
Neurocomputing 398 (2020) 45–54 

Contents lists available at ScienceDirect 

Neurocomputing 

journal homepage: www.elsevier.com/locate/neucom 

Build a compact binary neural network through bit-level sensitivity 

and data pruning 

Yixing Li a , 1 , ∗, Shuai Zhang 

b , Xichuan Zhou 

b , Fengbo Ren 

a 

a School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA 
b School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, China 

a r t i c l e i n f o 

Article history: 

Received 28 February 2019 

Revised 17 December 2019 

Accepted 3 February 2020 

Available online 11 February 2020 

Communicated by Dr. Wen Wujie 

Keywords: 

Binary neural networks 

Deep neural networks 

Deep learning 

Neural network compression 

a b s t r a c t 

Due to the high computational complexity and memory storage requirement, it is hard to directly de- 

ploy a full-precision convolutional neural network (CNN) on embedded devices. The hardware-friendly 

designs are needed for resource-limited and energy-constrained embedded devices. Emerging solutions 

are adopted for the neural network compression, e.g., binary/ternary weight network, pruned network 

and quantized network. Among them, binary neural network (BNN) is believed to be the most hardware- 

friendly framework due to its small network size and low computational complexity. No existing work 

has further shrunk the size of BNN. In this work, we explore the redundancy in BNN and build a com- 

pact BNN (CBNN) based on the bit-level sensitivity analysis and bit-level data pruning. The input data is 

converted to a high dimensional bit-sliced format. In the post-training stage, we analyze the impact of 

different bit slices to the accuracy. By pruning the redundant input bit slices and shrinking the network 

size, we are able to build a more compact BNN. Our result shows that we can further scale down the net- 

work size of the BNN up to 3.9x with no more than 1% accuracy drop. The actual runtime can be reduced 

up to 2x and 9.9x compared with the baseline BNN and its full-precision counterpart, respectively. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Vision-based applications can be found in many embedded

evices for classification, recognition, detection and tracking tasks

1,2] . Specifically, convolutional neural network (CNN) has become

he core architecture for those vision-based tasks [3] . Since it

an outperform conventional feature selection-based algorithm

n terms of accuracy, it becomes more and more popular. Ad-

anced driver-assistance system (ADAS) can either use CNNs for

uiding autonomous driving or alerting the driver of predicted

isk [1] . It is obvious that ADAS depends on a low-latency system

o get a timely reaction. Artificial intelligence (AI) applications

lso explode in smartphones, such as automatically tagging the

hotos, face detection and so on [2,4] . Apple has announced that

he Apple Neural Engine on iPhone is aiming at partially moving

heir AI processing module on device [5] . If the users’ requests

re processed through sending them to the data center, there

ill be much overhead of the latency and power consumption

aused by the commutation. As such, on-device AI processing is
∗ Corresponding author. 

E-mail addresses: yixingli@asu.edu (Y. Li), zs@cqu.edu.cn (S. Zhang), 

xc@cqu.edu.cn (X. Zhou), renfengbo@asu.edu (F. Ren). 
1 The source code is available at https://github.com/PSCLab-ASU/C-BNN 
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he future trend to balance power efficiency and latency. However,

NNs are known to have high computational complexity, which

akes it hard to directly deploy on embedded devices. Therefore,

ompressed CNNs are in demand. 

In the early stage, research work of hardware-friendly CNNs

ave focused on reducing the numerical precision down to 8–16

its in the post-training stage [6] , which either has a limited

eduction or suffers from severer accuracy drop. Lately, in-training

echniques have been brought up, achieving much higher com-

ression ratio. BinaryConnect, BinaryNet, TernaryNet, XNOR-Net 

nd LQ-Net [7–11] have pushed to reduce the weight to binary

r ternary ( −1, 0, +1) values. Network pruning [12] reduces the

etwork size (the memory size for all the parameters) by means

f reducing the number of connections. Regarding the network

ize, pruned network and TernaryNet can achieve 13x and 16x

eduction [9,12] , respectively. While BinaryConnect, BinaryNet,

NOR-Net and LQ-Net can achieve up to 32x reduction. In terms

f computational complexity, BinaryNet and XNOR-Net both have

inarized weights and activations, which can simply replace con-

olution operation with bitwise XNOR (Exclusive-NOR) and bit

ount operation. XNOR-Net has additional scaling factor filters in

ach layer, which brings overhead to both memory and compu-

ation cost. Overall, BinaryNet is recognized as the most efficient

olution for hardware deployment by hardware community when

https://doi.org/10.1016/j.neucom.2020.02.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
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considering its small network size and low computational com-

plexity [13] . The computational complexity of LQ-Net [11] , which

can be configured to have 1-bit weights and 2-bit activations, will

rank the 2nd right after BinaryNet. In the rest of paper, we use

the term, Binary Neural Networks (BNNs) specifically to represent

the top two compact binary weight neural networks – BinaryNet

and LQ-Net. Although the study is possible to be generalized to

any binarized weight neural nets (NNs), here we just constrain

our study to the most two compact form of binary weight neural

networks to show the impact to such compact NNs. 

