
ARTICLE IN PRESS

JID: NEUCOM [m5G; May 17, 2019;15:49]

Neurocomputing xxx (xxxx) xxx

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Training binary neural networks with knowledge transfer

Sam Leroux

∗, Bert Vankeirsbilck , Tim Verbelen , Pieter Simoens , Bart Dhoedt

Department of Information Technology, IDLab, Ghent University–IMEC, iGent Tower–Technologiepark-Zwijnaarde 15, Ghent B-9052, Belgium

a r t i c l e i n f o

Article history:

Received 30 March 2018

Revised 16 August 2018

Accepted 11 September 2018

Available online xxx

Keywords:

Binary neural networks

Deep learning

Knowledge transfer

a b s t r a c t

Binary Neural Networks (BNNs) use binary values for both weights and activations instead of 32 bit float-

ing point numbers typically used in deep neural networks. This reduces the memory footprint by a factor

of 32 and allows a very efficient implementation in hardware. BNNs are trained using regular gradient

descent but are harder to optimise, take longer to train and generally require a more careful tuning of

hyperparameters such as the learning rate decay schedule than floating point versions. We propose to

use Knowledge Transfer techniques to make it easier to train BNNs. Knowledge transfer is a general tech-

nique that tries to transfer the knowledge stored in a large network (the teacher) to a smaller (student)

network. In our case the teacher is a network trained with floating point weights and activations while

the student is a BNN. We apply different Knowledge Transfer techniques to the task of training a BNN.

We introduce a novel similarity based Knowledge Transfer algorithm and show that this technique results

in a higher test accuracy on different benchmark datasets compared to training the BNN from scratch.

© 2019 Elsevier B.V. All rights reserved.

1

r

m

e

m

o

t

o

o

e

s

b

p

n

s

o

a

i

o

e

w

w

t

a

t

c

k

p

t

o

T

n

b

t

c

2

i

s

c

t

o

h

0

. Introduction

Deep neural networks are exceptionally powerful but they also

equire large amounts of resources such as compute power and

emory. Training a neural network is the computationally most

xpensive part but this is usually done offline on high perfor-

ance systems in a datacenter. The basic computational operation

f a neural network is a matrix-matrix multiplication. This opera-

ion is highly parallelizable and can be very efficiently performed

n Graphical Processing Units (GPUs). GPUs are currently the best

ption to train neural networks.

Once trained the network needs to be deployed in a real-world

nvironment. This stage (known as inference) requires less re-

ources than training but even a moderate sized network can take

illions of floating point operations (FLOPs) just to process one in-

ut. In addition the device also needs to store all parameters of the

etwork which quickly adds up to hundreds of megabytes.

Binary neural networks are more efficient because they are con-

trained to binary weights and activations. This reduces the mem-

ry footprint of the weights by a factor of 32 and also allows for

 very efficient implementation in hardware since the 32 bit float-

ng point multiplications can now be replaced with bitwise logical

perations [1] .

Courbariaux et al. first showed that it is possible to train mod-

rn large neural networks for image classification with binary
∗ Corresponding author.

E-mail address: sam.leroux@ugent.be (S. Leroux).

ttps://doi.org/10.1016/j.neucom.2018.09.103

925-2312/© 2019 Elsevier B.V. All rights reserved.

Please cite this article as: S. Leroux, B. Vankeirsbilck and T. Verbelen

Neurocomputing, https://doi.org/10.1016/j.neucom.2018.09.103
eights and activations [1] . This suggests that typical neural net-

orks are overparameterized [2] . While we were able to replicate

hese results we found that BNNs typically take longer to train

nd are more sensitive to hyperparameters such as the architec-

ure of the network, the initial learning rate, the learning rate de-

ay schedule, the optimization algorithm and regularization terms.

Instead of training a BNN from scratch we propose to use the

nowledge from an already trained floating point model. A floating

oint teacher model can be trained using existing state-of-the-art

echniques and then be used to guide the optimisation process

f the student network. This concept is known as Knowledge

ransfer. We describe two common Knowledge Transfer tech-

iques in Section 2 . In Section 3 we present our novel similarity

ased Knowledge Transfer technique and we compare the three

echniques applied to training binary neural networks for image

lassification in Section 4 .

. Related work

Deep neural networks (DNNs) have been successfully applied

n various areas such as computer vision [3–5] , remote sensing [6] ,

peech recognition [7] , robotics [8] , metric learning [9,10] and re-

ently even in image generation [11] , style transfer [12] and cap-

ion generation [13] . For a comprehensive overview of the history

f deep learning we refer to [14] .
et al., Training binary neural networks with knowledge transfer,

https://doi.org/10.1016/j.neucom.2018.09.103
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
mailto:sam.leroux@ugent.be
https://doi.org/10.1016/j.neucom.2018.09.103
https://doi.org/10.1016/j.neucom.2018.09.103

2 S. Leroux, B. Vankeirsbilck and T. Verbelen et al. / Neurocomputing xxx (xxxx) xxx

ARTICLE IN PRESS

JID: NEUCOM [m5G; May 17, 2019;15:49]

W

Algorithm 1 Forward pass through a BNN [23] .

Input: Full-precision weights W k for each layer k . The total number

of layers N. A minibatch of data a 0 .

