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Abstract  

Although the neural mechanism underlying risk decision has been extensively investigated, 

the neural origination of risk attitude and probability distortion need to be further elucidated. 

In this study, the Rescorla-Wagner model with learning rates a+/a- upon gain/loss evaluates the 

risky outcome and forms the subjective values of risky options through the learning process, 

and the softmax function of subjective values produces the choice probability between 

options. Our model demonstrates that risk attitude is determined by the 

undervaluation/overvaluation of risky outcome, the standard deviation of the subjective value, 

and the discrimination ability between subjective value. Our model further displays that 

overweighting/underweighting of small probabilities results from asymmetric learning rates 
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and the discrimination ability between subjective value. These findings suggest that risk 

attitude and probability distortion share a common neural mechanism.  

 

Introduction 

The risk attitude and the subjective probability are at the core of economic models of 

decision making under risk which deals with the trade-off between the higher 

expected reward of risky option and the sure reward at lower risk. The trade-off can 

be explicit as the subtraction of the product of the risk attitude and the risk from the 

mean of reward (return-risk model) (Markowitz, 1952), or implicit as the 

maximization of the sum of decision outcomes’ utility weighted by subjective 

probability of the outcome in prospective theory (Kahneman and Tversky, 1979). 

Neural activities have been linked with the risk attitude, including single neuron 

activity in orbitofrontal cortex (OFC) (Roitman and Roitman, 2010) and the 

blood-oxygen-level-dependent (BOLD) signal in orbitofrontal cortex (Tobler et al, 

2007), lateral prefrontal cortex (Tobler et al, 2009), anterior insula and nucleus 

accumbens (Kuhnen and Knuston, 2005), ventral striatum and anterior insula (Rudorf 

et al, 2012), dopaminergic regions and their targets (Tom et al, 2007; Niv et al, 2012). 

It has been shown that the risk attitude can be changed by the manipulation of cortical 

activity (Ishii et al, 2012; Fecteau et al, 2007; Knoch et al, 2006) or modulated by 

dopamine (Simon et al, 2011) and serotonin (Long, et al, 2009). One study showed 

that the volume of gray matter in the right posterior parietal cortex predict the risk 

attitude (Gilaie-Dotan et al, 2014). Meanwhile, electrophysiology recording 
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demonstrated that single neuron in OFC (van Duuren et al, 2009), basal ganglia 

(Fiorillo et al, 2003) and anterodorsal region of the primate septum (Monosov and 

Hikosaka, 2013) may code the probability of reward and the probability distortion 

may relate with the activity of prefrontal cortex (Wu et al, 2011; Tobler et al, 2008) 

and striatum (Hsu et al, 2009, Stauffer et al.2015). However, the neural origination of 

risk attitude and the probability distortion has not been elucidated. Here, we 

investigated this issue using a two-stage evaluation and choice framework (Glimcher, 

2009). Rescorla-Wagner model (Rescorla and Wagner, 1972; Sutton and Barto, 1998) 

with asymmetric learning rates upon gain and loss was applied to form the subjective 

values of risky options, while the probabilistic choice depended on the subjective 

values. The results of our model indicate that the risk attitude and the probability 

distortion share the common neural mechanism, i.e. choice based on the subjective 

value learned from the experience with asymmetric learning rates upon gain and loss. 

Furthermore, our model exhibits a reasonable behavior: seeking small risk but 

avoiding large risk.  

Results 

Valuation process implemented as Rescorla-Wagner model with learning rates 

upon gain and loss 

The valuation process is the first stage of risky decision. Based on the experience, 

subject learns the risky option’s subjective value which can be expressed in physical 

units of the reference reward at points of equal preference or physical amount of safe 
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reward at choice indifference (Schultz, 2017). If the outcome    of     option 

deviates from the subjective value   , the subjective value will be updated according 

to Rescorla-Wagner model: 

              (           ) (1) 

It has been shown that dopaminergic system and lateral habenula involved valuation 

process. On the one hand, dopaminergic neurons have a peak response to unexpected 

reward and a small dip response to unexpected loss (Schultz et al,1997); on the other 

hand, some neurons in lateral habenula have a peak response to unexpected loss and a 

small dip response to unexpected reward (Matsumoto and Hikosaka, 2007). The 

lateral habenula neurons project to serotonergic neurons in dorsal raphe nucleus and 

induce a neuromodulation different from that of dopamine (Zhou et al., 2017). 