Although, pruning is capable to work with reduced-precision

CNNs (typically 4–8 bits) to argument the computational resource

savings, it is not clear how much improvement it can get with

BNN. Pruning methods can be categorized as magnitude-based

and optimization-based pruning. For magnitude-based pruning,

the key idea is to prune out the weights that have small numerical

value, which contribute less to compute the output. In the case of

BNN, the weights are constrained to +1/ −1, so there is no relative

small value weights which cannot be applied with magnitude

analysis. For optimization-based pruning, the pruned network can

be resulted in a structured or non-structured way [14] . For the

non-structured case, additional “flag bits” are needed for marking

each prunable weight, which may even increase the memory

consumption and is not beneficial to the inference speed. The only

possible way which can improve runtime performance is to apply

optimization-based structured pruning [15,16] on BNN, but no

existing work has done any related study. In summary, how much

redundancy the BNN still has is still unknown, and no existing

solution has been proved to work effectively on the BNN. 

In order to explore how much redundancy the BNN still has,

and how much one can further compress a BNN, a new solution

tailored for BNN compression is needed. For a data center based

application which run large models, BNN may not be the best

option. On the contrary, for on-device inference on resource con-

strained embedded system, further reducing the memory footprint

and network size are critical to efficient computing. If there is

a smart gate lock for a company’s building, it probably needs a

really large model since the dataset is large. However, if it is a

smart door lock for a single house or apartment, a smaller model

will be good enough for such a small dataset. Also, in this case,

the BNN will make the smart lock to be more energy-efficient

with speed enhancement. 

In the previous work, [17] demonstrates the redundancy in the

first layer of BNN and [18] uses approximated binary filters. The

former one reduces the connection only in the first layer and the

latter one encodes the original binary filters into approximated

ones without any connection reduction. This work is the first one

that explores and proves that there is still connection redundancy

throughout the entire BNN. The proposed flow to reduce the

network size is triggered by conversion and analysis of input data

rather than the network body, which is rarely seen in previous

work. A novel flow is proposed to prune out the redundant input

bit slices and rebuild a compact BNN through bit-level sensitivity

analysis. 

Actually, the proposed method shares very similar idea with

simplifying combinational logic circuits. In the logic circuits, all

input/output data and intermediate results are all binary (0/1)

values. If flip one input node value (change from 1 to 0 or 0 to 1)

but none of the outputs change, it means that this input node is

useless for building this system. In other words, you can remove

this redundant input node and the function of the system will not

change. By removing this useless input node, it helps to simplify

combinational logic circuits design. Similarly, the binary neural

network can be seen as the body of combinational logic circuits.

If we flip the binary inputs of the binary neural network and its

output (accuracy) doesn’t change, we can infer these inputs are
edundant, which can be removed. Accordingly, we can shrink

he network size (reduce the number of parameters) since the

unction we would like to approximate is simplified. Experiment

esults show that the compression ratio of the network size is

chieving up to 3.9x with no more than 1% accuracy drop. 

The rest of the paper is organized as follows. Section 2 dis-

usses the related work for network compression and explains

hy BNN is a more superior solution to be deployed on the

ardware. In addition, Section 2 also explains why existing neu-

al network compression methods cannot be applied on BNN.

ection 3 demonstrates the experiments to validate the hypothesis

hat BNN has redundancy and proposes a novel flow to build a

ompact BNN. Experiment results and discussion are shown in

ection 4 . Section 5 concludes the paper. 

. Related work 

When referring to hardware-friendly oriented designs, it is

ot fair to only emphasize compressing the network size. Other

han that, the computational complexity is also essential. In this

ection, we first discuss and evaluate the related work for network

ompression by emphasizing both factors. We also present a

imple benchmark study to help the readers better understand

he computational complexity in terms of hardware resource

tilization of the existing work. It can reveal why BNN is a more

uperior solution to be deployed on the hardware. 

.1. Reduced-precision methods 

BinaryConnect [7] is a study in the early stage of exploring

he binarized weight neural network. In the BinaryConnect net-

ork, the weights are binary values while the activations are still

on-binary. Arbitrary value multiplies + 1/ −1 is equivalent to a

onditional bitwise NOR operation. Hence, the convolution opera-

ions can be decomposed into conditional bitwise NOR operations

nd accumulation. It is a big step moving from full-precision

ultiplication to much simpler bitwise operations. 

BinaryNet [8] is the first one that builds a network with both

inary weights and activations. The convolution operation has

een further simplified as bitwise XNOR (Exclusive-NOR) and bit

ount operations. The hardware resource cost is minimized for

PU, FPGA and ASIC implementation. For GPU implementation,

 32-bit bitwise XNOR can be implemented in a single clock

ycle with one CUDA core. For FPGA and ASIC implementation,

here is no need to use DSP (Digital Signal Processor) resources

nymore, which is relatively costly. Simple logic elements – LUTs

Look Up Tables) can be used to map bitwise XNOR and bit count

perations, which makes it easy to map highly parallel computing

ngines to achieve high throughput and low latency. 