1: procedure forward

2: for k=1 to N do

3: W

b
k

← Binarize (W k)

4: a k ← BinaryDot P roduct (a k −1 , W k)

5: a k ← BatchNorm (a k)

6: if k < L then

7: a k ← Binarize (a k)

8: end if

9: end for

10: end procedure

t

t

o

g

t

e

i

f

t

r

a

e

t

t

w

v

d

m

w

b

fi

i

t

i

t

c

i

t

r

g

l

b

p

m

o

c

t

F

e

t

2

e

t

t
2.1. Resource constrained deep learning

Various works have reduced the computational cost and/or the

memory footprint of DNNs. Two of the first works to recognize

the fact that neural networks typically contain redundant param-

eters were Optimal Brain Damage [15] and Optimal Brain Sur-

geon [16] . They used second order derivative information to iden-

tify the connections that can be safely pruned. More recently Han

et al. proposed a three step method [17] where first the network

was trained to learn which connections are important. Next the

unimportant connections were pruned and finally the remaining

weights were fine-tuned to compensate for the lost accuracy. This

technique is able to reduce the number of parameters in state of

the art networks by an order of magnitude.

Other approaches include transforming the weight matrices

into low rank decompositions [18,19] or even a hashing based tech-

nique [20] where connection weights are grouped into hash buck-

ets and all connections within the same bucket share the same

value.

It is well known that full precision floating point numbers are

not needed for weights and activations. 8 bit fixed point integers

are usually sufficient [21] and these allow for efficient implemen-

tation in hardware. Other works further reduce the precision of the

weights to 4 bits (for convolutional layers) or to two bits (for fully

connected layers) [22] .

2.2. Binary neural networks

In the extreme case the precision of weights and activations

can even be reduced to 1 bit. This allows an extremely efficient

implementation in hardware. The BinaryConnect paper by Cour-

bariaux et al. [23] was the first to train large modern neural net-

works for image classification with binary weights. This was later

extended in [1] to binary weights and binary activations and in

a follow-up paper [24] results on the Imagenet dataset were pre-

sented. The name “binary neural network” had been used long be-

fore for networks that were capable of learning binary-to-binary

mappings [25] . These networks used ternary (−1, 0, +1) or integer

weights that make them more efficient in hardware implementa-

tions [26] and could be trained with different techniques such as

expand-and-truncate learning (ETL) [27] or DNA-like learning [28] .

The basic operation in a BNN is the binarization function that

transforms the floating point weights and activations (x) to binary

values (-1 and +1). This function simply thresholds the value based

on the sign:

Binarize (x) = sign (x)

{
+1 if x ≥ 0

−1 if x < 0

(1)

This binarization function is used to binarize both the weights

of the network and the activations. The forward pass is then

described by Algorithm 1 . Where N is the number of layers in the

network. W k are the floating point weights of the k − th layer and

b
k

are the binarized weights. Similarly, a k are the activations of

the k − th layer. Batchnorm (x) represents the Batch Normalization

[29] operation and BinaryDotProduct (x, w) calculates the binary

dot product between the (binary) input vector x and the binary

weights w .

Training a neural network with binary weights and activations

is not straight-forward for two reasons. First, stochastic gradient

descent (SGD) relies on making many small updates to weights.

Every update on itself is very noisy but the noise is averaged out

by accumulating many updates. Restricting the weights to binary

values is a much too coarse approximation for SGD since the small

updates would be lost in the quantization noise. The solution is

to accumulate all updates in floating point weights and to use bi-

narized copies for the dot product. The second problem is that
Please cite this article as: S. Leroux, B. Vankeirsbilck and T. Verbelen

Neurocomputing, https://doi.org/10.1016/j.neucom.2018.09.103
he sign function that is used for binarizing the weights and ac-

ivations has a zero derivative almost everywhere (hard thresh-

ld) which makes it incompatible with backpropagation since the

radient of the loss with respect to the input of the sign func-

ion would be zero [23] . The solution is to use a “straight-through

stimator” [30] which approximates the outgoing gradient by the

ncoming gradient.

The XNOR-net paper [31] proposed a similar but slightly dif-

erent approach where the output of the binary layers was mul-

iplied with a floating point scale factor to recover the dynamic

ange. This yields better results on the Imagenet dataset but makes

 hardware implementation more difficult. The first and last lay-

rs still used 32 bit floating point numbers in this implementa-

ion making it a slightly less resource efficient solution compared

o fully binary networks.

It might seem surprising that it is possible to train neural net-

orks with binary weights and activations. There has been some

ery recent theoretical work that gives a possible explanation. An-

erson et al. [32] show that a binary approximation of a high di-

ensional vector still preserves the direction of the vector very

ell. This would suggest that the information loss caused by the

inarization process is not as severe as it would seem. They also

nd that the batch normalized weight-activation dot products (the

ntermediate representations) are approximately preserved under

he binarization of the weight vectors and they show that this

s a sufficient condition for the binary operations to approximate

he underlying floating point operations. Lastly they argue that the

omputations done by the first layer of neural networks trained for

mage classification are fundamentally different than the computa-

ions being done in the rest of the network. The impact of bina-

ization on this layer is much more severe. This is why they sug-

est to use a floating point convolution for this very first layer. This

ayer then projects the floating point input to a high dimensional

inary space.

BNNs can be evaluated much more efficiently than floating

oint networks but this requires custom implementations since

ost general purpose compute platforms like CPUs or GPUs are not

ptimized for binary operations. Courbariaux et al. implemented a

ustom GPU kernel that is able to evaluate BNNs seven times faster

han a baseline kernel on GPUs [1] . Other works have designed

ield Programmable Gate Array (FPGA) implementations [33] or

ven completely custom hardware platforms [34] to fully exploit

he potential of BNNs.

