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Abstract

Uncertainty quantification is crucial to assess prediction quality of a machine
learning model. In the case of Extreme Learning Machines (ELM), most meth-
ods proposed in the literature make strong assumptions on the data, ignore the
randomness of input weights or neglect the bias contribution in confidence inter-
val estimations. This paper presents novel estimations that overcome these con-
straints and improve the understanding of ELM variability. Analytical deriva-
tions are provided under general assumptions, supporting the identification and
the interpretation of the contribution of different variability sources. Under
both homoskedasticity and heteroskedasticity, several variance estimates are
proposed, investigated, and numerically tested, showing their effectiveness in
replicating the expected variance behaviours. Finally, the feasibility of confi-
dence intervals estimation is discussed by adopting a critical approach, hence
raising the awareness of ELM users concerning some of their pitfalls. The paper
is accompanied with a scikit-learn compatible Python library enabling efficient
computation of all estimates discussed herein.

Keywords: Extreme Learning Machine, standard error, model variance,
confidence interval, uncertainty quantification, regularization

1. Introduction

Statistical accuracy measures such as variance, standard error and Confi-
dence Intervals (CI) are crucial to assess the quality of a prediction. Model
uncertainty quantification is needed to build CI and has a direct impact on the
prediction interval, especially when dealing with small datasets [1]. Uncertainty5

quantities for Feed-forward Neural Networks (FNN) solving regression tasks can
be obtained by means of different methods[2, 3]. Here these quantities are in-
vestigated in relationship with the use of the Extreme Learning Machine (ELM)
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model [4]. ELM is a single-layer FNN with random input weights and biases,
therefore allowing the optimization of the output weights through the Least10

Squares (LS) procedure. One can think about ELM as a projection of inputs in
a random feature space where a Multiple Linear Regression (MLR) with a null
intercept is performed.

Three main uncertainty sources can be distinguished [5]. A first one comes
from the data, and in particular from sampling variation and unexplained fluc-15

tuations, or noise. A second uncertainty source is related to the estimation of
the model parameters, which in the case of an FNN correspond to the weights
and biases [3]. In ELM, input weights and biases are randomly chosen, which
clearly generates uncertainty. Moreover, despite being optimized through a pro-
cedure with a unique solution, the estimation of the output weights depends on20

the random input weights and on the data, which therefore induces additional
fluctuations. Finally, a third type of uncertainty source is due to the model
structure. This source, generally referred at as structural uncertainty, is not
considered in this paper.

A number of methods were proposed to obtain confidence or prediction in-25

tervals with ELM. A Bayesian formulation was introduced to integrate prior
knowledge and produce directly CI [6, 7]. In the frequentist paradigm, boot-
strap methods were investigated in the context of time series [8]. Akusok et al.
proposed a method to estimate prediction intervals using a covariance matrix
estimate coming from MLR [9].30

Most of these methods make Gaussian assumption on the output distribution
or do not consider the bias in interval estimation, which may cause misleading
conclusions. Moreover, resampling methods lead to important computational
burden when the number of data is high. Finally, it is often argued that ran-
domness of the input weights and biases is supposed to be negligible providing35

the training set large enough. However, it is not always clear how many data is
needed in practice. Indeed, while stochastic input layer initialization can have
weak impact in low dimension, it is still unclear what could happen when num-
ber of features or/and neurons are large. Because of the curse of dimensionality,
the random drawing of the input weights and biases could have a higher impact40

than suspected. To further investigate such impact, the development of ELM
variance estimation methods taking into account its stochastic nature is there-
fore extremely relevant. Additionally, ELM is also used efficiently with small
training dataset [10] — in which case precise variance estimate is crucial —
where the randomness of the input weights and biases should not be ignored.45

The contribution of this paper is threefold. First, analytical development
are proposed to derive ELM variance taking into account also the contribution
induced by the random input weights and biases. This is done without any
other assumptions on the noise distribution than the facts that it is centered
and have a finite variance. In particular, the presented theoretical results hold50

for dependant and non-identically distributed data. Second, homoskedastic and
heteroskedastic variance estimates are provided, and some of their properties
are investigated. While it may be argued that the homoskedastic case could be
unrealistic, its study is of great interest as it provides an insightful propaedeutic
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value and develops the intuition for more advanced situations. Moreover, in55

case of applications with a small number of data, homoskedastic assumption
may yield to better results. Third, the paper proposes empirical bases to move
towards CI estimations, which include the variability induced by the random
input weights and biases. Their discussion will also raise the awareness of ELM
users about some pitfalls of confidence interval estimations. Overall, the results60

presented in this paper are expected to clarify the impact of input weights
variability and noise, hence increasing the understanding of ELM variability.