XNOR-Net [10] also builds the network based on binary weights

nd activations. However, it introduces a filter of full-precision

caling factors in each convolutional layer to ensure a better

ccuracy rate. Additional non-binary convolution operations are

eeded in each convolutional layer, which cost extra processing

ime and computing resources. 

TernaryNet [9] holds ternary ( −1, 0, + 1) weights for its net-

ork. By increasing the precision level of the weights, it enhances

he accuracy rate. Since ternary weights have to be encoded in 2

its, the computational complexity will at least double, compared

ith BinaryNet. 

LQ-Net [11] studies the bit-width and accuracy tradeoff be-

ween different low-precision configurations. The lower bound of

eight and activation precision are constrained to 1 bit and 2

its, respectively. The bit-width of weight/activation in LQ-Net can

e configured to 1/2, 2/2, 3/3, 2/32, 3/32 or 32/32. In this paper,

Q-Net only refers to its most compact version – 1-bit weight and
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DSP LUTS

Fig. 1. Resource consumption of W 

(10,10) × A (10,10) multiplication on a Xilinx Virtex-7 

FPGA for different architecture. 
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-bit activation configuration. Its computational complexity will

e the closest one to BinaryNet, while the accuracy is improved,

specially for the large networks. 

.2. Reduced-connection methods 

Network pruning [12] is revealed as the most popular technique

or compressing pre-trained full-precision or reduced-precision

NNs (weights of the reduced-precision CNN are usually in the

ange of 8 bit - 16 bit [6] . It compresses the network by pruning

ut the useless weights, which gains speedup mainly by reducing

he network size. Unlike all the other technique mentioned above,

either the weights nor activations of a pruned network are binary

r ternary. Still, the computation complexity of the full-precision

r reduced-precision multiply-add operation is much higher than

hat of the BNN. Overall, different kinds of pruning methods can

e categorized as magnitude-based and optimization-based prun-

ng. We will explain in below why they both are not compatible

ith further compressing BNN. 

For magnitude-based pruning [12] , the key idea is to prune

ut the weights that have small numerical value, which contribute

ess to compute the output. In the case of BNN, the weights are

onstrained to + 1/ −1, so there is no relative small value weights

hich can’t be applied with magnitude analysis. 

For optimization-based [14] , the pruned network can be re-

ulted in a non-structured or structured way. For non-structured

nes, the prunable weights randomly distributes in the 4-D weight

pace. In a full-precision or reduced-precision CNN, the indexes

f non-structured prunable weights can be stored in separated

asking arrays. The inference speed can be benefited from skip-

ing the computation of masked weights. However, in the case

f BNN, since the weights are already in 1-bit data format, the

asking array will introduce quite a lot overhead in memory

ootprint. Besides, additional logic for skipping the computation of

asked weights would ruin the pattern of highly paralleled XNOR

omputations in BNN. The only possible way which can improve

untime performance is to apply optimization-based structured

runing [15,16] on BNN, but no existing work has done any related

tudy. Usually pruning can be applied with 4–8 bit low-precision

etworks. However, how much redundancy the BNN still has is

till unknown, and no existing solution has been proved to work

ffectively on such compact BNN. 

.3. Other methods 

Singular Value Decomposition (SVD) is one method that has

een applied to BNN to compress its weight matrices [18] . The

asic idea is to decompose a matrix into lower rank matrices

ithout losing much of the important data. SVD is able to pro-

ide high compression ratio for high rank matrices. However, for

ow-rank binary weight matrices of BNN, SVD can only bring 17%

emory saving according to [18] . 

.4. Comparison 

We implement a W (10,10) × A (10,10) matrix multiplication on

 Xilinx Virtex-7 FPGA board for analyzing the computational

omplexity of the different architecture that mentioned above. The

recision of elements in W and A are the same as the precision

f weights and activations in each architecture. The matrix multi-

lication is fully mapped onto the FPGA. In other words, we don’t

euse any hardware resource. So the resource utilization is a good

eflection of computational complexity. Since 16 bits are enough to

aintain the same accuracy rate as the full precision network [6] ,

e set the precision of any full precision weights or activations to

e 16 bits. For the pruned network, we set 84% of the elements
n W of the pruned network as zeros for a fair comparison. (Since

runed network can get up to 13x reduction [12] while BNN can

et 32x, the size of the pruned network is 32/13 = 2.5x larger.

ith 16-bit weights, the total number of non-zero weights of the

runed network is 2.5/16 = 16% of that of the binarized weight

ases.) For LQ-Net [11] , we only refer to its most compact configu-

ation in this paper, which has 1-bit weights and 2-bit activations.

s shown in Fig. 1 , BinaryNet and LQ-Net apparently consumes the

east amount of hardware resource among all these architecture. 

In summary, for all the methods mentioned above, pruning can

e categorized as connection reduction, while the rest can be cat-

gorized as precision reduction. However, both kinds of methods

annot be applied to the BNN. Regarding to the incompatibility of

runing, we have explained in Section 2.2 . For precision reduction,

NN has already reached the lower bound. 