Besides the separation of VTA and LHb, long-term potentiation(LTP) and long-term 

depotentiation(LTD) could result in an experience-dependent asymmetry effect on 

input(Mehta et al.,2000). Therefore, we split the learning process into two parts, one 

for the situation that outcome is larger than previous subjective value and one for the 

situation that outcome is smaller than previous subjective value. Thus, the update rule 

of subjective value can be rewritten as: 

            {
  (           )                 

  (           )                

  (2) 

where    is the learning rate if the outcome is larger than previous subjective value 

and    is the learning rate if the outcome is smaller than previous subjective value. 

If      , our update rule will be reduced to the original version of 
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Rescorla-Wagner model.  

We first explored features of the valuation process with separate learning rates    

and    given stochastic outcome for one risky option. For clarity, we considered one 

binary stochastic outcome, i.e., a larger reward    at probability   and a smaller 

reward    at probability    . The distribution of the subjective value of this risky 

option follows a dynamic: 

  ( )       (     (    ) )  (   )    (     (    ) ) (3) 

where   ( ) is the probability that subjective value equals to   at time  . The 

steady distribution of subjective value can be obtained if we let   ( )      ( ). 

The results in Figure 1 demonstrate that: 1) the distribution of subjective value skews 

toward larger reward of the outcome given      , which implies that the mean of 

the subjective value is larger than the average 
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Figure 1. Distribution of the normalized subjective value. A)       and      ; B)       and 

     ; C)       and      ; D)       and      ; E)        and      ; F) 

      and      . The normalized subjective value is obtained by subtraction of    from 

subjective value and then divided by      . 

of the actual reward (Figure 1A and 1D); 2) the distribution of the subjective value 

skews toward smaller reward of the outcome given      , which means the 

average of the subjective value is smaller than the mean of the actual reward  (Figure 

1B and 1E); 3) the distribution is smooth given smaller learning rate and non-smooth 

given larger learning rate; 4) the distribution is narrow given small learning rate but 

broad given large learning rate, indicating the standard deviation of subjective value, 

called as subjective risk (SR) in this study, increases with the learning rate (Figure 

1C). The mean of the subjective value (EV) can be worked out as:  

    
          (   )

      (   )
 (4) 

If      , EV is identical to the real outcome, i.e.          (   ) , 

suggesting a faithful perception on the outcome of risky option. Otherwise, 

         (   )  given       or          (   )  given 

     , indicating an overestimation or underestimation of the outcome of risky 

option. This is consistent with the distribution of subjective value shown in Figure 1. 

SR can also be worked out as:   

   
    (     )

      (   )
√

 (   )

(      
 )  (      

 )(   )
  (5) 

When        , we obtained SR for the original Rescorla-Wagner model: 
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   (     )√
  (   )

   
, which is a symmetric function of probability   and reach 

its maximum at      . However, the peak of SR skews toward     given 

      or skews toward     given      (Figure 2A). To further clarify the 

effect of learning rates on SR, we calculate the ratio of SR over the standard deviation 

of the outcome, i.e., objective risk (OR):    (     )√ (   ). We find that 

the ratio is a decreasing function of probability   given      , but an increasing 

function of probability   given       (Figure 2B). Therefore, if      , the 

subject risk overestimates the risk of the options with lower rewarding probability but 

underestimates the risk of the options with higher rewarding probability. At the same 

time, if      , the subject risk underestimates the risk of the options with lower 

rewarding probability but overestimates the risk of the options with higher rewarding 

probability. 

In traditional financial market, gamma ratio of excess return of risky assets to the 

standard deviation of the return is often used to make decision on the adjustment of 

portfolios (Sharpe, 1994). Higher gamma ratio indicates a larger excess return per unit 

of risk or better performance of manager. In this study, to measure how much 

excessive subjective value per SR, we defined a subjective gamma ratio:   
     

  
, 

where    is the average of the actual reward of risky option. Figure 2C shows the 

subjective gamma ratio over probability receiving reward. Given      , the 

subjective gamma is positive and the peak of subjective gamma is larger than 0.5, 

indicating that subjects overestimate the real reward and are sensitive to the reward at 

larger probability. Given      , the subjective gamma is negative and reaches its 
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minimum given a probability small than 0.5, suggesting that subjects underestimate 

the real reward and more sensitive to the reward at small probability. 

