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a b s t r a c t 

Binary Neural Networks (BNNs) use binary values for both weights and activations instead of 32 bit float- 

ing point numbers typically used in deep neural networks. This reduces the memory footprint by a factor 

of 32 and allows a very efficient implementation in hardware. BNNs are trained using regular gradient 

descent but are harder to optimise, take longer to train and generally require a more careful tuning of 

hyperparameters such as the learning rate decay schedule than floating point versions. We propose to 

use Knowledge Transfer techniques to make it easier to train BNNs. Knowledge transfer is a general tech- 

nique that tries to transfer the knowledge stored in a large network (the teacher) to a smaller (student) 

network. In our case the teacher is a network trained with floating point weights and activations while 

the student is a BNN. We apply different Knowledge Transfer techniques to the task of training a BNN. 

We introduce a novel similarity based Knowledge Transfer algorithm and show that this technique results 

in a higher test accuracy on different benchmark datasets compared to training the BNN from scratch. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Deep neural networks are exceptionally powerful but they also

equire large amounts of resources such as compute power and

emory. Training a neural network is the computationally most

xpensive part but this is usually done offline on high perfor-

ance systems in a datacenter. The basic computational operation

f a neural network is a matrix-matrix multiplication. This opera-

ion is highly parallelizable and can be very efficiently performed

n Graphical Processing Units (GPUs). GPUs are currently the best

ption to train neural networks. 

Once trained the network needs to be deployed in a real-world

nvironment. This stage (known as inference) requires less re-

ources than training but even a moderate sized network can take

illions of floating point operations (FLOPs) just to process one in-

ut. In addition the device also needs to store all parameters of the

etwork which quickly adds up to hundreds of megabytes. 

Binary neural networks are more efficient because they are con-

trained to binary weights and activations. This reduces the mem-

ry footprint of the weights by a factor of 32 and also allows for

 very efficient implementation in hardware since the 32 bit float-

ng point multiplications can now be replaced with bitwise logical

perations [1] . 

Courbariaux et al. first showed that it is possible to train mod-

rn large neural networks for image classification with binary
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eights and activations [1] . This suggests that typical neural net-

orks are overparameterized [2] . While we were able to replicate

hese results we found that BNNs typically take longer to train

nd are more sensitive to hyperparameters such as the architec-

ure of the network, the initial learning rate, the learning rate de-

ay schedule, the optimization algorithm and regularization terms. 

Instead of training a BNN from scratch we propose to use the

nowledge from an already trained floating point model. A floating

oint teacher model can be trained using existing state-of-the-art

echniques and then be used to guide the optimisation process

f the student network. This concept is known as Knowledge

ransfer. We describe two common Knowledge Transfer tech-

iques in Section 2 . In Section 3 we present our novel similarity

ased Knowledge Transfer technique and we compare the three

echniques applied to training binary neural networks for image

lassification in Section 4 . 

. Related work 

Deep neural networks (DNNs) have been successfully applied

n various areas such as computer vision [3–5] , remote sensing [6] ,

peech recognition [7] , robotics [8] , metric learning [9,10] and re-

ently even in image generation [11] , style transfer [12] and cap-

ion generation [13] . For a comprehensive overview of the history

f deep learning we refer to [14] . 
et al., Training binary neural networks with knowledge transfer, 
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Algorithm 1 Forward pass through a BNN [23] . 

Input: Full-precision weights W k for each layer k . The total number 

of layers N. A minibatch of data a 0 . 

1: procedure forward 

2: for k=1 to N do 

3: W 

b 
k 

← Binarize (W k ) 

4: a k ← BinaryDot P roduct (a k −1 , W k ) 

5: a k ← BatchNorm (a k ) 

6: if k < L then 

7: a k ← Binarize (a k ) 

8: end if 

9: end for 

10: end procedure 
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2.1. Resource constrained deep learning 

Various works have reduced the computational cost and/or the

memory footprint of DNNs. Two of the first works to recognize

the fact that neural networks typically contain redundant param-

eters were Optimal Brain Damage [15] and Optimal Brain Sur-

geon [16] . They used second order derivative information to iden-

tify the connections that can be safely pruned. More recently Han

et al. proposed a three step method [17] where first the network

was trained to learn which connections are important. Next the

unimportant connections were pruned and finally the remaining

weights were fine-tuned to compensate for the lost accuracy. This

technique is able to reduce the number of parameters in state of

the art networks by an order of magnitude. 