Since CNNs are believed to have huge redundancy, we hypoth-

size that the BNN also has redundancy and it is able to get a

ore compact BNN. To our best knowledge, there is only one

elated work pruned the first layer of a BNN with the observation

f barely any accuracy drop [17] . Since they only compress the

rst layer, the impact on the entire network is fairly limited. On

he contrary, we have analyzed and conducted the experiments to

rove reducing the input precision is a valid method to trigger the

ompression of the entire BNN. 

We are the first to explore the BNN redundancy across the

ntire network by the bit-level analysis of the input data. We will

alidate our hypothesis step by step in the next section. 

In the following paragraphs, BNN is referring to non-

ompressed binarized CNN, which is our baseline model. The

econstructed BNN and CBNN is referring to the reconstructed

odel we used for sensitivity analysis and the final compact BNN

ith shrunk network size, respectively. 

. Build a compact BNN 

First, we need to reconstruct and train a new model for sensi-

ivity analysis. Section 3.1 demonstrates the model reconstruction

f BNN and shows the redundancy exists in BNN through statistical

nalysis of the non-binary first layer. Then, with the reconstructed

NN, Section 3.2 will further prove the redundancy exists through-

ut the entire BNN and decide the prunable bit slices through

it-level sensitivity analysis in post-training stage. Finally, Section

.3 presents the guide to rebuilding a more compact BNN (CBNN)

hat triggered by input data pruning. 

.1. BNN reconstruction 

In this section, we first illustrates reformatting the input and

odifying the first layer for the BNN reconstruction in Section

.1.1 . Then we shows the redundancy exists in BNN through
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Fig. 2. Conversion from fixed-point input to bit-sliced binary input. 
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Fig. 3. Corresponding relationship between input bit slices and non-binary first layer. 
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statistical analysis of the non-binary first layer in Section 3.1.2 . In

Section 3.1.3 , the training method is presented. 

3.1.1. Bit-sliced binarized input 

A single image in the dataset can be represented as D ( W,H,C ) ,

where W is the width, H is the height, and C is the number of

channels, as shown in Fig. 2 . The raw data is usually stored in

the format of a non-negative integer with the maximum value of

A . Then a lossless conversion from integer (fixed-point) to N -bit

binary format is defined as the int 2 b function. 

D (W,H,C ′ ) 
b = int2 b(D (W,H,C) , N) , (1)

where C ′ = C × N and N = ceil (l og 2 (A + 1)) . After int 2 b conversion,

each channel of an image is expanded to N channels in binary

format. 

3.1.2. Non-binary first layer 

Experimental observation shows that the bit-sliced input has

a negative impact on the accuracy rate. There are two main

reasons. Since the input data is in the bit-sliced format, the data-

preprocessing methods, e.g., mean removal, normalization, ZCA

whitening, cannot be applied here, which results in an accuracy

drop. In addition, compared with a standard first layer in BNN,

the computational complexity drops, which may hurt the accuracy

rate. Therefore, we assign the first layer with full-precision float-

point weights to keep the computational complexity of the first

layer the same as a standard first layer in BNN. 

More importantly, non-binary first layer can help to analyze the

importance level of different input bit slices. In the 2-D convolu-

tions, the N 

th slices of first-layer weights are only multiplied with

N 

th input bit slices. In an extreme case, if all the weights of N 

th 

slices are 0s, no information of N 

th input bit slices are propagated

into the 2 nd layer. When the constraint is relaxed a little bit, if

the N 

th slices of weights associated with N 

th input bit slices are

all closed to 0s, the corresponding N 

th input data bit slices that
ultiplied by those small values will have trivial contribution to

he computation in the rest of layers. It can also be interpreted as

hese input features are filtered out. As shown in Fig. 3 , input bit

lices and first layer weight slices have one-to-one correlations.

hus, we group the weight associated with the N 

th input bits sep-

rately for statistical analysis. In Fig. 4 , it shows the histograms of

rst-layer weight magnitude distributions associated with differ-

nt input bit slices. For the weights associated 1 st − 3 rd bit slices,

he weight magnitude is very closed to zero. From the weights

ssociated with 4th input bit slice, the weight magnitude spreads

ut in a wider range. Therefore, we can hypothesize that the lower

its of input slices can be redundant for the classification task. 

Although switch the first layer to non-binary makes the net-

ork size increased, the growth is somewhat limited. For example,

n a 9-layer BinaryNet [8] , the size of the first layer is only

.02% of the entire network. It has been proved that, with 16-bit

uantization of the weights, the NNs are still able to preserve the

ccuracy [6] . With the bit-slice input, the network size will slightly

ncrease by 3%, which can be negligible. 

With the bit-sliced input and non-binary first layer, we recon-

truct the BNN model and refer it as the reconstructed BNN. In our

xperiments, we simply take the input bit-slices as floating-point

s and 1s. Thus, the computations in the 1st layer are standard

oating-point operations (multiplications and additions). Although

he computational complexity is the same, the new structure helps

o reduce the redundancy in BNN, which will be elaborated in the

ollowing sections. 

