two classes by finding two projections from the spatial and temporal 

information (Zhang et al., 2013). These projections reduce the dimensionality of the features that 

feed into the discriminant analysis.  To overcome the problems of the curse of dimensionality 

and the bias-variance tradeoff for Event-Related Potential (ERP) classification in BCI 

applications, Zhang et al. (2014) introduced Aggregation of Sparse Linear Discriminant Analysis 

(ASLDA). They introduced a sparse LDA to reduce the dimensionality. For this purpose, sparse 

discriminant vectors were learned by solving a l1-regularized Least Squares Regression (LSR). 

Sparse CSP that uses a linear combination of a subset of channels was introduced by Goksu et al. 

(2013). They proposed a generalized eigenvalue decomposition based on a greedy search to 

identify multiple sparse eigenvectors to compute spatial projections. They showed the 

effectiveness of the sparse CSP in comparison with the traditional CSP by examining the datasets 

in the BCI competition (2005). Wu et al. (2011) used a statistical framework to provide a spatio-

temporal representation of the EEG trials. They modeled the variance of source signals as 

random variables and proposed a hierarchical Bayesian model for retrieving the inter-trial 

variability of amplitude in a sparse way to provide a reduced representation of data (Wu et al., 

2011). 

In the case of representing EEG signals by spatial covariance matrices, although this 

representation reduces the length of the descriptors in comparison with the raw EEG, this 

reduction is not sufficient to overcome the curse of dimensionality. Dimensionality reduction 

over the space of SPD matrices by considering the Riemannian geometry of the SPD matrices 



has difficulties in comparison with treating the points as Euclidean objects (Barachant et al., 

2012). Formulating covariance matrices as a connected Riemannian manifold (Barachant et al., 

2012) leads to a nonlinear relationship between observations and latent variables. Therefore, 

NLDR techniques are required to reduce the dimensionality over this manifold. Several 

techniques are adapted to the cases where the relationships between observations and latent 

variables are nonlinear (Lee et al., 2007). Popular NLDR techniques, such as locally linear 

embedding (LLE) (Roweis et al., 2000), local tangent space alignment (LTSA) (Zhang et al., 

2004), Laplacian Eigenmap (LE) (Belkin et al., 2003), and Isomap (Tenenbaum et al., 2000), 

have been applied to the manifolds. However, these techniques all have shortcomings on the 

manifold of SPD matrices. These shortcomings stem from ignoring the geometrical structure of 

the manifold (i.e., living the manifold in the non-Euclidean space and performing computations 

by assuming that the data points are embedded in Euclidean space) (Goh et al., 2008). 

In this paper, we attempt to overcome the curse of dimensionality in the SPD matrix space in 

BCI applications by learning a kernel that is adapted to the manifold by considering the 

Riemannian geometry of the manifolds. The main contribution of this paper is learning a kernel 

by minimizing a measure that shows the non-Euclidean characteristics of the manifold by 

changing the volume elements, while preserving the geometry, of the input space. This 

minimization is especially useful in the cases where the data points lie on a manifold with a 

nonzero intrinsic curvature. The proposed kernel, when applied in multi-dimensional scaling 

(Joseph et al., 1978), provides an NLDR technique that is well adapted to the manifold of SPD 

matrices. 

The rest of the paper is organized as follows. In section 2, we describe mathematical 

preliminaries that are required for learning over Riemannian manifolds and understanding the 

proposed modifications in the feature space. Section 3 provides more details on learning a data-

dependent kernel by preserving geometry. Section 4 reports our experiments on a BCI data set. 

Our findings are discussed in section 5, and concluding notes are mentioned in section 6. 

2.  Preliminaries 

In this section we describe basic concepts of Riemannian geometry that are necessary to 

understand our proposed approach. We review the metric applied in the SPD matrix space, its 



associated log and exp map, and the kernel functions from a geometrical point of view (Lee et 

al., 1997; Jost, 2008). 

2.1. Riemannian geometry 

The Riemannian metric on the Riemannian manifolds is a positive definite metric that takes 

two tangent vectors as inputs and generates a real number, which is a generalization of the inner 

product, and allows the similarity or dissimilarity of two points on the manifold to be measured 

(Dey et al., 2009; Gallier, 2011; Wu, 2002). A common invariant Riemannian metric on the 

tangent space of the SPD matrices (Förstner et al., 2003; Rossman, 2002; Pennec et al., 2006) is 

defined as:  

< 𝑦, 𝑧 >𝑋= trace(𝑋
−
 

 𝑦𝑋−1𝑧𝑋−
 

 ) (1) 

where 𝑋 denotes a point on the manifold and  𝑦  and 𝑧 show tangent vectors in the tangent space 

formed at point 𝑋. 

The length of the curves along the manifold is computed by integrating the metric tensor along 

the curve, which connects two points on the manifold (Lin et al., 2008; Dey et al., 2009). The 

geodesic, which is the local distance-minimizing curve over the manifold of SPD matrices 

associated with a metric from Eq. (1), is computed as: 

𝑑𝐺
2(𝑋, 𝑌) = < 𝑙𝑜𝑔𝑋(𝑌), 𝑙𝑜𝑔𝑋(𝑌) >𝑋=  trace ((log

2(𝑋−1/2𝑌𝑋−1/2)) (2) 

where 𝑋 and 𝑌 are two points on the manifold, 𝑙𝑜𝑔𝑋(𝑌) is the Riemannian 𝑙𝑜𝑔 map of point Y to 

the tangent space formed at point X, and 𝑑𝐺 denotes the geodesic distance on the manifold of the 

SPD matrices (Tuzel et al. 2008).The Riemannian 𝑙𝑜𝑔  map projects a point on the manifold to a 

point in tangent space. Its inverse is Riemannian 𝑒𝑥𝑝𝑋(𝑦), which projects a tangent vector 

𝑦 ∈ 𝑇𝑋𝑀 into a point 𝑌 on the manifold.  