The remainder of the paper is organized as follows. Starting from general as-
sumption on the noise covariance matrix, probabilistic formulas are derived for
predicted output variance knowing the training input for single and ensemble of65

(regularized) ELM in section 2. Based on these formulas, section 3 provides vari-
ance estimates when noise is independent with constant variance (homoskedastic
case) and non-constant variance (heteroskedastic case), for which a Python im-
plementation is available on GitHub, see the software availability at the end of
the paper. The effectiveness of the proposed estimates is demonstrated through70

numerical experiments in section 4, where estimation of CI is also discussed.
Finally, section 5 concludes the paper.

2. Analytical developments

This section begins by recalling ELM theory and fixing notations. Subse-
quently, the bias and variance for a single ELM are derived. The results are75

then generalized to ELM ensemble. Finally, correlation between two ELMs is
investigated.

2.1. Background and notations

Assume that an output variable y depends of d input variables x1, . . . , xd

through the relationship
y = f(x) + ε(x),

where x = (x1, . . . , xd)
T ∈ R

d is the vector composed by the input variables,
(·)T denotes the transpose operator, f is a function of x whose value represent80

the deterministic part of y, and ε(x) is a random noise depending on the input
representing the stochastic part of y. It is assumed that, whatever the value of
x, the noise is centered and has a finite variance.

Let the training set D = {(xi, yi) : xi ∈ R
d, yi ∈ R}ni=1 be a sample from

the joint distribution of (x, y). Given a new input point x0 ∈ R
d, one wants85

to predict the corresponding output y0. The value f(x0) seems a good guess.
However, the function f is unknown. The true function f needs to be approxi-
mated based on the sample D in order to provide an estimate of the prediction
f(x0).

For convenience, the matrix composed by all training input points will be90

noted X = [x1 | · · · | xn] ∈ R
d×n. Moreover, at the training points, the

n−dimensional vectors y = (y1, . . . , yn)
T , f = (f(x1), . . . , f(xn))

T , and ε =
(ε(x1), . . . , ε(xn))

T are defined. The covariance matrix of ε knowing X is noted
Σ ∈ R

n×n.
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2.1.1. Extreme Learning Machine95

ELM is a single-layer FNN with a random initialization of the input weights
wj ∈ R

d and biases bj ∈ R, for j = 1, . . . N , where N denotes the number of
neurons of the hidden layer. All input weights and biases are independent and
identically distributed (i.i.d.), and are generally sampled from a Gaussian or
uniform distribution. They map the input space into a random feature space in
a non-linear fashion by-way-of the non-linear feature mapping [11]

h(x) =
(
h1(x), . . . , hN (x)

)T ∈ R
N ,

where hj(x) = g(xTwj + bj) is the output of the j-th hidden node, for j =
1, . . . , N , and g is any infinitely differentiable activation function [12]. AN−hidden
neurons ELM can generate output functions of the form

fN (x) = h(x)Tβ,

where β ∈ R
N is the vector of output weights that relate the hidden layer with

the output node.
The output weights are trained using the sample D and optimized regarding

the L2 criterion performing the following procedure. The n × N hidden layer
matrix, denoted H and defined element-wise by Hij = hj(xi), i = 1, . . . , n, and
j = 1, . . . , N , is computed. Then the cost function J1, defined by

J1(β) = ||y −Hβ||22,

where || · ||2 denotes the Euclidean norm, is minimized. This is exactly the LS
procedure for a design matrix H [13, 14]. If the matrix HTH is of full rank
and then invertible, the output weights are estimated as the classical linear
regression, with the analytical solution of the minimization of E,

β̂ = (HTH)−1HTy,

where the matrix (HTH)−1HT is the Moore-Penrose generalized inverse of the
matrix H and will be denoted H† in the following. Thus, ELM can be thought
as a MLR with a null intercept, performed on regressors obtained by a random100

non-linear transformation of the input variables.
At a new point, the prediction is given by f̂(x0) = h(x0)

T β̂. In the remain-
der of the paper, all dependencies in x0 will be dropped for convenience and
the prediction will be noted f̂(x0) = hT β̂ = hTH†y. The vector of model pre-

dictions at training points will be noted f̂ , defined element-wise by f̂ i = f̂(xi).
The (random) matrix of all input weights and biases will be denoted

W =

[
w1 . . . wN

b1, . . . bN ,

]
.