Probabilistic choice of the risky option based on subjective value 

The risky decision tasks in neuroscience study often include two alternative options, 

for example option R and option L. The choice probability depends on the difference 

between divisively normalized subjective values of options (Louie, et al. 2013):  

   [   
  

     
       ]

  

 (6) 

where    is the probability choosing the option R,    and    are the subjective 

values of option R and L.   is the sensitivity of value discrimination. Larger   leads 

to bigger difference between probabilities choosing option R and that of option L 

given fixed subjective values of options. The divisive normalization parameter   

reflects the homeostasis/wealth of subject. Larger   leads to a poorer discrimination 

between perceived values of options. 

 

Figure 2. The effects of learning rates on the subjective risk. A) The subjective risk normalized by 
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      as function of probability of receiving reward   . B) The ratio of subjective risk over 

objective risk (     )√ (   ) as function of probability of receiving reward   . C) The 

subjective gamma ratio.  

Behavior of two-stage model on risky task with fixed mean and variant 

coefficient of variance 

McCoy and Platt (2005) let monkey chose one option with certain reward or one risky 

option with random reward by saccade. The outcome of risky option is either smaller 

or larger reward at half-to-half chance and the mean of reward equals to outcome of 

certain option 150. The outcome of risky option has six levels of coefficient of 

variance (CV: the ratio of standard deviation over the mean): 0.0667, 

0.1,0.167,0.333,0.5 and 0.667. Their experiments showed that monkeys chose the 

risky option at higher probability given larger CV, indicating the risk seeking 

behavior. Particularly, probability of choosing the risky option over previous reward 

exhibits as a check marker, indicating that gain and loss from the risky option has 

asymmetric effects on the consequent choice. Here we simulated this task using our 

model described as Eq(1) and (6). We carried out the simulation with 30 sessions and 

3000 trials for each risk level in each session.  

Our two-stage model captures the risk seeking behavior of monkey observed in 

McCoy and Platt’s experiments (Figure 3). First, the probability of risky choice 

decreases with the previous reward when the previous reward is smaller than the 

certain reward, but the probability of risky option increases with the previous reward 
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if the previous reward is larger than the certain reward. Thus, the plot consists of one 

left and right branch and the exhibits an asymmetric effect on the probability of 

choosing risky option in the next trial as shown in McCoy and Platt’s experiments 

(Figure 3A). Actually, when the previous reward is smaller than the certain reward, 

the previous reward should be    of one risky option and the smaller the previous 

reward means the larger CV of the risky option. Therefore, the decrease of probability 

of risky choice with the increase of    means a risk-seeking behavior. Second, the 

probability of choosing risky option increases along with the increasing of risk 

(Figure 3B). Third, the subjective value of risky option fluctuates given a fixed level 

of risk (Figure 3E), but the average of the subjective value linearly increases with the 

risk (Figure 3C). Fourth, SR also linearly increases with the risk (Figure 3D). The 

results in Figure 3C are consistent with our formula for the mean of subjective value 

and3D are consistent with our formula for subjective risk. 
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Figure 3. The risk-seeking behavior captured by two-stage model. A) The probability of risky choice 

over previous reward shows an asymmetric check marker. B) The probability of risk choice as an 

increasing function of risk. C) The mean of subjective value of the risky option is an increasing 

function of risk. D) The subjective risk is an increasing function of risk. E) The subjective value of 

risky option varies with the simulation trials in one session. The parameters are chosen as:    

                      . 

Besides the risk-seeking behavior, the model exhibits rich repertoires of risk 

behaviors. 1) Risk-avoiding behavior (data are not shown). If EV of risky option is 

smaller than the reward of certain option due to      , or even EV of risky option 

equals to the reward of certain option but with large SR, the model exhibits 

risk-avoiding behavior, i.e., the probability choosing risky option decreases with the 

increase of CV. 2) Risk-neutral behavior (data are not shown). If SR of risky option is 

small and EV of risky option equals to the outcome of certain option due to      , 

the model exhibits a risk-neutral behavior, i.e., risky option and certain option was 

chosen at half-half chance level. 3) Seeking small risk but avoiding large risk (Figure 