The Riemannian exponential and logarithmic mappings associated to the metric of Eq. (1) are 

defined as: 

𝑒𝑥𝑝𝑋(𝑦) =  𝑋
1/2exp (𝑋−

 

 𝑦𝑋−
 

 )𝑋1/2 
(3) 

𝑙𝑜𝑔𝑋(𝑌) =  𝑋
1/2log (𝑋−

 

 𝑌𝑋−
 

 )𝑋1/2 
(4) 

where 𝑒𝑥𝑝 and 𝑙𝑜𝑔 are matrix exponential and logarithmic functions that are calculated as:  



exp𝛴 =  ∑
𝛴𝑘

𝑘!

∞

𝑘=0

= 𝑈exp(𝐷)𝑈𝑇 , 𝛴 = 𝑈𝐷𝑈𝑇 

log 𝛴 =  ∑(−1)𝑘−1
(𝛴 − 𝐼)𝑘

𝑘

∞

𝑘=1

= 𝑈 log(𝐷)𝑈𝑇 , 𝛴 = 𝑈𝐷𝑈𝑇 

(5) 

Eq. (5) assumes that 𝛴 is decomposed into eigenvalues and vectors. Note that 𝑒𝑥𝑝 operator on 

the matrices always exists, while the  𝑙𝑜𝑔 operator is defined only on symmetrical matrices with 

positive eigenvalues (Förstner et al., 2003). 

 

2.2. Kernel geometry 

Kernel function 𝐾( . , . ) corresponds to the inner product in a high dimensional space 𝐻. 

𝐾(𝑥, 𝑥 ′) =  𝜑(𝑥). 𝜑(𝑥 ′) (6) 

where 𝜑 is a projection of the input space 𝑆 into the higher dimensional space 𝐻. The kernel 

function 𝐾(. , . ) induces a Riemannian metric to 𝑆 using mapping 𝜑, which is computed as 

(Amari et al., 1999; Wu et al., 2002): 

𝑔𝑖𝑗(𝑥, 𝑥
′) =  

𝜕

𝜕𝑥𝑖

𝜕

𝜕𝑥 ′
𝑗
𝐾(𝑥, 𝑥 ′)|𝑥=𝑥′ 

(7) 

where 𝑥𝑖 denotes 𝑖th basis of vector  𝑥. Eq. (7) is written in Einstein summation notation. The 

volume element corresponding to the induced metric in input space is computed as (Wu et al., 

2002): 

𝑑𝑉 =  √𝑔(𝑥)𝑑𝑥1…𝑑𝑥𝑛 (8) 

where 𝑔(𝑥) represents the determinant of the matrix whose elements are 𝑔𝑖𝑗  and 𝑑𝑉 denotes the 

volume element. The expression √𝑔(𝑥) is a factor that controls the expansion and contraction of 

volume elements (Williams et al., 2007). 

 

2.3. Kernel principal component analysis 

Kernel Principal Component Analysis (KPCA) (Algorithm 1) (Schölkopf et al., 1998), which is 

widely used in dimensionality reduction and denoising applications, is a nonlinear generalization 

of principal component analysis (PCA) (Jolliffe et al., 2002).  Classical PCA is designed to 

reduce dimensionality in the cases where the manifold is linearly embedded in the observation 



space. KPCA, which is composed of the kernel trick and PCA, provides the prerequisites of its 

later component by linearizing the manifold using the former component. KPCA projects data 

into a feature space implicitly using feature mapping φ(xi) and computes the pairwise scalar 

product between the mapped data in feature space 𝐺 by using the kernel function. PCA is 

reformulated into an equivalent metric MDS version that is applied to the data projected in 

feature space. Finding an appropriate kernel, which considers the geometry of the input space to 

linearize the manifold in the feature space, is not a trivial problem. An inappropriate projection 

that does not provide these conditions would lead to the inadequacy of KPCA in nonlinear 

dimensionality reduction.  

 

Algorithm 1. Kernel PCA algorithm (Lee et al., 2007) 

1. Compute the matrix of scalar products, 𝑆,  or the matrix of squared Euclidean distances, 𝐷,  

depending on the chosen kernel from observations 𝑌. 

2. Compute the matrix of kernel values𝐺. 

3. Centralize the projected points in the feature space. 

4. Decompose the centralized 𝐺  into eigenvalues and eigenvectors, 𝐺 = 𝑈ΛUT. 

5.  A P-dimensional representation of 𝑌 is obtained by computing  𝑋̂ =  𝐼𝑃×𝑁𝛬
1/2𝑈𝑇 . 

 

3. Data-dependent geometry preserving kernel 

In this section, we describe our proposed data-dependent kernel, which adapts to the geometry 

of data points lying on the manifold of SPD matrices. We first describe an isometric kernel over 

the manifold of SPD matrices and show the drawbacks of this mapping and then rectify the 

isometric kernel by learning an appropriate conformal transformation. Some important notations 

that are used in this section are listed in Table 1. 