.3. Knowledge distillation

An interesting family of techniques tries to export the knowl-

dge stored in a large model or in an ensemble of models (the

eacher) to a smaller network (the student) that is more efficient

o evaluate. A first version of this idea was proposed in [35] where
et al., Training binary neural networks with knowledge transfer,

https://doi.org/10.1016/j.neucom.2018.09.103

S. Leroux, B. Vankeirsbilck and T. Verbelen et al. / Neurocomputing xxx (xxxx) xxx 3

ARTICLE IN PRESS

JID: NEUCOM [m5G; May 17, 2019;15:49]

Fig. 1. Conceptual difference between Knowledge Distillation (a) and Fitnets (b). Knowledge distillation uses the soft output of the teacher as a target for the student. Fitnets

use the intermediate representations to guide the learning process of the student. L indicates the loss function that is optimised with gradient descent.

a

t

t

o

d

s

c

b

s

t

T

q

W

S

r

t

a

o

T

b

H

I

w

O

h

t

t

T

t

a

t

m

t

m

c

t

n

a

t

o

t

3

d

E

i

o

n

t

r

r

t

e

s

d

w

l

l

c

a

t

t

i

n

t

f

(

p

a

m

t

b

f

T

 large trained ensemble was used to label additional data that can

hen be used to train a new more compact network.

More recently Hinton et al. introduced an elegant transfer

echnique called Knowledge Distillation [36] . It is based on the

bservation that the output of the trained teacher (the probability

istribution of the classes) can be used as a soft target for the

tudent. This soft target provides more information than a hard

lass label since it also encodes information about the similarity

etween classes. This makes it easier for the student to discover

tructure in the data. A neural network trained for classification

ypically uses a softmax activation (Eq. (2.3)) for the last layer.

his activation transforms the logits z i to probabilities q i :

 i =

e z i /T ∑

j e
z j /T

(2)

here T is a temperature parameter that is typically set to 1.

maller values of T cause the network to produce more confident

esults while larger values of T cause a softer probability distribu-

ion over the classes. The Knowledge Distillation technique passes

 batch of training data through the teacher network and uses the

btained probability distribution as a soft target for the student.

o train the student we minimize the cross-entropy loss (Eq. (3))

etween the soft target p (x) and the output of the student q (x).

(p, q) = −
∑

i

p(x) log(q (x)) (3)

f the correct labels are available for (some of) the training samples

e can use a weighted sum of two cross entropy loss functions.

ne calculated on the soft targets and the other calculated on the

ard ground truth labels.

The idea of distillation was later extended in Fitnets [37] where

he intermediate representations of the teacher were used to guide

he training process of the student in addition to the soft outputs.

he student is encouraged to have a similar intermediate represen-

ation as the teacher. Since the dimensionalities of the intermedi-

te representations of both networks do not necessarily correspond

hey added additional regressor layers that could map the inter-

ediate representation of the student to the spatial size as the in-

ermediate representation of the teacher. The student is trained to

inimize the euclidian loss function shown in Eq. (4) where p i cal-

ulates the intermediate representation of the teacher network up

o layer i and q j similarly calculates the activations of the student

etwork after layer j. r is the regressor network that converts the

ctivations of the student to the same size as the the activations of

he teacher.

f i (B) =

1 ‖ p i (x) − r(q j (x)) ‖ (4)

2

Please cite this article as: S. Leroux, B. Vankeirsbilck and T. Verbelen

Neurocomputing, https://doi.org/10.1016/j.neucom.2018.09.103
Both approaches are illustrated in Fig. 1 . Knowledge distillation

n the left uses the output of the teacher as a soft target to train

he student while Fitnets (right) rely on layer wise pretraining.

. Similarity based knowledge transfer

Deep neural networks use multiple layers to transform a high

imensional input into an abstract output such as a class label.

ach layer transforms its input into a representation that makes

t easier to distinguish the different classes for the next layer.

We propose to explicitly use this property to guide the training

f the student. We pass a batch B of b images through the teacher

etwork and record the intermediate representations teacher i (B) af-

er layer i . We then calculate the cosine distances d xy between the

epresentations of each example pair (x, y) following Eq. (5) . The

esulting b ∗b distance matrix gives us an idea of the transforma-

ion that the neural network has learned after layer i . A single el-

ment d xy in the distance matrix measures how similar two input

amples x and y are according to the network up to layer i .

 xy = cos (x, y) =

x · y

‖ x ‖‖ y ‖

=

n ∑

i =0

x i y i √

n ∑

i =0

x 2
i

√

n ∑

i =0

y 2
i

(5)

We then pass the exact same batch through the student net-

ork to record its intermediate representations student j (B) after

ayer j and calculate the corresponding distance matrix again fol-

owing Eq. (5) .

We train the student with gradient descent by minimizing the

osine distance between the two distance matrices. This encour-

ges the student network to learn a transformation that mimics

he behaviour of the teacher. Two images that have a similar in-

ermediate representation for the teacher should also have a sim-

lar intermediate representation in the student network. There is

o constraint on the similarity of the learned representations be-

ween teacher and student, the student can learn completely dif-

erent features from the teacher as long as two images that are

dis)similar to the teacher are also (dis)similar to the student. This

rocess is illustrated in Fig. 2 .

We repeat this procedure for different (i, j) layer combinations

nd finetune the network afterwards using supervised learning by

inimizing the cross-entropy loss function from Eq. (3) between

he predictions and the true labels. Our technique is also compati-

le with Knowledge Distillation during the finetuning stage but we

ound that this only has a minimal effect on the final performance.

he full algorithm can be found in Algorithm 2
et al., Training binary neural networks with knowledge transfer,

https://doi.org/10.1016/j.neucom.2018.09.103

4 S. Leroux, B. Vankeirsbilck and T. Verbelen et al. / Neurocomputing xxx (xxxx) xxx

ARTICLE IN PRESS

JID: NEUCOM [m5G; May 17, 2019;15:49]

Algorithm 2 Pretraining and finetuning with similarity based

knowledge transfer.

1: procedure pretrain (i, j)

2: Input: The indices i, j of the layers of respectively the

teacher and the

3: student that knowledge should be transferred between and

a set of

4: (unlabelled) training samples.