Other approaches include transforming the weight matrices

into low rank decompositions [18,19] or even a hashing based tech-

nique [20] where connection weights are grouped into hash buck-

ets and all connections within the same bucket share the same

value. 

It is well known that full precision floating point numbers are

not needed for weights and activations. 8 bit fixed point integers

are usually sufficient [21] and these allow for efficient implemen-

tation in hardware. Other works further reduce the precision of the

weights to 4 bits (for convolutional layers) or to two bits (for fully

connected layers) [22] . 

2.2. Binary neural networks 

In the extreme case the precision of weights and activations

can even be reduced to 1 bit. This allows an extremely efficient

implementation in hardware. The BinaryConnect paper by Cour-

bariaux et al. [23] was the first to train large modern neural net-

works for image classification with binary weights. This was later

extended in [1] to binary weights and binary activations and in

a follow-up paper [24] results on the Imagenet dataset were pre-

sented. The name “binary neural network” had been used long be-

fore for networks that were capable of learning binary-to-binary

mappings [25] . These networks used ternary ( −1, 0, +1) or integer

weights that make them more efficient in hardware implementa-

tions [26] and could be trained with different techniques such as

expand-and-truncate learning (ETL) [27] or DNA-like learning [28] .

The basic operation in a BNN is the binarization function that

transforms the floating point weights and activations ( x ) to binary

values (-1 and +1). This function simply thresholds the value based

on the sign: 

Binarize (x ) = sign (x ) 

{
+1 if x ≥ 0 

−1 if x < 0 

(1)

This binarization function is used to binarize both the weights

of the network and the activations. The forward pass is then

described by Algorithm 1 . Where N is the number of layers in the

network. W k are the floating point weights of the k − th layer and

 

b 
k 

are the binarized weights. Similarly, a k are the activations of

the k − th layer. Batchnorm ( x ) represents the Batch Normalization

[29] operation and BinaryDotProduct ( x, w ) calculates the binary

dot product between the (binary) input vector x and the binary

weights w . 

Training a neural network with binary weights and activations

is not straight-forward for two reasons. First, stochastic gradient

descent (SGD) relies on making many small updates to weights.

Every update on itself is very noisy but the noise is averaged out

by accumulating many updates. Restricting the weights to binary

values is a much too coarse approximation for SGD since the small

updates would be lost in the quantization noise. The solution is

to accumulate all updates in floating point weights and to use bi-

narized copies for the dot product. The second problem is that
Please cite this article as: S. Leroux, B. Vankeirsbilck and T. Verbelen 
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he sign function that is used for binarizing the weights and ac-

ivations has a zero derivative almost everywhere (hard thresh-

ld) which makes it incompatible with backpropagation since the

radient of the loss with respect to the input of the sign func-

ion would be zero [23] . The solution is to use a “straight-through

stimator” [30] which approximates the outgoing gradient by the

ncoming gradient. 

The XNOR-net paper [31] proposed a similar but slightly dif-

erent approach where the output of the binary layers was mul-

iplied with a floating point scale factor to recover the dynamic

ange. This yields better results on the Imagenet dataset but makes

 hardware implementation more difficult. The first and last lay-

rs still used 32 bit floating point numbers in this implementa-

ion making it a slightly less resource efficient solution compared

o fully binary networks. 

It might seem surprising that it is possible to train neural net-

orks with binary weights and activations. There has been some

ery recent theoretical work that gives a possible explanation. An-

erson et al. [32] show that a binary approximation of a high di-

ensional vector still preserves the direction of the vector very

ell. This would suggest that the information loss caused by the

inarization process is not as severe as it would seem. They also

nd that the batch normalized weight-activation dot products (the

ntermediate representations) are approximately preserved under

he binarization of the weight vectors and they show that this

s a sufficient condition for the binary operations to approximate

he underlying floating point operations. Lastly they argue that the

omputations done by the first layer of neural networks trained for

mage classification are fundamentally different than the computa-

ions being done in the rest of the network. The impact of bina-

ization on this layer is much more severe. This is why they sug-

est to use a floating point convolution for this very first layer. This

ayer then projects the floating point input to a high dimensional

inary space. 