 

Table 1. Some important notations that are used in section3. 

Notation Description Notation Description 

𝑲 Kernel matrix 𝜆𝑖 𝑖th eigenvalue of resulting Gramian matrix. 

𝒈   Riemannian metric 𝑐(𝑥) Conformal transformation of 𝑥 

𝒅  Matrix of geodesic distances 𝛼𝑖 , 𝛿 Unknown parameters  of conformal transform 

𝑲  An isometric kernel matrix which is 

computed based on 𝑑𝐺 

𝐶𝑁×𝑁 A diagonal matrix in which its diagonal 

elements are conformal transforms of train 

samples 



𝝋 A feature mapping from input space, 𝑆,  

to a high dimensional space 𝐻 

𝐶 ′
 ×  A diagonal matrix in which its diagonal 

elements are conformal transforms of test 

samples 

 

3.1. Isometric kernel 

The main goal of the NLDR methods is preserving the geometry during the mapping of 

observations to a low dimensional space. To relate the geometry of the observed data to the 

structure of the latent variables, two available choices are isometric and conformal embeddings 

(De Silva et al., 2004). Isometric embedding preserves the geometry by preserving the geodesic 

distances. This embedding results in preserving the geometrical structure of the manifold and the 

distribution of class labels over the manifold, which is influenced by the similarity of objects in 

the representation space (due to the compactness hypothesis). As preserving geodesic distances 

has an influence on the efficiency of learning methods, we construct our proposed kernel based 

on an isometric kernel. 

To compute this kernel over the manifold of SPD matrices, considering the Riemannian 

geometry of the manifold, we apply a double centering algorithm (Cox et al., 1994) to the matrix 

of geodesic distances between data points, which is computed as follows: 

𝐾0 = −
1

2
𝐽𝑑𝐺

2𝐽 

𝐽 = 𝐼𝑁×𝑁 − 
1

𝑁
1𝑁 × 1𝑁

𝑇
 

(9) 

where 𝐾0 is the inner product matrix, 𝑑𝐺 is the matrix of geodesic distances, and 𝑁 denotes the 

number of data points. The expression 𝐼𝑁×𝑁 is an 𝑁 × 𝑁 identity matrix, and 1𝑁 is a column 

vector where the elements are 1. 

 To compute  𝑑𝐺 , a collection of tangent spaces is implicitly formed at different points, and in 

each implicit tangent space, the geodesic distances along the radial geodesics are computed using 

Eq. (2). Eq.(2) calculates the dissimilarity between the basepoint of a tangent space and other 

points that are mapped to that tangent space, which is the same as the actual value along the 

manifold. Therefore, we have implicitly formed a tangent space at a point  𝑋𝑖 on the manifold. 

The distances between the basepoint of the tangent space, 𝑋𝑖, and the projection of any other 

points, 𝑋𝑗, in that tangent space, which is denoted by 𝑑𝐺(𝑖, 𝑗), is computed by Eq. (2), which is 



equal to the geodesic distance between 𝑋𝑖 and 𝑋𝑗. Iterating this procedure for every point as the 

basepoint of an implicit tangent space and using Eq. (2) results in an 𝑁 × 𝑁 dimensional matrix 

of geodesic distances, 𝑑𝐺 . The resulting matrix 𝑑𝐺  would represent the actual dissimilarity 

between all pairs of samples. Because 𝑑𝐺(𝑖, 𝑗) = 𝑑𝐺(𝑗, 𝑖),  algorithm 2 would eliminate redundant 

computations for computing 𝑑𝐺. 

 

 

Algorithm 2. Compute the matrix of the geodesic distances over the manifold of SPD matrices. 

 

For   = 1  − 1 

(Implicitly form a tangent space,  𝑇𝑋𝑖(𝑀), at point Xiof the manifold  ) 

For   =   1   

(Implicitly project   𝑋𝑗 to 𝑇𝑋𝑖(𝑀)) 

Compute 𝑑𝐺(𝑖, 𝑗)using Eq.(2) between 𝑋𝑖 and 𝑋𝑗 

(Note that 𝑑𝐺(𝑗, 𝑖) = 𝑑𝐺(𝑖, 𝑗)) 

End 

       𝑑𝐺(𝑖, 𝑖) =   

End 

 

 Appl ying an isometric kernel over the manifolds with nonzero intrinsic curvatures (i.e., non-

developable manifolds) leads to an indefinite kernel (Pekalska et al., 2002; Duin et al., 2013).  

The negative eigenvalues of the resulting Gram matrix are the consequence of the nonlinear 

structure of the manifold and application of the Riemannian metric. This indefinite kernel leads 

to suboptimal solutions in classification problems and may transfer data points into pseudo-

Euclidean space in dimensionality reduction applications (Pekalska et al., 2002; Duin et al., 

2013). Removing the negative eigenvalues of the Gram matrix over the manifold of SPD 

matrices may lead to the overlapping of the data points and consequently missing local 

information. In classification applications, the increased class overlap that occurs by removing 

negative eigenvalues can cause a decline in performance. 