5: for each batch B of training samples do

6: y i ← teacher i (B)

7: y j ← student j (B)

8: d teacher ← cos (y i)

9: d student ← cos (y j)

10: loss ← cos (d teacher , d student)

11: perform gradient update to the weights of the student

network

12: end for

13: end procedure

14: procedure finetune

15: Input: A set of labelled training samples.

16: for each batch B of training samples and associated labels L

do

17: y ← st udent (B)

18: loss ← cross _ entropy (y, L)

19: perform gradient update to the weights of the student

network

20: end for

21: end procedure

22: procedure main

23: Input: A list of (i,j) combinations indicating the indices of

the layers of

24: respectively the teacher and the student that knowledge

should be

25: transferred between.

26: for each (i,j) do

27: pretrain (i, j)

28: end for

29: f inetune ()

30: end procedure

Fig. 2. Our similarity based Knowledge Transfer technique: The same batch is

passed through the teacher network and the student network. Both intermediate

representations are recorded and used to calculate two distance matrices. We min-

imise the cosine distance (indicated by L) between the two distance matrices,

forcing the student to learn a transformation where two images have a similar

intermediate representation only when they have similar intermediate representa-

tions in the teacher network.

t

f

t

c

c

u

d

t

w

i

u

w

s

a

o

n

p

e

i

n

f

o

T

f

p

n

4

i

I

4

i

t

v

1

t

m

n

t

C

w

w

4

k

i

i

t

m

t

n

f

m

a

Please cite this article as: S. Leroux, B. Vankeirsbilck and T. Verbelen

Neurocomputing, https://doi.org/10.1016/j.neucom.2018.09.103
To calculate the loss term during pretraining we only need the

wo distance matrices. The two networks can have completely dif-

erent architectures (different depth, different number of convolu-

ional filters, different nonlinearities,...). In our case the student is

onstrained to binary weights and activations but this technique

an also be used to train floating point student networks.

Since our pretraining step is completely unsupervised we can

se large amounts of new unlabelled data and only rely on labelled

ata for the finetuning step.

A disadvantage of knowledge transfer methods is that we need

o evaluate the teacher for every train step of the student since

e need the additional training signal based on the output or the

ntermediate representations of the teacher. Knowledge distillation

ses the outputs of the teacher as soft targets which means that

e always need to evaluate the entire network. Fitnets and our

imilarity based approach use intermediate representations which

re less expensive to obtain since we only need to evaluate part

f the network. It is possible to evaluate both teacher and student

etworks in parallel (even on different GPUs) since they are com-

letely independent. Another solution to reduce the overhead of

valuating the teacher every time is to cache the outputs or the

ntermediate representations of the teacher. The teacher is a fixed

etwork that is not changed when training the student. It is there-

ore possible to pass the entire training set through the teacher

nce to record the intermediate representations or network output.

hese cached representations can then be used to calculate the dif-

erent loss functions of the knowledge transfer methods. This ap-

roach reduces the training time in exchange for increased storage

eeds.

. Experiments

In this section we evaluate our approach on different default

mage classification benchmark datasets: CIFAR10/CIFAR100 and

LSVRC2012

.1. CIFAR10 and CIFAR100

The CIFAR-10 dataset [38] consists of 60 0 0 0 32 × 32 color

mages in 10 classes, with 60 0 0 images per class. There are 50,0 0 0

raining images and 10,0 0 0 test images. The CIFAR-100 dataset is

ery similar. The images have the same size but are divided into

00 classes. Each class has 500 training and 100 test images for a

otal of 60,0 0 0 images.

In all our CIFAR10 and CIFAR100 experiments we use the un-

odified BinaryNet architecture [1] for our student. The teacher

etwork is a Deep Residual Network [39] with 32 layers. The

eacher obtains an error rate of 7% for CIFAR10 and of 30% for

IFAR100. We used Pytorch [40] for all our experiments. All net-

orks were trained using ADAM [41] on NVIDIA GTX1080 GPUs

ith batchsize 64.

.1.1. Qualitative results: Can we visualise the transferred

nowledge ?

The similarity based knowledge transfer technique introduced

n the previous section relies on layer wise pretraining where we

teratively train each layer to mimic the behaviour of a layer in the

eacher network. The loss function forces the student to learn a

apping where images that have a similar representation in the

eacher network also have similar representations in the student

etwork.

To understand if our pretraining technique indeed learns a use-

ul transformation we look at t-SNE [42] visualizations of the inter-

ediate representations of the binary student network before and

fter pretraining each layer. These results are shown in Table 1 .
et al., Training binary neural networks with knowledge transfer,

https://doi.org/10.1016/j.neucom.2018.09.103

S. Leroux, B. Vankeirsbilck and T. Verbelen et al. / Neurocomputing xxx (xxxx) xxx 5

ARTICLE IN PRESS

JID: NEUCOM [m5G; May 17, 2019;15:49]

Table 1

T-SNE plots of the intermediate representations of each layer before and after pretraining of that layer.

Conv 1 Conv 2 Conv 3 Conv 4

Before

After

Conv 5 Conv 6 FC 1 FC 2

Before

After

Fig. 3. Test accuracy as a function of training time for the different approaches.

t

a

(

i

r

c

w

t

s

t

a

s

s

n

e

s

l

l

e

t

T

b

m

l

4

a

fi

a

t

N

T
-SNE is a dimensionality reduction technique that is able to visu-

lize high dimensional vectors in 2D scatter plots. Similar vectors

according to their euclidean distance) are shown as nearby dots

n the plot while dissimilar points are further apart. Each dot cor-

esponds to an image from the test set and the color indicates the

lass label. These plots were generated before the finetuning step

hich means that no labelled information was used while training

he student.