.1.3. Binary constrained training 

For BinaryNet-based experiment, we adopt the training method

roposed by Hubara et al. [8] . The objective function is shown in

q. 2 , where W 1 represents the weights in the non-binary first

ayer and W l represents the weights in all the other binary layers.

he loss function L here is a hinge loss. In the training stage, the

ull-precision reference weights W are used for the backward
l 
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Fig. 4. Histogram of distributions of weight magnitude associated with different input bits. 
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Fig. 5. Sensitivity analysis of the reconstructed BNN with distorted input. 
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ropagation, and. the binarized weights W 

b 
l 

= clip(W l ) [8] are

sed in the forward propagation. As Tang et al. propose in [19] ,

he reference weights in the binary layers W l ( l ≥ 2) should be

unished if they are not close to + 1/ −1. Also, a L 2 regularization

erm is applied for the non-binary first layer. For LQ-Net-based

xperiment, we use exactly the same training method proposed in

he original paper [11] . 

(W l , W 1 , b) = L (W 

b 
l , W 1 , b) + a v g(|| W 1 || 2 2 ) 

+ λ(a v g 
L ∑ 

l=2 

(1 − || W 1 || 2 2 ) (2) 

.2. Sensitivity analysis 

We use the training method in Section 3.1 to train a recon-

tructed BNN model with the bit-sliced input and non-binary first

ayer. In the post-training stage, we demonstrate the method to

how the redundancy throughout the entire network and evaluate

he sensitivity of the bit-sliced input to the accuracy performance. 

As shown in Fig. 5 , the reconstructed BNN is pre-trained as

nitial. Then, the N 

th bit ( N 

th least significant bit) slices in RGB

hannels are substituted with binary random bit slices. The reason
hy we use binary random bit slices other than pruning is that,

runing will reduce the size of the network. We want to eliminate

ny other factors that can influence the accuracy performance. If

he difference between the actual inference error ERR inf and the

eference point ERR ref ( �ERR = ERR in f − ERR re f ) is less than an

rror-tolerant threshold ERR th , the N 

th bit slices are classified as

runable. 

Without retraining the network, the error brought by random

it slices will propagate throughout the entire network as shown

n Fig. 5 . With this tight constraint, if there can be merely no

ccuracy drop in the inference stage. it can be inferred that these

it slices with less sensitivity to the accuracy performance are

seless in the training stage and there are redundant connections

hroughout the entire network. It also indicates that the existing

edundancy in BNN allows us to further shrink the network size.

fter evaluating the sensitivity of each bit slice, we can also ana-

yze the sensitivity of a stack of slices by using the same method.

hen we can find a collection of insensitive bit slices which are

runable in the training stage. If P out of N slices are categorized

s accuracy insensitive, the number of channels C ′ can be reduced

y N / P times. That is to say, the size of the input array is reduced

y N / P times. 
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3.3. Rebuild a compact network 

In the most popular CNN architectures, such as AlexNet [20] ,

VGG [21] and ResNet [22] , the depth incremental ratio of feature

map from one layer to the next layer is either doubled or remain-

ing the same. Intuitively speaking, it is useful to keep the same

depth incremental ratio across the entire network. Thus, a good

starting point of rebuilding a compact BNN (CBNN) is shrinking

the depth of all the layers by N / P times. Since there is a quadratic

relation between depth and the net-work size, the reduction of

the network size of the CBNN is expected to be ( N / P ) 2 times. 

Although we haven’t explored how to build an accurate model

to optimize the network compression ratio, we emphasize the en-

tire flow (presented in Section 3 ) that proves and reduces the re-

dundancy of the entire BNN, and enables speedup in the inference

stage with the CBNN. In Section 4 , we will present and discuss the

performance results corresponding to each subsection in Section 3 .

4. Result and discussion 

We will first walk through the flow presented in Section 3 with

experimental results on the CIFAR-10 classification task in Section

4.1 . Section 4.2 will present additional results on SNVH, Chars74K,

GTSRB and ImageNet datasets. 

For the experiment setup, we build relative smaller models

(AlexNet-scale) based upon Hubara et al.’s BinaryNet in Theano

and test it with CIFAR-10, SNVH, Chars74K and GTSRB dataset.

Due to the severe accuracy drop of fully binarized NNs (such as

BinaryNet) in large model, here we test relative larger models

(ResNet-scale) based upon a more relax BNN – LQ-Net with 1-bit

weights and 2-bit activations. LQ-Net experiment is conducted in

Tensorflow and it is tested with ImageNet dataset. The description

of each dataset is listed as follow. 

CIFAR-10 [23] . This is a dataset for a 10-category classification

task with 32 × 32 RGB images. The training dataset contains

50,0 0 0 images and the testing dataset contains 20,0 0 0. 

SVHN (The Street View House Numbers) [24] . This dataset is a

real-world house number dataset from Google Street View images.

It has 73,257 digits for training and 26,032 digits for testing, with

the image size of 32 × 32. 

Char74K [25] . This dataset contain 62 characters (0–9, A-Z and

a-z) from both natural images and synthesized images. 80% of the

Char74K images serve as the training set and the rest 20% serve as

the testing set, with the image size of 56 × 56. 

GTSRB (The German Traffic Sign Benchmark) [26] . This dataset

includes 43-class traffic signs. We resize the traffic sign images to

32 × 32. It has 39,209 training data and 12,630 testing data. 