3.2. Conformal mapping    

As stated in section 3.1, due to the importance of the negative eigenvalues of the isometric 



kernel over the manifolds with nonzero intrinsic curvatures, we might not be able to remove 

them to preserve the geometry. However, we might be able to manipulate the isometric kernel 

using a geometry-preserving transform that decreases the negative eigenvalues. 

Our main aim is learning a kernel that leads to changing the metric so that it modifies the 

volume elements to decrease the non-Euclidean characteristics while preserving the geometry. As 

mentioned in Eq. (8), the volume element is proportional to a factor that is computed based on 

the Riemannian metric induced by feature mapping 𝜑 in the input space. Therefore, modifying 

the kernel leads to changes in the induced metric and, consequently, the volume element. Our 

choice for modifying the metric is applying a conformal transformation that preserves the local 

geometry by preserving the local angles. The transformation can be defined as: 

𝑘(𝑥𝑖 , 𝑥𝑗) =  𝑐(𝑥𝑖)𝑘0(𝑥𝑖, 𝑥𝑗)𝑐(𝑥𝑗) (10) 

where 𝑘0 is called the basic kernel and 𝑐(𝑥𝑖) denotes a conformal transform of 𝑥𝑖. In this 

study, 𝑐(𝑥𝑖) is defined by the following formula (Xiong et al., 2005): 

𝑐(𝑥) =  𝛼0  ∑𝛼𝑖

𝑁

𝑖=1

𝑒−𝛿‖𝑥−𝑎 ‖
 
 

(11) 

where 𝛼𝑖 and 𝛿 denote unknown parameters that should be tuned using an optimization 

process; 𝑎𝑖s are called empirical cores, which can be selected randomly or based on the geometry 

of the training dataset; and 𝑁 denotes the number of cores.  

The desired kernel is achieved by learning the unknown parameters of Eq. (10) so that they 

would decrease the negative eigen fraction (NEF) of the resulting kernel. The NEF is the result 

of the nonlinear structure of the manifold and is used to quantify the non-Euclidean 

characteristics of the manifold. The NEF is defined as: 

NEF = 
∑ |𝜆 |    

∑ |𝜆 | 
 

(12) 

where 𝜆𝑖 is the 𝑖th eigenvalue of the kernel matrix, which is computed as: 

K = 𝐶 × 𝐾0 × 𝐶, 

𝐶 = 𝑑𝑖𝑎𝑔([𝑐(𝑥1),… , 𝑐(𝑥𝑁)] 

(13) 

where 𝐾 is the proposed kernel matrix that depends on  𝛼𝑖 and 𝛿 parameters, 𝐾0 is an 𝑁 ×

𝑁 isometric kernel matrix over the training set, and 𝐶 is an 𝑁 × 𝑁 diagonal matrix with diagonal 

elements 𝑐(𝑥𝑖)s. The expression 𝑐(𝑥𝑖) denotes the conformal transformation of 𝑥𝑖 , which is 

computed using Eq. (11). The parameters 𝑥𝑖  are training samples, and 𝑁 denotes the number of 



training samples. 

Tuning the unknown parameters of the proposed kernel is performed in an iterative process 

using a genetic algorithm, which is a heuristic technique for optimization (McCall, 2005; Popov, 

2005). Our solution space is an array of parameters of the model, including the weight of 

different cores and variance parameters. The NEF of the Gram matrix of proposed kernel over 

the training dataset is used as the fitness function for evaluating the chromosomes as the 

solutions of the optimization problem. The stopping criterion should be set to lead to the 

reduction of the negative eigen fraction of our proposed kernel over the training set. The 

stopping criterion is set as a fraction of the negative eigen fraction of the isometric kernel, which 

should be rectified by learning an appropriate conformal transform in our proposed kernel. The 

resulting 𝛿 and 𝛼𝑖parameters are used to compute similarity values between the test samples and 

the training set as the following: 

𝐾𝑡𝑒𝑠𝑡 = 𝐶
′
 × × 𝐾0 ×𝑁 × 𝐶

𝑇
𝑁×𝑁 

𝐶 ′ = 𝑑𝑖𝑎𝑔([𝑐(𝑥 ,1),… , 𝑐(𝑥
,
 )] 

𝐶 = 𝑑𝑖𝑎𝑔([𝑐(𝑥1),… , 𝑐(𝑥𝑁)] 

(14) 

where 𝐾𝑡𝑒𝑠𝑡 is a 𝑀 ×𝑁 matrix that shows the similarity between the test and training 

samples. 𝐾0 ×𝑁 is a 𝑀 × 𝑁 matrix that denotes the isometric kernel matrix between the test and 

the training samples. 𝐶 and 𝐶 ′are diagonal matrices where their diagonal elements are conformal 

transforms of training and test samples, respectively, and 𝑁 and 𝑀 are the number of training and 

test samples. 𝑥 ,𝑖 and 𝑥𝑖 denotes the i
th

 test and train samples, respectively. 

The method for learning the proposed data dependent kernel and for using it as a kernel in a 

dimensionality reduction procedure is described as Algorithm 3: 

 

 

Algorithm 3. Dimensionality reduction over the manifold of SPD matrices. 

1. Divide the training dataset into empirical cores, 𝑎𝑖, which are selected randomly and a smaller 

training dataset. 