The first scatter plot (Conv1–before transfer) shows little to no

tructure because all weights are initialised randomly. After pre-

raining this layer with our Knowledge Transfer technique we can

lready vaguely distinguish two clusters. Upon inspection of the

amples we found that one cluster contains man-made objects

uch as cars, trucks and boats while the other cluster contains

atural objects such as animals.

This distinction is further emphasized as we pretrain more lay-

rs. We can distinguish clear clusters of samples belonging to the

ame class after the last convolutional layer. The fully connected
Please cite this article as: S. Leroux, B. Vankeirsbilck and T. Verbelen

Neurocomputing, https://doi.org/10.1016/j.neucom.2018.09.103
ayers then further improve the decision boundary and after the

ast fully connected layer we can clearly discriminate the differ-

nt classes, even though we have not used the class labels while

raining the student. This experiment shows that our Knowledge

ransfer technique can train a binary neural network to distinguish

etween different classes based on the characteristics of the inter-

ediate representations of the teacher network and without any

abelled information.

.1.2. Quantitative results: How does pretraining affects the test

ccuracy and training time ?

In our second experiment we look at the training time and the

nal test accuracy of the different Knowledge Transfer techniques

pplied to training BNNs. Fig. 3 shows the test accuracy as a func-

ion of the training time for the different approaches.We used an

VIDIA GTX1080 GPU to train all networks.

The red line corresponds to the training from scratch baseline.

he dark blue line shows the accuracy when the network is trained
et al., Training binary neural networks with knowledge transfer,

https://doi.org/10.1016/j.neucom.2018.09.103

6 S. Leroux, B. Vankeirsbilck and T. Verbelen et al. / Neurocomputing xxx (xxxx) xxx

ARTICLE IN PRESS

JID: NEUCOM [m5G; May 17, 2019;15:49]

Table 2

Test accuracy of the BNN on CIFAR10 and CIFAR100.

Model CIFAR10 CIFAR100

Trained from scratch 88.6% 65.3%

Distillation (soft targets) 87.9% 66.2%

Fitnet 88.4% 67.4%

Similarity based (ours) 89.4% 68.7%

T

4

d

a

t

g

R

i

s

p

r

s

p

a

d

t

a

t

r

t

s

t

u

a

t

T

p

5

n

t

t

f

n

p

t

w

I

with soft targets. This clearly helps the network to converge faster

on both datasets but the impact is best visible on CIFAR100 where

the soft targets help the network to achieve a higher test accuracy.

A possible explanation is that the 100 different classes from the

CIFAR100 dataset are grouped in 10 “super classes” with 10 fine

grained “sub classes” each. A super class would for example be

“fish” with members such as “Shark” and “Trout”. Because of this

design choice there are a lot of similar classes. Distillation with

soft targets can exploit this property because a single example can

now for example be labelled as 60 % hamster, 30 % mouse and

10 % squirrel, providing information of all three classes to the stu-

dent. Each training sample now carriers much more information

compared to a single ground truth label.

Both the Fitnets approach and our similarity based technique

need a pretraining stage. We start pretraining at timestamp 0 and

only plot the test accuracy during the finetuning stage.

It is somewhat surprising that Fitnets work so well when train-

ing binary neural networks since Fitnets explicitly use the values of

both intermediate representations and these are completely differ-

ent (binary vs floating point). Yet it seems that the regressor layer

that is used to change the dimensionality of the representations

also takes care of the conversion of binary to floating point values.

The regressor layer used floating point weights and activations. Fit-

nets result in a higher accuracy on both datasets compared to Dis-

tillation. On CIFAR10 this is still slightly lower than the baseline

but on CIFAR100 Fitnets give us an accuracy of 67.42% compared

to 65.31% for the baseline.

Our Similarity based Knowledge Transfer technique has a very

similar behaviour as Fitnets. The biggest advantage of our approach

compared to Fitnets is that we do not directly compare the inter-

mediate representations. Therefore we do not require that both in-

termediate representations have a similar spatial size and we do

not need the additional regressor layers. Instead we calculate the

loss function between two similarity matrices and the dimensions

of the similarity matrices only depend on the batch size. We be-

lieve that this decoupling is especially interesting when training

networks with binary weights and activations since this allows us

to have a completely different architectures for the student and the

teacher. Our similarity based technique results in the highest test

accuracy on both datasets.
Table 3

Test accuracy of different binary neural network architectures

Model

Floating point weights and activations

Alexnet [3]

BNN : Binary weights and activations

Trained from scratch [24]

Trained from scratch (our implementation)

Trained with similarity based knowledge transfer (ours)

XNORnet : Binary weights and activations

Trained from scratch [31]

Trained from scratch (our implementation)

Trained with similarity based knowledge transfer (ours)

Binary Weight Networks (BNN) : Binary weights, floating po

BWN-net [31]

BWN-net (our implementation)

BWN-net trained with similarity based knowledge transfer (o

Please cite this article as: S. Leroux, B. Vankeirsbilck and T. Verbelen

Neurocomputing, https://doi.org/10.1016/j.neucom.2018.09.103
The final test accuracies for all approaches are summarized in

able 2 .

.2. ImageNet

The CIFAR datasets from the previous section are small scale

atasets that are easy to experiment with but the small images

re not representative of real world applications. In this section we

rained BNNs on the Imagenet dataset [43] . The task is to distin-

uish between 10 0 0 classes. The input images are 224 by 224 pixel

GB images of real world scenes. The dataset has 1,281,167 training

mages. Each class has at least 732 training images.

We trained a binary version of the Alexnet architecture [3] , the

ame network architecture that was used in the original BNN pa-

er [24] as well as in the XNOR-net paper [31] . The drop in accu-

acy for a BNN compared to a floating point network is much more

evere on this dataset than on the small scale datasets from the

revious section. Training accurate networks with binary weights

nd activations remains an open problem for large and complex

atasets. Table 3 shows a summary of the accuracies obtained by

he different approaches.