BNNs can be evaluated much more efficiently than floating

oint networks but this requires custom implementations since

ost general purpose compute platforms like CPUs or GPUs are not

ptimized for binary operations. Courbariaux et al. implemented a

ustom GPU kernel that is able to evaluate BNNs seven times faster

han a baseline kernel on GPUs [1] . Other works have designed

ield Programmable Gate Array (FPGA) implementations [33] or

ven completely custom hardware platforms [34] to fully exploit

he potential of BNNs. 

.3. Knowledge distillation 

An interesting family of techniques tries to export the knowl-

dge stored in a large model or in an ensemble of models (the

eacher) to a smaller network (the student) that is more efficient

o evaluate. A first version of this idea was proposed in [35] where
et al., Training binary neural networks with knowledge transfer, 
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Fig. 1. Conceptual difference between Knowledge Distillation (a) and Fitnets (b). Knowledge distillation uses the soft output of the teacher as a target for the student. Fitnets 

use the intermediate representations to guide the learning process of the student. L indicates the loss function that is optimised with gradient descent. 
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 large trained ensemble was used to label additional data that can

hen be used to train a new more compact network. 

More recently Hinton et al. introduced an elegant transfer

echnique called Knowledge Distillation [36] . It is based on the

bservation that the output of the trained teacher (the probability

istribution of the classes) can be used as a soft target for the

tudent. This soft target provides more information than a hard

lass label since it also encodes information about the similarity

etween classes. This makes it easier for the student to discover

tructure in the data. A neural network trained for classification

ypically uses a softmax activation ( Eq. (2.3) ) for the last layer.

his activation transforms the logits z i to probabilities q i : 

 i = 

e z i /T ∑ 

j e 
z j /T 

(2) 

here T is a temperature parameter that is typically set to 1.

maller values of T cause the network to produce more confident

esults while larger values of T cause a softer probability distribu-

ion over the classes. The Knowledge Distillation technique passes

 batch of training data through the teacher network and uses the

btained probability distribution as a soft target for the student.

o train the student we minimize the cross-entropy loss ( Eq. (3) )

etween the soft target p ( x ) and the output of the student q ( x ). 

(p, q ) = −
∑ 

i 

p(x ) log(q (x )) (3)

f the correct labels are available for (some of) the training samples

e can use a weighted sum of two cross entropy loss functions.

ne calculated on the soft targets and the other calculated on the

ard ground truth labels. 

The idea of distillation was later extended in Fitnets [37] where

he intermediate representations of the teacher were used to guide

he training process of the student in addition to the soft outputs.

he student is encouraged to have a similar intermediate represen-

ation as the teacher. Since the dimensionalities of the intermedi-

te representations of both networks do not necessarily correspond

hey added additional regressor layers that could map the inter-

ediate representation of the student to the spatial size as the in-

ermediate representation of the teacher. The student is trained to

inimize the euclidian loss function shown in Eq. (4) where p i cal-

ulates the intermediate representation of the teacher network up

o layer i and q j similarly calculates the activations of the student

etwork after layer j. r is the regressor network that converts the

ctivations of the student to the same size as the the activations of

he teacher. 

f i (B ) = 

1 ‖ p i (x ) − r(q j (x )) ‖ (4)

2 
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Both approaches are illustrated in Fig. 1 . Knowledge distillation

n the left uses the output of the teacher as a soft target to train

he student while Fitnets (right) rely on layer wise pretraining. 

. Similarity based knowledge transfer 

Deep neural networks use multiple layers to transform a high

imensional input into an abstract output such as a class label.

ach layer transforms its input into a representation that makes

t easier to distinguish the different classes for the next layer. 

We propose to explicitly use this property to guide the training

f the student. We pass a batch B of b images through the teacher

etwork and record the intermediate representations teacher i ( B ) af-

er layer i . We then calculate the cosine distances d xy between the

epresentations of each example pair ( x, y ) following Eq. (5) . The

esulting b ∗b distance matrix gives us an idea of the transforma-

ion that the neural network has learned after layer i . A single el-

ment d xy in the distance matrix measures how similar two input

amples x and y are according to the network up to layer i . 

 xy = cos (x, y ) = 

x · y 

‖ x ‖‖ y ‖ 

= 

n ∑ 

i =0 

x i y i √ 

n ∑ 

i =0 

x 2 
i 

√ 

n ∑ 

i =0 

y 2 
i 

(5)

We then pass the exact same batch through the student net-

ork to record its intermediate representations student j ( B ) after

ayer j and calculate the corresponding distance matrix again fol-

owing Eq. (5) . 