2. Compute the isometric kernel matrix, 𝐾0, over the training set, Eq. (9). 

3. Learn a conformal transform using GA that uses NEF of 𝐾𝑡𝑟𝑎𝑖𝑛 as a fitness function, 

where 𝐾𝑡𝑟𝑎𝑖𝑛 = 𝐶𝑁×𝑁 × 𝐾0𝑁×𝑁 × 𝐶𝑁×𝑁
𝑇 , C= 𝑑𝑖𝑎𝑔([𝑐(𝑥1),… , 𝑐(𝑥𝑁)]. . 

4. Compute 𝐾𝑡𝑒𝑠𝑡, which is the similarity matrix between the training and test samples.  

𝐾𝑡𝑒𝑠𝑡 = 𝐶
′
 × ×𝐾0 ×𝑁 × 𝐶

𝑇
𝑁×𝑁, 𝐶 ′ = 𝑑𝑖𝑎𝑔([𝑐(𝑥 ,1),… , 𝑐(𝑥

,
M)]. 

5. Run the kernel PCA using the resulting data dependent kernel. 



 

4. Evaluations 

To assess the proposed kernel, we used it as a kernel in kernel PCA for dimensionality 

reduction. The experiments were run over data set IIa of the BCI competition IV (Naeem et al., 

2006). The 1-Nearest Neighbor classifier (1-NN) is used to evaluate the proposed method in 

comparison with the most popular nonlinear dimensionality reduction techniques, as shown in 

Table 2. We have also made the comparison against CSP with the Linear Discriminant Analysis 

classifier (CSP+LDA), which is a reference method in BCI competitions. 

4.1. Data set IIa, BCI competition IV 

Data set IIa of BCI competition IV contains EEG signals that are captured from 9 subjects 

while performing four different motor imageries, including Left Hand (LH), Right Hand (RH), 

Foot (F), and Tongue (T) MIs. Twenty-two electrodes lying over the scalp are used for recording 

EEG signals. For each class and subject, 72 trials are recorded as training and test sets in 

different sessions. In this study, we assign each trial to one of the four specified classes. For each 

trial, the features are extracted from 0.5s to 2.5s after the cue that is used to perform MI by the 

subjects. The trials are band-pass filtered in 8-35 Hz using a 5
th

 order Butterworth filter (Lotte et 

al., 2007).The covariance matrix of each trial is computed using Eq. (15). 

𝐶 =
1

𝑇 − 1
𝐸 × 𝐸𝑇 

(15) 

where 𝑇 shows the epoch duration; 𝐸 is the 𝑁 × 𝑇 dimensional EEG signal, while N shows the 

number of channels used for recording EEGs; and 𝐶 denotes the resulting 𝑁 × 𝑁 dimensional 

covariance matrix. In this data set, 22 channels have been used to record the EEG signals. We 

therefore have 22 × 22 dimensional descriptors. 

4.2. Experiments 

We evaluated the proposed kernel in a dimensionality reduction problem. Because CSP + LDA 

is appropriate for two-class classification problems, we ran our experiments over the pairs of two 

MIs (Congedo et al., 2013) in Tables 2 and 3. Therefore, the signals are divided into LH/RH, 

LH/F, LH/T, RH/F, RH/T, and F/T subsets. In all of the experiments, different methods were 

trained using training trials and were evaluated on the test trials, except in Table 5, where we 

applied 10-fold cross-validation over the entire dataset. 



Popular dimensionality reduction techniques assume that data points are embedded in 

Euclidean space. Therefore, applying these methods over SPD matrices requires the conversion 

of the matrices to points of Euclidean space. For this purpose, the matrices need to be vectorized 

by stacking the columns of each matrix on top of each other and converting them to a column 

vector. Note that our proposed kernel receives the matrix of geodesic distance, 𝑑𝐺 , as the input 

and manipulates this matrix. Our kernel considers the geometry of the manifold by using Eq. (2) 

for computing the geodesic distances between SPD matrices (Algorithm 2). The vectorization 

that destroys the geometry of the manifold is not required for the proposed method. 

We named the proposed kernel as a Conformal-Isometric Linearizing Kernel (CILK) and 

compared it with the RBF kernel (in a kernel PCA setup) as well as other popular NLDR 

techniques, including Isomap, LLE, LE, and LTSA. Drtoolbox (van der Maaten et al., 2009) is 

used to implement these techniques. In this experiment, the number of neighbors needed to 

construct the graph in Isomap, LLE, and LE is determined empirically. On average, we chose the 

20 nearest neighbors to construct the graphs. The dimensionality of the low dimensional space 

was determined experimentally by evaluating different dimensions and reporting the best results. 

In most cases, the best results were achieved for less than 50 dimensions. A wide range of values 

has been investigated to tune the variance parameter of the RBF kernel. K-fold cross-validation 

was applied over the training set, and the setting that led to the maximum average performance 

was used as our choice for evaluating the test set. In the case of CSP+LDA (Congedo et al., 

2013), three pairs of spatial filters were selected, which is a common setting in the BCI problem 

(Blankertz et al., 2008). Solving the optimization problem that leads to our proposed method is 

performed by using GA, which is implemented using the Matlab genetic algorithm toolbox. 

Approximately 10% of the training data are devoted as the cores. The variance parameter is 

constrained to be a positive value, and the lower bound of the weight parameters is set to zero. 

The stopping criterion is set to a fraction (0.01) of the NEF of the empirical isometric kernel over 

the training set. 