4). We simulate the same task using parameters                        

  . We find that the probability of risky option slightly increases with the previous 

reward when the previous reward is smaller than the certain reward, but sharply 

increases with the previous reward when the previous reward is larger than the certain 

reward (Figure 4A). Given a larger CV of risky option, once the outcome is smaller 

reward   , the subjective value has a bigger drop and could be much smaller than the 

certain value (Figure 4E), leading to lower probability to choose the risky option 
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again. Given a smaller CV of risky option, the subjective value has a smaller drop 

even the outcome is    and the subjective value is close to the certain value, 

resulting a higher probability to choose the risky option. In brief word, the subject 

seeks a small risk but avoid large risk. EV of risky option increases with the risk due 

to      (Figure 4C). SR also increases with the risk (Figure 4D) and the slope is 

larger than that in Figure 3D. The raster plots of SV in Figure 4D is sparser than that 

in Figure 3D given large CV, which is consistent with SR. Because of the dynamics 

of the subjective value of risky option, the probability choosing risky option increases 

given small risk but decreases with the further increasing of risk (Figure 4B). This 

kind of seeking small risk but avoiding large risk behavior is reasonable and quite 

interesting, but this phenomenon has not been studied in previous researches.  

Figure 4. Seeking small risk but avoiding large risk. A) The probability of risky choice over previous 

reward. B) The probability of risk choice as an increasing function of risk. C) The mean of subjective 
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value of risky option is an increasing function of risk. D) The subjective risk is an increasing function 

of risk. E) The subjective value of risky option varies with the simulation trials in one session. The 

parameters are chosen as:                          . 

Behavior of two-stage model on risky tasks with variant mean but fixed 

coefficient of variance 

Yamada et al (2013) investigated the risk attitude of well-trained monkey. The 

experiment includes four conditions. Each condition has one certain option and one 

risky option which offers five different risky rewards: zero or nonzero at half-to-half 

chance and the average magnitude of risky reward ranges from smaller to larger than 

that of certain option. The magnitude of reward offered by certain option is 60, 120, 

180, and 240 for different condition, respectively. Yamada et al. fitted the data from 

four conditions as whole using choice probability          (       )    based 

on expected utility function         (where   is the probability of obtaining the 

offered reward,   is the magnitude of the offered reward). They found that two 

well-trained monkeys are risk avoiding, i.e., the parameter of utility function    .   
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Figure 5. Simulated risk behavior on tasks with fixed CV but variant average reward. The sensitivity 

and wealth/thirst parameters are set as:            . The learning rates are set as    

              in A),                  in B), and                  in C). The dots 

in figures are simulated data and the lines are fitted choice probability based one expected utility 

function. The color denotes the magnitude of certain reward, red for 60, magenta for 120, green for 

180, and blue for 240. The top panels show the fitted choice function for each condition with different 

learning rates. Middle panels show the average of subjective value of each risky option. Bottom panels 

show the subjective risk of each risky option.  A) Risk-avoiding behavior. The utility function 

parameters     for all conditions B) Risk-seeking behavior. The utility function parameters     

for all conditions. C) Risk-switching behavior: seeking small risk but avoiding large risk. The utility 

function parameter changes from     to     along with the increase of the risk.  

In this study, two-stage model is used to simulate the tasks in Yamada et al (2013). 

The sensitivity of choice and wealth/thirst parameters are set as             

but the learning rates are varied. The simulated data are shown as dots in Figure 5. 
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The simulated data are fitted to choose probability          (       )    and 

utility function        . The two-stage model exhibits rich risky behavior as 

shown in Figure 5. First, the model exhibits risk-avoiding behavior that has been 

observed in Yamada et al (2013) (Figure 5A). The subjective value of the risky option 

underestimates the actual reward of risky option if      , as the result, the 

probability to chose the risky option will be attenuated. To compensate this 

attenuation, the parameter of utility function must be smaller than one during the data 

fitting, indicating risk avoiding. In the present study, the learning rates are chosen as 

                , which means that the average of the subjective value 

overestimates the actual reward of the risky option. But, the large fluctuation of the 

subjective value increases the possibility that instantaneous subjective value is much 

smaller than the certain reward and cannot be updated. The consequence is to lower 

the probability of choosing risky option, leading to a risk avoiding behavior (Figure 

5A).  