We train the student with gradient descent by minimizing the

osine distance between the two distance matrices. This encour-

ges the student network to learn a transformation that mimics

he behaviour of the teacher. Two images that have a similar in-

ermediate representation for the teacher should also have a sim-

lar intermediate representation in the student network. There is

o constraint on the similarity of the learned representations be-

ween teacher and student, the student can learn completely dif-

erent features from the teacher as long as two images that are

dis)similar to the teacher are also (dis)similar to the student. This

rocess is illustrated in Fig. 2 . 

We repeat this procedure for different ( i, j ) layer combinations

nd finetune the network afterwards using supervised learning by

inimizing the cross-entropy loss function from Eq. (3) between

he predictions and the true labels. Our technique is also compati-

le with Knowledge Distillation during the finetuning stage but we

ound that this only has a minimal effect on the final performance.

he full algorithm can be found in Algorithm 2 
et al., Training binary neural networks with knowledge transfer, 
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Algorithm 2 Pretraining and finetuning with similarity based 

knowledge transfer. 

1: procedure pretrain ( i, j) 

2: Input: The indices i, j of the layers of respectively the 

teacher and the 

3: student that knowledge should be transferred between and 

a set of 

4: (unlabelled) training samples. 

5: for each batch B of training samples do 

6: y i ← teacher i (B ) 

7: y j ← student j (B ) 

8: d teacher ← cos (y i ) 

9: d student ← cos (y j ) 

10: loss ← cos (d teacher , d student ) 

11: perform gradient update to the weights of the student 

network 

12: end for 

13: end procedure 

14: procedure finetune 

15: Input: A set of labelled training samples. 

16: for each batch B of training samples and associated labels L 

do 

17: y ← st udent (B ) 

18: loss ← cross _ entropy (y, L ) 

19: perform gradient update to the weights of the student 

network 

20: end for 

21: end procedure 

22: procedure main 

23: Input: A list of (i,j) combinations indicating the indices of 

the layers of 

24: respectively the teacher and the student that knowledge 

should be 

25: transferred between. 

26: for each (i,j) do 

27: pretrain (i, j) 

28: end for 

29: f inetune () 

30: end procedure 

Fig. 2. Our similarity based Knowledge Transfer technique: The same batch is 

passed through the teacher network and the student network. Both intermediate 

representations are recorded and used to calculate two distance matrices. We min- 

imise the cosine distance (indicated by L ) between the two distance matrices, 

forcing the student to learn a transformation where two images have a similar 

intermediate representation only when they have similar intermediate representa- 

tions in the teacher network. 
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To calculate the loss term during pretraining we only need the

wo distance matrices. The two networks can have completely dif-

erent architectures (different depth, different number of convolu-

ional filters, different nonlinearities,...). In our case the student is

onstrained to binary weights and activations but this technique

an also be used to train floating point student networks. 

Since our pretraining step is completely unsupervised we can

se large amounts of new unlabelled data and only rely on labelled

ata for the finetuning step. 

A disadvantage of knowledge transfer methods is that we need

o evaluate the teacher for every train step of the student since

e need the additional training signal based on the output or the

ntermediate representations of the teacher. Knowledge distillation

ses the outputs of the teacher as soft targets which means that

e always need to evaluate the entire network. Fitnets and our

imilarity based approach use intermediate representations which

re less expensive to obtain since we only need to evaluate part

f the network. It is possible to evaluate both teacher and student

etworks in parallel (even on different GPUs) since they are com-

letely independent. Another solution to reduce the overhead of

valuating the teacher every time is to cache the outputs or the

ntermediate representations of the teacher. The teacher is a fixed

etwork that is not changed when training the student. It is there-

ore possible to pass the entire training set through the teacher

nce to record the intermediate representations or network output.

hese cached representations can then be used to calculate the dif-

erent loss functions of the knowledge transfer methods. This ap-

roach reduces the training time in exchange for increased storage

eeds. 

. Experiments 

In this section we evaluate our approach on different default

mage classification benchmark datasets: CIFAR10/CIFAR100 and

LSVRC2012 

.1. CIFAR10 and CIFAR100 

The CIFAR-10 dataset [38] consists of 60 0 0 0 32 × 32 color

mages in 10 classes, with 60 0 0 images per class. There are 50,0 0 0

raining images and 10,0 0 0 test images. The CIFAR-100 dataset is

ery similar. The images have the same size but are divided into

00 classes. Each class has 500 training and 100 test images for a

otal of 60,0 0 0 images. 