Table 2 shows the accuracy of classification over the LH/RH, LH/F, LH/T, RH/F, RH/T, and 

F/T pairs of MIs for each subject and the average for each pair of MIs.  In this experiment, 

different dimensionality reduction techniques+1-NN classifier and CSP+LDA were trained over 

training trials and were evaluated during the test trials. 



Fig. 1 illustrates the distribution of data points corresponding to the subjects in the LH/RH pair 

of MIs using isometric mapping into two dimensions. We use this figure to emphasize the 

relationship between the distribution of different classes and the efficiency of the proposed 

method in comparison with CSP+LDA, which are reported in Table 2. Comparing CSP+LDA 

and our proposed method shows 3 distinct states:  our algorithm performs better, both methods 

behave similarly, and CSP+LDA is the superior algorithm. Fig. 1 illustrates the subjects that 

correspond to these three states in Fig. 1 (a), Fig. 1 (b), and Fig. 1 (c), respectively.  

A comparison of the kernel PCA with the CILK kernel and 1-NN classifier, Minimum 

Distance to Mean (MDM) (Congedo et al., 2013), and CSP+LDA on the EEG signals of all of 

the pairs of MIs is reported in Table 3.  

To compare the significance of CSP+LDA, KPCA (CILK) + 1-NN, and MDM with respect to 

each other over the means of the accuracies of the pairs of MIs for each subject, the 

nonparametric Wilcoxon test is used. KPCA (CILK) + 1-NN predicts a significantly better than 

CSP+LDA and MDM, with 𝑝 =  . 2  and 𝑝 =  . 11, respectively. However, MDM with  

𝑝 >  .   shows an insignificant performance with respect to the CSP+LDA method. 

Table 4 shows a comparison between the proposed method and the first three winners of the 

BCI competition 2008 on dataset IIa. The methods are evaluated on the test set, and the results 

are reported in terms of the kappa value. The proposed method, with an average performance of 

0.5689, achieved second place in this experiment, with a very slight difference from the winner. 

To verify the effectiveness of the proposed kernel, we compare it with other kernels (Table 5). 

The Riemannian kernel (Harandi et al., 2012) and the kernel proposed by Barachant et al. (2012) 

are kernels that consider the geometry of the SPD manifolds. We use the geometric mean as the 

reference point in Barachant’s kernel. Gaussian and polynomial kernels, which are based on 

Euclidean geometry, are also compared. Experiments were performed by applying k-fold cross-

validation to the total training and validation sets. The experimental results show the superiority 

of the proposed kernel in comparison with the competitors. The experimental results confirm the 

effectiveness of considering the geometry of the input space and the shortcoming of the kernels 

that rely on Euclidean geometry on the manifold of SPD matrices. 

Table 2. Accuracy of kernel PCA (RBF and CILK), Isomap, LLE, LE, and LTSA with 1-NN classifier and CSP with 



LDA classifier on all pairs of MIs over dataset IIa, BCI competition IV. 