Second, the model also can exhibit risk seeking behavior as observed in McCoy and 

Platt (2005) (Figure 5B). On the one hand, the model overestimates the value of the 

risky option due to learning rates      (                ). On the other 

hand, the SR of risky option is comparatively small (Figure 5 B2 and B3) and the 

subjective value will not be trapped into big drop of the subjective value. As the 

result, the probability to choose the risky option was increased. To meet the 

incremental probability choosing risky option, the parameter of utility function should 

be larger than one during the data fitting, which implies a risk-seeking behavior.  
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Third, the model predicts a new type of risk attitude: risk switching (i.e. seeking the 

small risk but avoiding larger risk) (Figure 5C). If the standard deviation of the 

subjective value is small and the average of the subjective value is larger than that of 

certain option, the risky option is more likely to be chosen. However, if the standard 

deviation of the subjective value is large, even the average of the subjective value is 

larger than that of actual reward, the certain option is more likely to be chosen in void 

the big loss due to the larger deviation of risky option (see Figure 5A3, 5B3, and 

5C3). To make this clear, we calculate subjective gamma ratio for each risky option 

under four conditions. Although subjective gamma ratio for each risky option is 

fluctuating, the subjective gamma ratio can be clustered into three groups and each 

group of ratios corresponds to one kind of risk attitude. The risk avoiding behavior 

has a small ratio, while the risk seeking behavior has a big ratio. The subjective 

gamma ratio for risk switching behavior falls between risk avoiding and risk seeking 

behavior (Figure 6A). The average of subjective gamma ratio over four conditions 

shown in Figure 6B clearly show a positive relation between   and   in utility 

function. At the same time, the   ratio has not significant difference within same risk 

attitude but has significant difference between different risk attitude (Figure 6C). 
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Figure 6. Subjective gamma ratio and risk attitude. A) Gamma ratio for each risky option. Circles, 

stars, and diamonds denote risk seeking, risk avoiding and risk switching attitude, respectively. Color 

denotes the magnitude of certain reward: red for 60, matagna for 120, green for 180, and blue for 240, 

respectively. B) Gamma ratio as a function of   of utility function. C) Gamma ratio within same risk 

attitude and between different risk attitude. 

Probability distortion shown by two-stage model on choice between two gambles 

Human subjects may distort the probability when they face the risky options. Hsu et al 

(2009) has designed one task to investigate the neural correlates of probability 

distortion. In their task, human subjects were requested to make a choice between two 

gambles (     ) and (     ), where (     ) denotes gamble   providing reward 

   at probability   . Hsu et al. assumed that subjects’ utility function as  ( )  

    , and the first gamble is chosen at probability 

        ( (  ) (  )  (  ) (  ))    with Prelec weighting function:  ( )  

      (     )  ⁄ . They found that some of human subject overweight small 
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probability and underweight large probability (   ) while some human subjects 

underweight small probability and overweight large probability (   ). They also 

demonstrated the relation between neural activities in the striatum during valuation of 

monetary gambles with the nonlinearity of probability predicted by prospect theory. 

However, the origination of the nonlinearity of probability has not been revealed yet. 

Here we used two-stage model to perform the tasks used in Hsu et al (2009) and fitted 

the simulated choice data to identical model they used. Three types of learning rates 

are chosen during the simulation: A)              ; B)                ; 

and C)               . The average and the standard deviation of the 

subjective value of each gamble can be worked out according to formula:    

    

      (   )
 and    

     

      (   )
√

 (   )

(      
 )  (      

 )(   )
 based on the 

probability   and reward  . Because of learning rates and the probability to receive 

the reward, the average of subjective value for gambles in Figure 7B (      

    ) is smaller than that in Figure 7C (               ) but larger than that in 

Figure 7A (      ,       ), the SR in Figure 7C is larger than that in Figure 7B 

but smaller than that in Figure 7A. 
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Figure 7. Subjective value of each gamble. A)              ;B)                 ; 

C)               . Red for gamble (     ) and blue for gamble (     ), dots denote the 

average of subjective value and bars denote the subjective risk. 

The simulated subjective values of gambles in all tasks shown in the top two rows of 

Figure 8 are consistent with the theoretical results in Figure 7. The average of 

subjective value of (     ) almost the same as that of (     ) (Figure 8) and gamble 

(     ) has a larger deviation given      . However, the average of subjective 

value of (     ) is larger than that of (     ) and the deviation of subjective value of 

(     ) is smaller than that of gamble (     ) given      . As consequences, the 

gamble (     ) was chosen more frequently than gamble (     ) given       and 

the gamble (     ) was chosen more frequently than gamble (     ) given       

as shown in Figure 8A2. In Figure 8B, the average of subjective value of gamble 

(     ) has no big difference with that of gamble (     ). The gamble (     ) and 

(     ) are almost equally chosen. In Figure 8C, the average of subjective value of 

gamble (     ) is larger than that of gamble (     ) and the deviation of subjective 

                  



 20 

value of gamble (     ) is small given      . The average of subjective value of 

gamble (     ) is smaller than that of gamble (     ) and the deviation of subjective 

value of gamble (     ) is smaller than that of gamble (     ) given      . As 

results, the gamble (     ) was chosen more frequently than gamble (     ) given 

      and the gamble (     ) was chosen more frequently than gamble (     ) 

given       (Figure 8C).  