The baseline Alexnet network with floating point operations

chieves an accuracy of 56.6% (80.2% top 5). We report results for

hree binary neural network variants. The BNN follows the bina-

ization approach from [24] . We reimplemented the network and

raining routine in Pytorch and were able to reproduce their re-

ults. We then applied our Knowledge Transfer technique and ob-

ained a slightly higher accuracy (68.8% compared to 67.8%).

For both XNORnet and Binary Weight Networks (BWN) we were

nable to exactly reproduce the results from [31] in Pytorch, prob-

bly because of different data augmentations and normalization

echniques. We again find that our similarity based Knowledge

ransfer technique results in slightly higher test accuracies com-

ared to our implementations that were trained from scratch.

. Conclusion and future work

In this work we introduced a novel Knowledge Transfer tech-

ique that uses the similarity between intermediate representa-

ions to guide the training of a student network based on a trained

eacher network. We focussed on training binary neural networks

or image recognition but our technique is not limited to binary

eural networks nor to image classification tasks. We showed that

retraining a BNN with Knowledge transfer helps to obtain higher

est accuracies compared to training from scratch. Future work

ill focus on improving the results on large scale datasets like

magenet.
on Imagenet.

Top 1 Top 5

56.6% 80.2%

41.8% 67.1%

41.4% 67.8%

44.2% 68.8%

44.2% 69.2%

42.5% 68.0%

43.6% 68.7%

int activations

56.8% 79.4%

53.6% 76.8%

urs) 54.6% 77.5%

et al., Training binary neural networks with knowledge transfer,

https://doi.org/10.1016/j.neucom.2018.09.103

S. Leroux, B. Vankeirsbilck and T. Verbelen et al. / Neurocomputing xxx (xxxx) xxx 7

ARTICLE IN PRESS

JID: NEUCOM [m5G; May 17, 2019;15:49]

C

A

w

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

onflict of interest

None.

cknowledgements

We gratefully acknowledge the support of NVIDIA Corporation

ith the donation of GPU hardware used for this research.

eferences

[1] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, Y. Bengio, in: Binarized neu-

ral networks: training deep neural networks with weights and activations con-

strained to + 1 or –1, 2016 . arXiv: 1602.02830 .
[2] M. Denil , B. Shakibi , L. Dinh , N. de Freitas , et al. , Predicting parameters in deep

learning, Proceedings of the Advances in Neural Information Processing Sys-
tems, 2013, pp. 2148–2156 .

[3] A. Krizhevsky , I. Sutskever , G.E. Hinton , in: Imagenet classification with deep
convolutional neural networks, 2012, pp. 1097–1105 .

[4] J. Han , D. Zhang , G. Cheng , N. Liu , D. Xu , Advanced deep-learning techniques

for salient and category-specific object detection: a survey, IEEE Signal Process.
Mag. 35 (1) (2018) 84–100 .

[5] J. Han , R. Quan , D. Zhang , F. Nie , Robust object co-segmentation using back-
ground prior, IEEE Trans. Image Process. 27 (4) (2018) 1639–1651 .

[6] G. Cheng , C. Yang , X. Yao , L. Guo , J. Han , When deep learning meets metric
learning: remote sensing image scene classification via learning discriminative

cnns, IEEE Trans. Geosci. Remote Sens. 56 (5) (2018) 2811–2821 .

[7] A.Y. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger,
S. Satheesh, S. Sengupta, A. Coates, A.Y. Ng, Deep speech: scaling up end-to-

end speech recognition, CoRR (2014) arXiv: 1412.5567 .
[8] S. Levine, P. Pastor, A. Krizhevsky, D. Quillen, Learning hand-eye coordination

for robotic grasping with deep learning and large-scale data collection, CoRR
(2016) arXiv: 1603.02199 .

[9] G. Cheng , P. Zhou , J. Han , Duplex metric learning for image set classification,
IEEE Trans. Image Process. 27 (1) (2018) 281–292 .

[10] J. Han , G. Cheng , Z. Li , D. Zhang , A unified metric learning-based frame-

work for co-saliency detection, IEEE Trans. Circuits Syst. Video Technol. (2017)
2473–2483 .

[11] I. Goodfellow , J. Pouget-Abadie , M. Mirza , B. Xu , D. Warde-Farley , S. Ozair ,
A. Courville , Y. Bengio , Generative adversarial nets, in: Proceedings of the Ad-

vances in Neural Information Processing Systems, 2014, pp. 2672–2680 .
[12] L.A . Gatys , A .S. Ecker , M. Bethge , Image style transfer using convolutional neu-

ral networks, in: Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2016, pp. 2414–2423 .
[13] A. Karpathy , L. Fei-Fei , Deep visual-semantic alignments for generating image

descriptions, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2015, pp. 3128–3137 .

[14] J. Schmidhuber , Deep learning in neural networks: an overview, Neural Netw.
61 (2015) 85–117 .

[15] Y. LeCun , J.S. Denker , S.A. Solla , Optimal brain damage, in: Proceedings of the

Advances in Neural Information Processing Systems, 1990, pp. 598–605 .
[16] B. Hassibi , D.G. Stork , et al. , Second order derivatives for network pruning: op-

timal brain surgeon, Proceedings of the Advances in Neural Information Pro-
cessing Systems, 1993 . 164–164.

[17] S. Han , J. Pool , J. Tran , W. Dally , Learning both weights and connections for ef-
ficient neural network, in: Proceedings of the Advances in Neural Information

Processing Systems, 2015, pp. 1135–1143 .