LH/RH S1 S2 S3 S4 S5 S6 S7 S8 S9 Mean±STD 

KPCA(CILK) 88.89 59.03 90.28 78.47 62.50 75.00 72.92 93.06 87.50 78.63±12.34 

KPCA(RBF) 54.17 49.31 54.17 45.14 46.53 54.86 50.69 47.22 43.06 49.00± 3.94 

Isomap 50.00 50.00 56.25 52.08 50.00 52.08 47.92 65.97 72.92 55.25± 8.55 

LTSA 49.31 53.47 50.00 49.31 48.61 45.83 46.53 48.61 60.42 50.23± 4.39 

LE 47.22 42.36 55.56 50.69 47.22 48.61 44.44 52.08 33.33 46.83± 6.24 

LLE 60.42 47.92 84.03 64.58 54.86 59.03 53.47 84.72 76.39 65.05±13.53 

CSP+LDA 88.89 51.39 96.53 70.14 54.86 71.53 81.25 93.75 93.75 78.01±17.01 

LH/F S1 S2 S3 S4 S5 S6 S7 S8 S9 Mean±STD 

KPCA(CILK) 97.92 86.81 96.53 81.94 70.14 75.69 88.89 85.42 97.22 86.73± 9.73 

KPCA(RBF) 44.44 54.86 54.86 48.61 44.44 52.08 52.08 59.72 50.00 51.23± 5.01 

Isomap 63.19 53.47 64.58 70.14 50.00 61.11 50.69 50.00 63.89 62.34± 11.15 

LTSA 47.92 47.92 54.17 57.64 40.28 54.17 44.44 54.86 47.22 49.85± 5.68 

LE 44.44 49.31 59.03 45.14 47.22 54.17 45.14 50.00 45.83 48.92± 4.90 

LLE 84.03 53.47 77.78 64.58 47.22 59.03 61.81 70.83 86.11 67.21 13.49 

CSP+LDA 98.61 68.75 94.44 78.47 63.19 59.03 97.92 87.50 95.14 82.56 ±15.63 

LH/T S1 S2 S3 S4 S5 S6 S7 S8 S9 Mean±STD 

KPCA(CILK) 96.53 71.53 93.75 85.42 77.78 75.00 87.50 88.89 97.92 86.04± 9.50 

KPCA(RBF) 50.00 45.83 47.22 44.44 52.78 45.83 58.33 50.69 64.58 51.08± 6.64 

Isomap 69.44 45.83 65.97 65.97 48.61 51.39 68.75 65.97 79.17 62.34± 11.15 

LTSA 45.83 54.17 46.53 47.92 55.56 47.22 57.64 55.56 59.03 52.16± 5.22 

LE 47.92 51.39 58.33 44.44 47.42 55.56 45.14 51.39 45.83 49.71± 4.83 

LLE 88.89 53.47 80.56 72.22 52.78 65.97 70.14 77.78 90.97 72.53± 13.70 

CSP+LDA 98.61 67.36 94.44 86.81 68.75 71.53 95.14 90.97 95.14 85.42±12.62 

RH/F S1 S2 S3 S4 S5 S6 S7 S8 S9 Mean±STD 

KPCA(CILK) 98.61 90.97 90.97 84.03 67.36 74.31 95.83 88.19 86.11 86.26±9.98 

KPCA(RBF) 50.69 50.69 51.39 49.31 45.14 47.22 49.31 51.39 47.22 49.15± 2.19 

Isomap 60.42 53.47 61.11 65.97 47.92 64.58 51.39 59.72 44.44 56.56± 7.55 

LTSA 46.53 49.31 53.47 58.33 46.53 51.39 52.08 47.92 49.31 50.54± 3.78 

LE 52.78 45.14 52.08 45.83 42.36 54.86 51.39 54.84 47.92 49.69± 4.53 

LLE 84.72 58.33 79.17 61.11 43.06 60.42 70.83 67.36 54.17 64.35± 12.77 

CSP+LDA 97.22 81.25 93.06 88.89 68.75 63.19 99.31 86.81 84.72 84.80±12.20 

RH/T S1 S2 S3 S4 S5 S6 S7 S8 S9 Mean±STD 

KPCA(CILK) 98.61 90.97 97.22 85.42 72.92 75.69 95.83 87.50 89.58 88.19±9.05 

KPCA(RBF) 53.47 47.22 51.39 59.72 48.61 57.64 53.47 54.17 43.75 52.16± 5.04 



Isomap 70.14 45.83 62.50 63.89 48.61 53.47 68.06 63.19 67.36 60.34± 8.84 

LTSA 47.92 57.64 51.39 54.17 47.22 50.69 59.03 52.78 48.61 52.16± 4.17 

LE 52.78 50.69 55.56 51.39 50.69 49.31 57.64 56.94 47.22 52.47± 3.56 

LLE 93.06 47.92 81.94 63.19 50.00 59.72 70.83 68.06 70.83 67.28± 14.37 

CSP+LDA 100.00 63.89 96.53 85.42 65.28 65.97 97.22 91.67 81.94 83.10±14.67 

F/T S1 S2 S3 S4 S5 S6 S7 S8 S9 Mean±STD 

KPCA(CILK) 81.94 89.58 79.86 72.22 73.61 69.44 80.56 86.11 89.58 80.32± 7.39 

KPCA(RBF) 54.86 49.31 45.14 59.72 47.22 48.61 47.92 48.61 45.83 49.69± 4.67 

Isomap 50.69 49.31 51.39 44.44 50.69 47.22 63.19 61.11 68.06 54.01± 8.07 

LTSA 52.78 48.61 45.14 51.39 47.22 45.83 53.47 53.47 55.56 50.39± 3.77 

LE 50.00 47.92 44.44 63.89 51.39 47.92 46.53 52.78 55.56 51.16± 5.84 

LLE 58.33 53.47 63.19 53.47 51.39 55.56 67.36 72.92 72.92 60.96± 8.45 

CSP+LDA 69.44 69.44 69.44 56.94 70.83 67.36 81.25 82.64 88.89 72.91±9.66 
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Fig. 1. Two dimensional representations of the subjects for LH/RH using kernel PCA with isometric kernel (a) 

subjects No. 2,4,5, and 6; (b) subjects No. 1 and 8, (c) subjects No. 7 and 9. 

 

Table 3. Mean accuracy and standard deviation of kernel PCA (CILK) + 1-NN, MDM, and CSP+LDA on all pairs of 

MIs in BCI competition IV, dataset IIa 

 KPCA(CLIK) +1-NN CSP+LDA MDM 

 Mean±STD Mean±STD Mean±STD 

LH/RH 78.63± 12.34 78.01±17.01 72.00±30.00 

LH/F  86.73± 9.73 82.56 ±15.63 85.41± 8.88 

LH/T 86.04± 9.50 85.42±12.62 82.95±12.21 

 S1 S8 

 S7 S9 



RH/F 86.26±9.98 84.80±12.20 83.33±12.11 

RH/T 88.19±9.05 83.10±14.67 82.02±11.50 

 F/T 80.32± 7.39 72.91± 9.65 72.92± 7.92 

Mean 85.68± 8.68 81.15±12.00 81.15±  8.64 

     

 

Table 4. Performance of KPCA (CILK) + 1-NN and the first 3 winners of the BCI competition 2008 on dataset 

IIa (4 -class problem) in terms of the kappa value. 