 

Figure 8. Weighting of probability inferred from simulated choices. A) Overweighting small 

probability but underweighting large probability. B) Linear weighting of probability. C) 

Underweighting small probability but overweight large probability. Black line is weighting function 

and red line is diagonal line.   is parameter of Prelec function  ( )        (     )  ⁄ ,  𝑃𝐷 is 

parameter of utility function used by Hsu et al (2009),      is parameter of utility function in expected 
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utility theory. The first and second row show the subjective value of gamble 1 and gamble 2, 

respectively. The third row shows the probability to choose gamble 1. The fourth row shows the 

weighting of probability. 

 

The simulated choice probabilities were fitted to the model 

        ( (  ) (  )  (  ) (  ))    with utility function   ( )       and 

weighting function  ( )        (     )  ⁄  and the fitted weighting functions are 

shown in the bottom row of Figure 8. Our model demonstrates three types of 

probability distortion. The small probability is over weighted and large probability is 

underweighted with learning rates       ,        in Figure 8A4; the small 

probability is underweighted but large probability is over weighted with learning rates 

      ,         in Figure 8C4; and the probability can be linear weighted given 

small and symmetric learning rates        ,         in Figure 8B4.  

Although the risk attitude of subjects has not been reported in Hsu et al (2009), these 

human subjects should have their own risk attitude. Here, we fitted the simulated 

choices probability to the expected utility theory:         (   (  )    (  ))    

with  ( )      . The results shown in Figure 8 demonstrate that risk avoiding 

subjects may overweight small probability but underweight large probability since 

      and     in Figure 8A3. The risk seeking subjects underweight small 

probability and overweight large probability since       and     in Figure 

8C4. Those subjects weighting probability linearly show a risk avoiding behavior 

(      and    ) in Figure 8B4.  
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Probability distortion in certainty equivalent searching task using parameter 

estimation by sequential testing (PEST) 

Probability distortion has been revealed in Macaque monkeys (Stauffer et al. 2015) as 

well as in human subjects. Monkeys are requested to make a choice between a risky 

option and a sure option. In one block of experiment, the risky option provides a 

reward (RR=0.5) at a probability (0.1,0.25,0.4,0.6,0.75, and 0.9), while the reward of 

sure option will be adjusted using an adaptive psychometric measurement technique 

(Parameter Estimation by Sequential Testing, PEST) (Luce, 2000). If the risky option 

was chosen, the reward of sure option was increased by   on the next step. If the sure 

option was chosen, the reward of sure option was decreased by   on the next step. 

There is an upper boundary and lower boundary of the reward of sure option in avoid 

the explosion in the simulation. Every time two consecutive choices were the same,   

was increased by 20%, and every time the choice was switched from one option to 

another,   was increased by 20%. Once   is smaller than a threshold, the simulation 

was stopped and the reward of sure option is the certainty equivalent of the risky 

option. Figure 9 shows the time course of the simulated reward of sure option. It is 

easy to see that sure reward fluctuates in early stage of simulation and finally 

approaches to a stable value (certainty equivalent: CE). The parameters of nonlinear 

weighting can be obtained by fitting the simulated CE to the formula     

 ( )    with  ( )        (     )  ⁄ . Figure 9A show the results given 

       ,        ,    , and    . The certainty equivalents were obtained 

after hundreds simulation steps, and the average of CEs over 100 trials simulation are 
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0.0942, 0.2296, 0.3131,0.3777,0.4148, and 0.4587 for reward of risky option at 

probability 0.1,0.25,0.4,0.6,0.75, and 0.9 respectively. These CEs are larger than the 

objective average reward from risky option owing to      . The parameter for 

weighting function is            , indicating underweighting small probability 

and overweighting large probability (Figure 9A2). The parameter for utility function 

is            , implying risk seeking behavior. Figure 9B show the results 

given        ,         ,    , and    . The average CEs are 0.0255, 

0.0724, 0.1304, 0.2161, 0.2944, and 0.4350 for reward at probability 

0.1,0.25,0.4,0.6,0.75, and 0.9 respectively. These CEs are smaller than objective 