ImageNet [27] . ImageNet is a large scale dataset which has

more than 14 million hand-annotated images. Here, we use its

subset – ImageNet Large Scale Visual Recognition Challenge 2012

(ILSVRC2012), which is commonly used for large scale classifi-

cation task. The ILSVRC2012 dataset covers 10 0 0 categories. The

training and testing data contains 1.2 million and 50,0 0 0 images,

respectively. Average image resolution is around 450 × 450 pixels. 

4.1. Experiment on CIFAR-10 

Subsections of 4.1 show the experimental results corresponding

to the methodology in Section 3.1 –3.3, respectively. 

4.1.1. BNN reconstruction 

Following the input data conversion method in Section 3.1 , the

raw data of CIFAR-10 dataset can be denoted as CIFAR (32,32,3) . Each

pixel value is represented by a non-negative integer with mag-

nitude A = 255 . Thus, N = ceil (l og (255 + 1)) = 8 bits are enough
2 
or lossless binary representation. Then, the bit-sliced input can be

enoted as CIFAR 

b 
(32 , 32 , 24) 

. 

We have plotted an image in CIFAR-10 dataset with different

it-level distortion shown in Fig. 6 . This image belongs to the

horse” category. In Fig. 6 , the left most ones are the same original

mage without any distortion. The N 

th bit indicates the N 

th least

ignificant bit (LSB). The distortion here is injected by replacing

he entire bit slice with a randomly generated binary bit map. In

ig. 6 (a), only one single bit slice get distorted at a time. Since

nly up to 1/8 elements of CIFAR 

b get distorted, all the distorted

mage can show a clear boundary of the horse with limited noise,

xcept the rightmost one with 7th bit slice gets distorted. If we

urther distort CIFAR 

b in multiple bit slices from the 1 st to N 

th bit

lices, the corresponding images are shown in Fig. 6 (b) and (c).

he images in Fig. 6 (c) are different from Fig. 6 (b) that they don’t

aintain 8-bit precision. Instead, we directly prune the 1 st to N 

th 

it slices of the images in Fig. 6 (c). From visualization, in both

ig. 6 (b) and (c), the turning points is at 5 th bit. 

Distorted images in Fig. 6 (a) and (b) are used for sensitivity

nalysis in reconstructed BNN (Recon. BNN). Pruned images in

ig. 6 (c) are used for training CBNN. 

As illustrated in Section 3.1 , the proposed structure of the

econstructed BNN is different from the original BNN in both

nput format and the first layer. Table 1 compares the performance

esults of three network structures with different numerical pre-

ision in their input and 1 st layer. The baseline BNN design is

he one in [8] , with full precision input and a binarized 1 st layer.

ere we define a CNN with bit-sliced input, binarized weights

nd activations as FBNN. FBNN has bit slices input but BNN does

ot. By training with the method in Section 3.1 , FBNN shows 2.4%

n the accuracy drop, compared with BNN. The accuracy here is

ffected by computational complexity degradation in the 1 st layer

nd unnormalized input data. It also gives us some insights that

he FBNN is hard to get a good accuracy rate, which is in accord

ith Tang et al.’s opinion in [19] . By introducing bit slices input

nd non-binary 1 st layer to reconstruct the BNN (as we proposed

n Section 3.1 ), the accuracy drop can be compensated as shown in

able 1 . We can even get a better error rate than the baseline BNN

ith a slightly increased network size. It also gives more margin

n compressing the network. 

.1.2. Sensitivity analysis of the reconstructed BNN 

With a pre-trained reconstructed BNN presented in the last

ection, now we can do bit-level sensitivity analysis as stated in

ection 3.2. 

First, we analyze the sensitivity of a single bit slice. The results

re shown in Table 2 . The data shows in Table 2 is the average

ver 10 trials. In addition to the reconstructed BNN, we also

valuate the bit-level sensitivity of the input with its full-precision

ounterpart, which is denoted as FNN. With FNN, we intend to

how that the data itself has redundancy, which can be reflected

n both binary domain or fixed-point domain with the same

attern. We take the architecture in the first row as the reference

esign. The 1 st row of ERR column is the ERR ref and the others are

RR inf . �ERR = ERR in f − ERR re f . BNN is the reference design for

he reconstructed BNN. FNN with non-distorted input is the refer-

nce design for the full-precision ones. It is interesting that the 1 st ,

 

nd and 3 rd bit slices are at the same sensitivity level, concluded

rom the almost unchanged �ERR . We define the turning point of

rror in sensitivity analysis as the point where �ERR flips the sign

r increases abruptly. The turning point here is the 5 th bit. 

Second, we analyze the sensitivity of bit slices stacks. Each stack

ontains 1st to N th bit slices in each color channel. The results are

hown in Table 3 . For the 1 st , 2 nd and 3 rd bit slices, it makes no

ifference if distortion is injected in one of them or all of them.
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R R R R R R R

R R R R R R R

R XRamdomize Prune

X X X X X X X

(a)

(b)

(c)

Fig. 6. Visualization of a horse image in CIFAR-10 with different bit-level distortion in spatial domain and frequency domain. 