 S1 S2 S3 S4 S5 S6 S7 S8 S9 Mean 

First method 0.6800  0.4200  0.7500  0.4800  0.4000 0.2700  0.7700  0.7500  0.6100 0.5700 

Second method 0.6900  0.3400  0.7100  0.4400  0.1600  0.2100  0.6600  0.73 00 0.6000 0.5200 

Third method 0.3800  0.1800  0.4800  0.3300  0.0700  0.14 00 0.2900  0.49 00 0.4400 0.3100 

KPCA (CILK)+1-NN 0.7407 0.4259 0.7407 0.4815 0.2315 0.2963  0.7454 0.7454 0.7130 0.5689 

 

Table 5. Performance of KPCA with proposed kernel (CILK), Barachant et al. (2012), Harandi et al. (2012), 

Gaussian, and polynomial kernels + LDA classifier in terms of the kappa value, according to a 10-fold cross-

validation on dataset IIa, BCI competition IV. 

 S1 S2 S3 S4 S5 S6 S7 S8 S9 Mean 

CILK 0.7079     0.4564     0.7612     0.4419     0.2600     0.3679     0.7887     0.7479   0.6127 0.5716 

Harandi et al. (2012) 0.5865     0.6059     0.6481     0.4237     0.1528     0.2718     0.7157     0.7420     0.5596   0.5229 

Barachant et al. (2012) 0.7917     0.4880     0.8151     0.3460     0.2285     0.2693     0.6539     0.7082     0.3304   0.5146 

Gaussian 0.0139     0.0220     0.0078     0.0123     0.0148     0.0231     0.0407     0.0644     0.0147 0.0237 

Polynomial 0.0550         0.0039     0.0203     0.0217     0.0217     0.0167     0.0167     0.0198     0.0158 0.0231 

 

5. Discussion 

In the experiments described in section 4, the SPD matrices are formulated as a Riemannian 

manifold that lives in the non-Euclidean space. The experimental results on this manifold show 

the superiority of the proposed approach in comparison with popular manifold learning methods. 

The lower accuracy of the popular manifold learning methods, such as Isomap, LLE, LE, and 

LTSA, which are reported in Table 2, are a result of the inconsistency of the requirements of the 

above-mentioned methods for the geometry of the Riemannian manifold of SPD matrices. The 



decreased performance of those methods can be explained as: 

In the case of LE, which is a local method and uses a Laplacian matrix to represent the 

manifold, the deficiency is the result of approximating true geodesic distances by graph 

distances. 

 LLE, which attempts to preserve local linearity, computes a weight matrix to represent each 

data point as a linear combination of its neighbors. This aim is achieved by solving a least-

squares problem in Euclidean space, while on the Riemannian manifold, solving an interpolation 

problem on the manifold is required.  

LTSA needs to provide a local parameterization of the data points by relying on the 

assumption that data points are embedded in Euclidean space.  The local coordinates around each 

point are computed by a Taylor series expansion in Euclidian space at the tangent space around 

the base point, which is computed using PCA. Because LTSA estimates the tangent space of the 

Riemannian manifold at a point using the available data samples in the neighborhood of the base 

point, the sampling conditions, such as the sampling extent and density, affect the estimated 

tangent space. Running PCA on some instances of the Riemannian manifold leads to inaccurate 

local information, which leads to poor classification results.  

The comparison between RBF and CILK kernels, as shown in Table 2, demonstrates the 

significance of considering the geometry of the input data. As shown in Table 2, the proposed 

approach in some cases shows considerable superiority over the CSP+LDA method. Plotting 

samples in two dimensions using the isometric kernel, which is illustrated in Fig. 1 (a), shows 

that the superiority of our proposed method (Table 2) corresponds to cases where different 

classes have complex non-linearly separable distributions. For linearly separable samples (Fig. 1 

(b)), our proposed method and CSP+LDA would achieve a similar performance (Table 2). For 

the cases where the training data do not provide a good covering over the feature space (Fig. 1 

(c)), CSP+LDA shows superiority, which is the result of using a discriminative classifier (Table 

2). 

As shown in Table 3, for all pairs of MIs, our proposed method results in higher accuracy with 

a smaller standard deviation in comparison with the CSP+LDA. The observed superiorities, 

especially in complex non-linearly separable cases, are the result of the strength of the local 

classifiers in these cases. The strength of these methods is strongly dependent on providing their 

prerequisites. 1-NN, which is used in our experiments, suffers from the curse of dimensionality. 



Overcoming the curse of dimensionality is a prerequisite for the 1-NN classifier, which is 

provided by reducing the dimensionality by decreasing the non-Euclidean characteristics while 

preserving the topology of the data points. The lower standard deviation that is achieved for the 

kernel PCA (CLIK) + 1-NN is the result of the strength of the proposed approach in complex 

non-linearly separable cases. 

6. Conclusions 

In this paper, we propose a kernel for reducing dimensionality over manifolds with a known 

geometry (e.g., the manifold of SPD matrices). Preserving the geometrical structure of the 

manifold based on Riemannian geometry provides a kernel that is adapted to the manifold. The 

novelty of our algorithm is the modification of the volume elements to decrease the non-

Euclidean characteristics of the manifold, which is represented by the negative eigen fraction of 

the resulting Gramian matrix in the feature space. Embedding to a lower dimensional space with 

this topology preserving mapping and using 1-NN for its classification leads to superior accuracy 

over the methods that are based on popular NLDR techniques and CSP +LDA. These 

superiorities are found, especially in the cases where samples have complex and nonlinear 

separable distribution. Considering the geometry of the input space and applying a classifier that 

relies on local information provides these superiorities in complex nonlinear separable cases, 

which leads to a lower standard deviation. 
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