average of reward from risky option due to      . The parameter for utility 

function is            , indicating a risk avoiding behavior. The parameter for 

weighting function is            , suggesting an overweighting of small 

probability and underweighting of large probability. As brief summary, by varying the 

learning rates, our model can reproduce the observations in Stauffer et al. 2015 and 

predicts a different type of probability distortion, indicating that learning rates play 

important roles in the probability perceiving process. 
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Figure 9. Weighting of probability in simulated PEST task. A1). The time course of the sure reward in 

an example trial of certainty equivalent searching task given        ,        ,    , and 

   . A2) The weighting function of probability underweighting small probability and overweighting 

large probability. B1) The time course of the sure reward in an example trial of certainty equivalent 

searching task given        ,         ,    , and    . B2) The weighting function 

overweighting small probability and underweighting large probability. 

 

Discussion 

Risk attitude and probability distortion play central roles in the decision making under 

risky circumstance. In this study, we investigated their neural basis and found that the 

valuation process through reinforcement learning from experience is the common 

neural basis of the risk attitude and the probability distortion. The learning rates in the 

reinforcement learning determine the average of the subjective value and the 
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subjective gamma ratio (  
     

 𝐷 
). If the learning rate for gains    is smaller than 

the learning rate for losses   , the average of subjective value is smaller than that of 

real reward of risky option and the subjective gamma ratio is smaller than zero, 

leading to a risk avoiding behavior. When      , the average of subjective value 

is larger than that of real reward of risky option and the subjective gamma ratio is 

positive. On the one hand, if the subjective gamma ratio is small, the standard 

deviation of the subjective value is large comparing to the surplus of the subjective 

value over the real reward, leading to a risk avoiding behavior (Figure 6); on the other 

hand, if the subjective gamma ratio is large, the standard deviation of the subjective 

value is small comparing to the surplus of the subjective value over the real reward, 

causing a risk seeking behavior. When the subjective gamma ratio is not large 

enough, the model exhibits a new type of risk behavior: seeking small risk but 

avoiding large risk. 

The learning rates in reinforcement learning determine the SR. If      , the SR of 

risky option receiving reward at small probability will be augmented and the 

subjective gamma ratio peaks at large probability (Figure 2). As the result, the gamble 

with large rewarding probability will be chosen more frequently than the gamble with 

small reward probability in the task designed by Hsu et al (2009), leading to 

underweighting of small probability and overweighting of large probability. Actually, 

this type of probability distortion has long been observed in one comparative study 

that monkeys increase the probability of highly probable choice and decrease the 

probability of low one (Bitterman,1975). If      , the SR of risky option receiving 
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at large probability is augmented and the subjective gamma ratio has a trough at small 

probability (Figure 2). The consequence is that the gamble with small rewarding 

probability will be chosen more frequently than the gamble with large reward 

probability in the task designed, implying overweighting of small probability and 

underweighting large probability. These results imply that the enhancement of VTA 

neurons leads subjects shift their risk attitude from risk avoiding to risk seeking, while 

the enhancement of LHb activity will lead subjects shift their risk attitude from risk 

seeking to risk avoiding.  

The traditional reinforcement learning model, which can be looked as our model with 

symmetric learning rates      , can only produce the risk avoiding behavior and 

cannot explain the risk seeking behavior as in McCoy 2005. Risk sensitive temporal 

difference model has been proposed to explore risk sensitivity (Niv et al, 2012; Frank 

et al, 2007; Frank et al, 2009) and stated that       leads to risk avoiding 

behavior and       leads to risk seeking behavior. However, our study found that 

not only       but also a large subjective gamma ratio can result in risk seeking 

behavior, even       can lead to a larger average subjective value, the larger SR 

can cancel out the surplus of subjective value over real reward and lead to risk 

avoiding behavior (Figure 6). 

We obtained above conclusions based on simulations with good discrimination 

between values due to large sensitivity parameter. If the discrimination ability on 

values is impaired by decreasing the sensitivity parameter, the choice will more 

frequently switch between two options. Considering an extreme condition that    , 
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any one of the options will be chosen by half chance. Thus, the certainty equivalent in 

PEST task converges to a number which is independent of reward receiving 

probability of risky option, leading to an overweighting of small probability and 

underweighting of large probability. 
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