Table 1 

Performance comparison with different input format and 1 st layer configuration. 

Arch. Input First layer Network size Error rate (%) 

BNN Full precision Binary 1x 11.6 

FBNN Bit slices Binary 1.01x 14.0 

Reconstructed BNN Bit slices Non-binary 1.1x 10.1 

Table 2 

Sensitivity analysis of single bit slice in each channel with random noise injected. 

Arch. N th bit ERR/% �ERR/% Arch. N th bit ERR/% �ERR/% 

BNN 0 11.6 0.0 FNN 0 10.4 0.0 

Recon. BNN 

0 10.1 −1.5 

FNN 

0 10.4 0.0 

1 9.8 −1.9 1 10.4 0.0 

2 10.0 −1.6 2 10.4 0.1 

3 10.1 −1.6 3 10.4 0.1 

4 10.5 −1.2 4 10.9 0.5 

5 12.5 0.8 5 13.0 2.6 

6 20.9 9.2 6 21.4 11.1 

7 40.3 28.6 7 43.8 33.4 

Table 3 

Sensitivity analysis of 1- N th multiple bit slices in each channel with random noise injected . 

Arch. 1- N th bits ERR/% �ERR/% Arch. 1- N th bits ERR/% �ERR/% 

BNN 0 11.6 0.0 FNN 0 10.4 0.0 

Recon. 

BNN 

0 10.1 −1.5 

FNN 

0 10.4 0.0 

1 9.8 −1.9 1 10.4 0.1 

1–2 9.9 −1.7 1–2 10.5 0.2 

1–3 9.9 −1.8 1–3 10.5 0.2 

1–4 10.7 −0.9 1–4 11.3 1.0 

1–5 13.6 1.9 1–5 14.4 4.1 

1–6 24.3 12.6 1–6 23.3 13.0 

1–7 46.1 34.5 1–7 54.1 43.7 
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Fig. 7. Error rate of randomizing one or multiple bit slices in sensitivity analysis. 

Table 4 

Performance of CBNNs on CIFAR-10. 

Arch. 1- N th bits ERR% �ERR% Network size GOPs 

MB CP. ratio # CP. ratio 

BNN 0 11.6 0.0 1.75 1x 1.23 1x 

CBNN 

1 10.3 −1.3 1.38 1.3x 0.98 1.3x 

2 10.6 −1.0 1.02 1.7x 0.72 1.7x 

3 10.8 −0.8 0.71 2.5x 0.50 2.5x 

4 11.8 0.2 0.45 3.9x 0.32 3.8x 

5 14.2 2.6 0.25 7.0x 0.18 6.8x 
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Fig. 8. Runtime comparison of different network compression technique. 
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The 4 th makes a slight difference of around 0.5% accuracy drop and

the 5 th bit is also the turning point with around 3% accuracy drop.

Even when we randomize 50% of the entire input values ( 1 st 

to 4 th bit slices) and the variation propagates through the entire

network, the accuracy doesn’t change much. Therefore, these bits

are useless in the training stage. This validates the hypothesis that

the BNN still has redundancy. In Fig. 7 , the error rate turning point

is circled at the 5 th bit slice. The trend of error rate in the binary

domain and full-precision domain (shown in Fig. 7 ) align well. In

order to make the entire process be automatic, we can simple set

an error-tolerant threshold ERR th to determine how many bits are

prunable. Here, ERR th is set to 1%. We can conclude that 1 st − 4 th 

bit slices here are redundant and prunable through bit-level sen-

sitivity analysis. Accordingly, the reconstructed BNN can be shrunk

to reduce the redundancy and get a more compact architecture. 

4.1.3. Rebuild a compact BNN (CBNN) 

Since 4 out of 8 bit slices are prunable, we can rebuild a

compact BNN with the depth of each layer shrunk by half. The

performance of CBNN is shown in Table 4 . CP. Ratio represents

compression ratio and GOPs stands for Giga operations (one

operation is either an addition or a multiplication). Regarding the

network size, we use 16 bits for measuring non-binary weights

in the 1 st layer, since it has been proved that 16-bit precision is

enough to maintain the same accuracy [6] . We also show the alter-

natives of pruning 1- N 

th ( N = 1 , 2 , . . . , 5 ) bit slices and shrink the

layerwise depth by 1/8 to 5/8. The results align with the sensitivity

analysis that 1- 3 rd bit slices have little impact on the classification

performance. The choice of pruning 1- 4 th bit slices is the optimal

one to maximize the compression ratio with < 1% accuracy drop.

Since the size of the 1st layer is larger than that of BNN, we can-

not achieve the ideal network size compress ratio (4x) regarding

the entire network. The actual compression ratio of the network

size is 3.9x and the compression ratio of number of GOPs is 3.8x. 
.2. Experiment on SVHN/Chars74K/GTSRB/ImageNet datasets 

In this section, we will skip the sensitivity analysis and just

how the result comparison between the baseline and the final

BNNs we get in the same procedure. 