In all our CIFAR10 and CIFAR100 experiments we use the un-

odified BinaryNet architecture [1] for our student. The teacher

etwork is a Deep Residual Network [39] with 32 layers. The

eacher obtains an error rate of 7% for CIFAR10 and of 30% for

IFAR100. We used Pytorch [40] for all our experiments. All net-

orks were trained using ADAM [41] on NVIDIA GTX1080 GPUs

ith batchsize 64. 

.1.1. Qualitative results: Can we visualise the transferred 

nowledge ? 

The similarity based knowledge transfer technique introduced

n the previous section relies on layer wise pretraining where we

teratively train each layer to mimic the behaviour of a layer in the

eacher network. The loss function forces the student to learn a

apping where images that have a similar representation in the

eacher network also have similar representations in the student

etwork. 

To understand if our pretraining technique indeed learns a use-

ul transformation we look at t-SNE [42] visualizations of the inter-

ediate representations of the binary student network before and

fter pretraining each layer. These results are shown in Table 1 .
et al., Training binary neural networks with knowledge transfer, 
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Table 1 

T-SNE plots of the intermediate representations of each layer before and after pretraining of that layer. 

Conv 1 Conv 2 Conv 3 Conv 4 

Before 

After 

Conv 5 Conv 6 FC 1 FC 2 

Before 

After 

Fig. 3. Test accuracy as a function of training time for the different approaches. 
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T  
-SNE is a dimensionality reduction technique that is able to visu-

lize high dimensional vectors in 2D scatter plots. Similar vectors

according to their euclidean distance) are shown as nearby dots

n the plot while dissimilar points are further apart. Each dot cor-

esponds to an image from the test set and the color indicates the

lass label. These plots were generated before the finetuning step

hich means that no labelled information was used while training

he student. 

The first scatter plot (Conv1–before transfer) shows little to no

tructure because all weights are initialised randomly. After pre-

raining this layer with our Knowledge Transfer technique we can

lready vaguely distinguish two clusters. Upon inspection of the

amples we found that one cluster contains man-made objects

uch as cars, trucks and boats while the other cluster contains

atural objects such as animals. 

This distinction is further emphasized as we pretrain more lay-

rs. We can distinguish clear clusters of samples belonging to the

ame class after the last convolutional layer. The fully connected
Please cite this article as: S. Leroux, B. Vankeirsbilck and T. Verbelen 
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ayers then further improve the decision boundary and after the

ast fully connected layer we can clearly discriminate the differ-

nt classes, even though we have not used the class labels while

raining the student. This experiment shows that our Knowledge

ransfer technique can train a binary neural network to distinguish

etween different classes based on the characteristics of the inter-

ediate representations of the teacher network and without any

abelled information. 

.1.2. Quantitative results: How does pretraining affects the test 

ccuracy and training time ? 

In our second experiment we look at the training time and the

nal test accuracy of the different Knowledge Transfer techniques

pplied to training BNNs. Fig. 3 shows the test accuracy as a func-

ion of the training time for the different approaches.We used an

VIDIA GTX1080 GPU to train all networks. 

The red line corresponds to the training from scratch baseline.

he dark blue line shows the accuracy when the network is trained
et al., Training binary neural networks with knowledge transfer, 
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Table 2 

Test accuracy of the BNN on CIFAR10 and CIFAR100. 

Model CIFAR10 CIFAR100 

Trained from scratch 88.6% 65.3% 

Distillation (soft targets) 87.9% 66.2% 

Fitnet 88.4% 67.4% 

Similarity based (ours) 89.4% 68.7% 
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with soft targets. This clearly helps the network to converge faster

on both datasets but the impact is best visible on CIFAR100 where

the soft targets help the network to achieve a higher test accuracy.

A possible explanation is that the 100 different classes from the

CIFAR100 dataset are grouped in 10 “super classes” with 10 fine

grained “sub classes” each. A super class would for example be

“fish” with members such as “Shark” and “Trout”. Because of this

design choice there are a lot of similar classes. Distillation with

soft targets can exploit this property because a single example can

now for example be labelled as 60 % hamster, 30 % mouse and

10 % squirrel, providing information of all three classes to the stu-

dent. Each training sample now carriers much more information

compared to a single ground truth label. 

Both the Fitnets approach and our similarity based technique

need a pretraining stage. We start pretraining at timestamp 0 and

only plot the test accuracy during the finetuning stage. 