[18] M. Jaderberg, A. Vedaldi, A. Zisserman, in: Speeding up convolutional neural
networks with low rank expansions, 2014 . arXiv: 1405.3866 .

[19] V. Sindhwani , T. Sainath , S. Kumar , Structured transforms for small-footprint
deep learning, in: Proceedings of the Advances in Neural Information Process-

ing Systems, 2015, pp. 3088–3096 .
20] W. Chen , J.T. Wilson , S. Tyree , K.Q. Weinberger , Y. Chen , Compressing neural

networks with the hashing trick, in: Proceedings of the International Confer-

ence on Machine Learning, ICML, 2015, pp. 2285–2294 .
[21] V. Vanhoucke , A. Senior , M.Z. Mao , Improving the speed of neural networks on

CPUs, in: Proceedings of the Deep Learning and Unsupervised Feature Learning
NIPS Workshop, 1, Citeseer, 2011, p. 4 .

22] S. Han , H. Mao , W.J. Dally , Deep compression: compressing deep neural net-
works with pruning, trained quantization and Huffman coding, in: Proceedings

of the International Conference on Learning Representations, 2015 . (ICLR best

paper award)
23] M. Courbariaux , Y. Bengio , J.-P. David , Binaryconnect: training deep neural net-

works with binary weights during propagations, in: Proceedings of the Ad-
vances in Neural Information Processing Systems, 2015, pp. 3123–3131 .

24] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, Y. Bengio, in: Quantized neu-
ral networks: training neural networks with low precision weights and activa-

tions, 2016 . arXiv: 1609.07061 .
25] D.L. Gray , A.N. Michel , A training algorithm for binary feedforward neural net-

works, IEEE Trans. Neural Netw. 3 (2) (1992) 176–194 .

26] R. Sato , T. Saito , Stabilization of desired periodic orbits in dynamic binary neu-
ral networks, Neurocomputing 248 (2017) 19–27 .
Please cite this article as: S. Leroux, B. Vankeirsbilck and T. Verbelen

Neurocomputing, https://doi.org/10.1016/j.neucom.2018.09.103
[27] J.H. Kim , S.-K. Park , The geometrical learning of binary neural networks, IEEE
Trans. Neural Netw. 6 (1) (1995) 237–247 .

28] F. Chen , G. Chen , Q. He , G. He , X. Xu , Universal perceptron and DNA-like
learning algorithm for binary neural networks: non-LSBF implementation, IEEE

Trans. Neural Netw. 20 (8) (2009) 1293–1301 .
29] S. Ioffe, C. Szegedy, in: Batch normalization: accelerating deep network train-

ing by reducing internal covariate shift, 2015 . arXiv: 1502.03167 .
30] Y. Bengio, N. Léonard, A. Courville, in: Estimating or propagating gradients

through stochastic neurons for conditional computation, 2013 . arXiv: 1308.

3432 .
[31] M. Rastegari , V. Ordonez , J. Redmon , A. Farhadi , Xnor-net: imagenet classifica-

tion using binary convolutional neural networks, in: Proceedings of the Euro-
pean Conference on Computer Vision, Springer, 2016, pp. 525–542 .

32] A.G. Anderson, C.P. Berg, in: The high-dimensional geometry of binary neural
networks, 2017 . arXiv: 1705.07199 .

33] Y. Umuroglu , N.J. Fraser , G. Gambardella , M. Blott , P. Leong , M. Jahre , K. Vis-

sers , Finn: a framework for fast, scalable binarized neural network inference,
in: Proceedings of the ACM/SIGDA International Symposium on Field-Pro-

grammable Gate Arrays, ACM, 2017, pp. 65–74 .
34] X. Sun , X. Peng , P.-Y. Chen , R. Liu , J.-s. Seo , S. Yu , Fully parallel RRAM synaptic

array for implementing binary neural network with (+ 1, −1) weights and (+ 1,
0) neurons, in: Proceedings of the Twenty Third Asia and South Pacific Design

Automation Conference, IEEE Press, 2018, pp. 574–579 .

35] C. Bucilua , R. Caruana , A. Niculescu-Mizil , Model compression, in: Proceedings
of the Twelfth ACM SIGKDD international conference on Knowledge Discovery

and Data Mining, ACM, 2006, pp. 535–541 .
36] G. Hinton, O. Vinyals, J. Dean, in: Distilling the knowledge in a neural network,

2015 . arXiv: 1503.02531 .
[37] A. Romero, N. Ballas, S.E. Kahou, A. Chassang, C. Gatta, Y. Bengio, in: Fitnets:

hints for thin deep nets, 2014 . arXiv: 1412.6550 .

38] A. Krizhevsky , G. Hinton , in: Learning multiple layers of features from tiny im-
ages, 2009 .

39] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,
CoRR (2015) arXiv: 1512.03385 .

40] A. Paszke , S. Gross , S. Chintala , G. Chanan , E. Yang , Z. DeVito , Z. Lin , A. Des-
maison , L. Antiga , A. Lerer , in: Automatic differentiation in pytorch, 2017 .

[41] D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, CoRR (2014)

arXiv: 1412.6980 .
42] L.v.d. Maaten , G. Hinton , Visualizing data using t-SNE, J. Mach. Learn. Res. 9

(Nov) (2008) 2579–2605 .
43] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-

thy, A. Khosla, M. Bernstein, A.C. Berg, L. Fei-Fei, ImageNet large scale vi-
sual recognition challenge, Int. J. Comput. Vis. (IJCV) 115 (3) (2015) 211–252,

doi: 10.1007/s11263-015-0816-y .

Sam Leroux received his M.Sc. degree in Information
Engineering Technology from Ghent University, Belgium

in July 2014. In September of that year, he joined the
Department of Information Technology at Ghent Univer-

sity, where he is active as a Ph.D. student. His main re-
search interests are machine learning, neural networks,

deep learning and cloud computing. He is also active as a
teaching assistant for various courses in both the bachelor

and master of Science in Information Engineering Tech-

nology program.