For SVHN and Char74K datasets, we use a baseline architecture

hat has half of the depth in each layer as the one for CIFAR-10. For

TSRB, we use a baseline architecture that has the same filter con-

guration as the one for CIFAR-10. Since the input size of GTSRB is

arger than CIFAR-10, so the network for GTSRB has the same depth

ut larger width and height in each layer. For ImageNet dataset,

e use the same ResNet-18 architecture as Zhang et al.’s work. 

In Table 5 , it shows the performance results of CBNNs eval-

ating on different datasets and network setting. The baseline

or each dataset is shown in the first row of each dataset region.

or Chars47k and GTSRB, the CBNNs are able to maintain no

ore than 1% accuracy drop, achieving 3.7x and 3.9x network

ize reduction, respectively. For SVHN dataset, the accuracy drop

etween pruning 1- 3 rd bits and pruning 1- 4 th bits is large. In

rder to preserve no more than 1% accuracy drop, the network

ize reduction is yield to 2.4x. For ImageNet dataset, the accuracy

rop 1.5%, while gaining 2.5x network size reduction. 

.3. Runtime evaluation 

We evaluate the actual runtime performance of CBNNs by

vidia GPU Titan X. The batch size is fixed as 128 in all the

xperiments. We use the same XNOR-based GPU kernel as [8] for

BNN implementation. The computational time is calculated by

veraging over 10 runs. 

Fig. 8 illustrates the actual runtime and runtime speedup of 4

BNNs compared with their baseline BNNs. The configurations are

he same as the highlight ones in Tables 4 and 5 . For the CBNNs

rocessing CIFAR-10, GTSRB, Char47k and ImageNet datasets,

heir network size and total GOPs shrink 3.7-4.0x, resulting in the

peedup of 1.6-2.0x. For the CBNN processing the SVHN dataset, its

etwork size and total GOPs shrinks 2.4x, resulting in a speedup of

.4x. As it is proved in [28] , combining pruning, quantization and

uffman coding technique, an FNN can achieve up to 4x speedup

8] . demonstrate that a multilayer perceptron BNN can get 5x

peedup compared with its full-precision counterpart. On top of

he BNN, the proposed CBNN can give extra 1.4-2.0x speedup.

herefore, the CBNN can achieve 7.0–9.9x speedup compared with

NN. 
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Table 5 

Performance results of CBNNs on SVHN, Chars47k, GTSRB and ImageNet datasets. 

Arch. Dataset 1- N th bits ERR% �ERR% Network size GOPs 

MB CP. ratio # CP. ratio 

Binary- 

Net 

SVHN 

0 4.8 0.0 0.44 1x 0.31 1x 

1 4.9 0.1 0.36 1.2x 0.26 1.2x 

2 5.1 0.3 0.26 1.7x 0.19 1.6x 

3 5.0 0.2 0.18 2.4x 0.13 2.4x 

4 6.6 1.8 0.12 3.7x 0.08 3.7x 

Chars47k 

0 15.4 0.0 0.44 1x 0.31 1x 

1 15.3 −0.1 0.36 1.2x 0.26 1.2x 

2 15.3 −0.1 0.26 1.7x 0.19 1.6x 

3 15.2 −0.2 0.18 2.4x 0.13 2.4x 

4 16.3 1.0 0.12 3.7x 0.08 3.7x 

GTSRB 

0 1.0 0.0 1.81 1x 3.89 1x 

1 1.0 0.0 1.39 1.3x 2.98 1.3x 

2 1.2 0.2 1.02 1.8x 2.19 1.8x 

3 1.6 0.6 0.71 2.5x 1.52 2.6x 

4 2.0 1.0 0.46 3.9x 0.97 4.0x 

LQ-Net ImageNet 

0 37.1 0.0 150 1x 3.0 1x 

1 37.1 0.0 115 1.3x 2.6 1.3x 

2 37.2 0.1 113 1.8x 2.3 1.8x 

3 38.5 1.5 94 2.5x 1.9 2.6x 

5

 

d  

a  

s  

w  

d  

b  

i  

d  

s  

r  

t  

2  

w  

t  

t

D

 

c  

i

A

 

g  

f  

i  

c  

r

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

. Conclusion 

In this paper, we propose a novel flow to explore the redun-

ancy of BNN and remove the redundancy by bit-level sensitivity

nalysis and data pruning. In order to build a compact BNN, one

hould follow these three steps. Specifically, first reconstruct a BNN

ith bit-sliced input and non-binary 1 st layer. Then, inject ran-

omly binarized bit slices to analyze the sensitivity level of each

it slice to the classification error rate. After that, prune P accuracy

nsensitive bit slices out of total N slices and rebuild a CBNN with

epth shrunk by ( N/P ) times in each layer. The experiment results

how that the error variation trend in sensitivity analysis of the

econstructed BNN is well aligned with that of CBNN. In addition,

he CBNN is able to get 2.4-3.9x network compression ratio and

.4-4.0x computational complexity reduction (in terms of GOPs)

ith no more than 1% accuracy loss compared with BNN. The ac-

ual runtime can be reduced by 1.4-2x and 7.0–9.9x compared with

he baseline BNN and its full-precision counterpart, respectively. 
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