It is somewhat surprising that Fitnets work so well when train-

ing binary neural networks since Fitnets explicitly use the values of

both intermediate representations and these are completely differ-

ent (binary vs floating point). Yet it seems that the regressor layer

that is used to change the dimensionality of the representations

also takes care of the conversion of binary to floating point values.

The regressor layer used floating point weights and activations. Fit-

nets result in a higher accuracy on both datasets compared to Dis-

tillation. On CIFAR10 this is still slightly lower than the baseline

but on CIFAR100 Fitnets give us an accuracy of 67.42% compared

to 65.31% for the baseline. 

Our Similarity based Knowledge Transfer technique has a very

similar behaviour as Fitnets. The biggest advantage of our approach

compared to Fitnets is that we do not directly compare the inter-

mediate representations. Therefore we do not require that both in-

termediate representations have a similar spatial size and we do

not need the additional regressor layers. Instead we calculate the

loss function between two similarity matrices and the dimensions

of the similarity matrices only depend on the batch size. We be-

lieve that this decoupling is especially interesting when training

networks with binary weights and activations since this allows us

to have a completely different architectures for the student and the

teacher. Our similarity based technique results in the highest test

accuracy on both datasets. 
Table 3 

Test accuracy of different binary neural network architectures 

Model 

Floating point weights and activations 

Alexnet [3] 

BNN : Binary weights and activations 

Trained from scratch [24] 

Trained from scratch (our implementation) 

Trained with similarity based knowledge transfer (ours) 

XNORnet : Binary weights and activations 

Trained from scratch [31] 

Trained from scratch (our implementation) 

Trained with similarity based knowledge transfer (ours) 

Binary Weight Networks (BNN) : Binary weights, floating po

BWN-net [31] 

BWN-net (our implementation) 

BWN-net trained with similarity based knowledge transfer (o

Please cite this article as: S. Leroux, B. Vankeirsbilck and T. Verbelen 
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The final test accuracies for all approaches are summarized in

able 2 . 

.2. ImageNet 

The CIFAR datasets from the previous section are small scale

atasets that are easy to experiment with but the small images

re not representative of real world applications. In this section we

rained BNNs on the Imagenet dataset [43] . The task is to distin-

uish between 10 0 0 classes. The input images are 224 by 224 pixel

GB images of real world scenes. The dataset has 1,281,167 training

mages. Each class has at least 732 training images. 

We trained a binary version of the Alexnet architecture [3] , the

ame network architecture that was used in the original BNN pa-

er [24] as well as in the XNOR-net paper [31] . The drop in accu-

acy for a BNN compared to a floating point network is much more

evere on this dataset than on the small scale datasets from the

revious section. Training accurate networks with binary weights

nd activations remains an open problem for large and complex

atasets. Table 3 shows a summary of the accuracies obtained by

he different approaches. 

The baseline Alexnet network with floating point operations

chieves an accuracy of 56.6% (80.2% top 5). We report results for

hree binary neural network variants. The BNN follows the bina-

ization approach from [24] . We reimplemented the network and

raining routine in Pytorch and were able to reproduce their re-

ults. We then applied our Knowledge Transfer technique and ob-

ained a slightly higher accuracy (68.8% compared to 67.8%). 

For both XNORnet and Binary Weight Networks (BWN) we were

nable to exactly reproduce the results from [31] in Pytorch, prob-

bly because of different data augmentations and normalization

echniques. We again find that our similarity based Knowledge

ransfer technique results in slightly higher test accuracies com-

ared to our implementations that were trained from scratch. 

. Conclusion and future work 

In this work we introduced a novel Knowledge Transfer tech-

ique that uses the similarity between intermediate representa-

ions to guide the training of a student network based on a trained

eacher network. We focussed on training binary neural networks

or image recognition but our technique is not limited to binary

eural networks nor to image classification tasks. We showed that

retraining a BNN with Knowledge transfer helps to obtain higher

est accuracies compared to training from scratch. Future work

ill focus on improving the results on large scale datasets like

magenet. 
on Imagenet. 

Top 1 Top 5 

56.6% 80.2% 

41.8% 67.1% 

41.4% 67.8% 

44.2% 68.8% 

44.2% 69.2% 

42.5% 68.0% 

43.6% 68.7% 

int activations 

56.8% 79.4% 

53.6% 76.8% 

urs) 54.6% 77.5% 
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