Bert Vankeirsbilck received a M.Sc. Degree (2007) and
a Ph.D. Degree (2013) in Computer Science Engineering

from Ghent University. Since June 2013, he has been ac-

tive as a postdoctoral research at the dept of Informa-
tion Technology at the same university. From a Ph.D.

topic on optimization of quality of experience for mo-
bile thin client systems, the focus broadened towards

resource constrained computing and distributed intelli-
gence, mostly supported by software design based on

edge cloud architectures.

Tim Verbelen received his M.Sc. degree in Computer Sci-

ence from Ghent University, Belgium in June 2009. In July
2013, he received his Ph.D. degree with his dissertation

“Adaptive Offloading and Configuration of Resource In-

tensive Mobile Applications”. Since August 2009, he has
been working at the Departement of Information Technol-

ogy (INTEC) of the Faculty of Engineering at Ghent Uni-
versity, and is now active as postdoctoral researcher. His

main research interests include mobile cloud computing
and adaptive software. Specifically he is researching adap-

tive strategies to enhance real-time applications such as

Augmented Reality on mobile devices.
et al., Training binary neural networks with knowledge transfer,

arxiv:/1602.02830
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0003
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0003
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0003
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0003
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0004
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0004
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0004
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0004
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0004
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0004
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0005
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0005
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0005
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0005
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0005
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0006
http://arxiv.org/abs/1412.5567
http://arxiv.org/abs/1603.02199
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0009
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0009
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0009
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0009
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0010
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0010
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0010
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0010
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0010
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0011
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0011
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0011
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0011
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0011
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0011
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0011
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0011
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0011
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0012
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0012
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0012
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0012
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0013
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0013
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0013
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0015
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0015
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0015
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0015
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0016
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0016
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0016
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0016
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0016
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0017
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0017
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0017
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0017
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0017
http://arxiv.org/abs/1405.3866
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0019
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0019
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0019
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0019
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0020
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0020
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0020
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0020
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0020
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0020
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0021
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0021
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0021
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0021
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0022
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0022
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0022
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0022
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0022
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0023
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0023
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0023
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0023
http://arxiv.org/abs/1609.07061
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0025
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0025
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0025
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0026
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0026
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0026
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0027
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0027
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0027
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0028
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0028
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0028
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0028
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0028
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0028
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1308.3432
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0031
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0031
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0031
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0031
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0031
http://arxiv.org/abs/1705.07199
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0033
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0033
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0033
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0033
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0033
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0033
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0033
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0033
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0034
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0034
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0034
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0034
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0034
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0034
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0034
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0035
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0035
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0035
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0035
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1412.6550
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0038
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0038
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0038
http://arxiv.org/abs/1512.03385
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0040
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0040
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0040
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0040
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0040
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0040
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0040
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0040
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0040
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0040
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0040
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0042
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0042
http://refhub.elsevier.com/S0925-2312(19)30489-8/sbref0042
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1016/j.neucom.2018.09.103

8 S. Leroux, B. Vankeirsbilck and T. Verbelen et al. / Neurocomputing xxx (xxxx) xxx

ARTICLE IN PRESS

JID: NEUCOM [m5G; May 17, 2019;15:49]

n

Pieter Simoens received his M.Sc. degree in Electronic

Engineering (2005) and Ph.D. degree (2011) from the
Ghent University, Belgium. During his Ph.D. research, he

was funded by the Fund for Scientific Research Flanders

(FWO-V). In 2012, he was a visiting researcher at the
School of Computer Science of Carnegie Mellon Univer-

sity, USA. Currently, he is professor affiliated with the De-
partment of Information Technology of the Ghent Uni-

versity and with imec. He is teaching courses on Mo-
bile Application Development and Software Engineering.

His main research interests include mobile cloud of-

floading, service-oriented networking, edge/fog comput-
ing paradigms, and service engineering for advanced mo-

bile applications. In these fields, he is author and co-author of more than 70 papers
published in international journals or in the proceedings of international confer-

ences. He has also been involved in several national and European research projects
(FP6 MUSE, FP7 MobiThin, H2020 FUSION).
Please cite this article as: S. Leroux, B. Vankeirsbilck and T. Verbelen

Neurocomputing, https://doi.org/10.1016/j.neucom.2018.09.103
Bart Dhoedt received a Masters degree in Electro-

technical Engineering (1990) from Ghent University. His
research, addressing the use of micro-optics to realize

parallel free space optical interconnects, resulted in a

Ph.D. degree in 1995. After a 2-year post-doc in opto-
electronics, he became Professor at the Department of

Information Technology. He is responsible for various
courses on algorithms, advanced programming, software

development and distributed systems. His research in-
terests include software engineering, distributed systems,

mobile and ubiquitous computing, smart clients, middle-

ware, cloud computing and autonomic systems. He is au-
thor or co-author of more than 300 publications in inter-

ational journals or conference proceedings.
et al., Training binary neural networks with knowledge transfer,

https://doi.org/10.1016/j.neucom.2018.09.103

	Training binary neural networks with knowledge transfer
	1 Introduction
	2 Related work
	2.1 Resource constrained deep learning
	2.2 Binary neural networks
	2.3 Knowledge distillation

	3 Similarity based knowledge transfer
	4 Experiments
	4.1 CIFAR10 and CIFAR100
	4.1.1 Qualitative results: Can we visualise the transferred knowledge ?
	4.1.2 Quantitative results: How does pretraining affects the test accuracy and training time ?

	4.2 ImageNet

	5 Conclusion and future work
	Conflict of interest
	Acknowledgements
	References