2.1.2. Regularized Extreme Learning Machine

To avoid overfitting and reduce outlier effects, a regularized version of ELM
was proposed [15]. Highly variable output weights due to multicolinearity among
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neurons can be stabilized with regularization, too. As mentioned by [16], this
model is basically a particular case of Tikhonov regularization — also known
as ridge regression [17] — performed on the random feature space. The output
weights are optimized regarding the cost function J2, where

J2(β) = ||y −Hβ||22 + α||β||22,

for some real number α > 0, sometimes called the Tikhonov factor, which con-
trols the penalization of taking big output weights. Noting I the identity matrix,
the analytical solution of this optimization problem for a fixed α is given by

β̂ = (HTH + αI)−1HTy,

thanks to the fact that the matrix (HTH+αI) is always invertible, see [18]. To
lighten the notation, the matrix Hα = (HTH + αI)−1HT is defined. Remark
that as α goes to zero, Hα goes to H† and the classical ELM is recovered [15].105

In the remainder of the paper, most of results are presented with Hα, but they
remain valid for the non-regularized case, unless the contrary is clearly specified.

2.1.3. Extreme Learning Machine Ensemble

Another way to avoid overfitting is to combine several ELM models. This
also reduce the randomness induced by the input weight initialization, which
could be beneficial — especially for small datasets. Several ensemble techniques
have been developed for ELM [19, 16]. In this paper, each model of a given
ensemble will have the same activation function and number of neurons, and all
models will be averaged after training. This corresponds to retrain M times the
model and average the results, where M is the number of ELM networks in the
ensemble. The hidden layer matrix and the matrix of input weights and biases of
the m−th retraining will be noted respectively Hm and Wm, for m = 1, . . . ,M .
If the m−th prediction is noted f̂m(x0), the final prediction is

f̂(x0) =
1

M

M∑

m=1

f̂m(x0) =
1

M

M∑

m=1

hT
mHα

my,

where hm and Hα
m are the analogous quantities defined previously for the m-

th model. Note that the weights have the same joint distribution across all110

the models, which allows us to drop the m index in most calculations of the
remainder of this paper.

2.2. Bias and variance for a single ELM

In this section, the uncertainty for (regularized) ELM is explored. For all
derivations, it is supposed that hyper-parameters N and α — when applicable
— are considered as fixed and non-stochastic. Also, all formulas are derived
knowing X. However, this conditioning is dropped to avoid cumbersome nota-
tions. Note that f̂(x0) is a random variable depending on the noise at training
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points ε, but also on the input weights and biases W used in the construction
of h and Hα. As the noise is centred,

E

[
f̂(x0)

∣∣∣W
]
= hTHα

E [f + ε] = hTHαf . (1)

Using the law of total expectation, one can compute the bias of the model at
x0,

Bias
[
f̂(x0)

]
= E

[
E

[
f̂(x0)

∣∣∣W
]]

− f(x0) = E
[
hTHαf

]
− f(x0).

Let us now compute the variance of the model at a new point. First, one
have

Var
[
f̂(x0)

∣∣∣W
]
= hTHαVar [f + ε]HαTh = hTHαΣHαTh, (2)

which is the typical variance expression for MLR. With equations (1) and (2),
the variance of the model at x0 can be computed by using the law of total
variance,

Var
[
f̂(x0)

]
= E

[
Var

[
f̂(x0)

∣∣∣W
]]

+Var
[
E

[
f̂(x0)

∣∣∣W
]]

= E
[
hTHαΣHαTh

]
+Var

[
hTHαf

]
.

(3)

The first term of the right-hand side (RHS) is the variance of the LS step av-
eraged on all possible random feature spaces generated by input weights and115

biases, while the second term is the variation of the LS step bias across all ran-
dom feature spaces. Note that the second term appears if and only if the random
input weights and biases are considered. In the non-regularized case with inde-
pendent homoskedastic noise, if W and X are deterministic, the classical MLR
formula for the variance at a prediction point is recovered, see [14].120

2.3. Bias and variance for ELM ensemble

As mentioned before, the training could be done several times and averaged.
A direct calculation — which can be found in the appendix — can be done for
bias and variance of the averaged predictor. Basically, it uses the law of total
variance and elementary probability calculus from which one get

Var
[
f̂(x0)

]
=

1

M
E
[
hTHαΣHαTh

]
+
M − 1

M
E
[
hTHα

]
ΣE

[
HαTh

]
+

1

M
Var

[
hTHαf

]
,

(4)
while the bias still unchanged. The RHS first and third terms are the single
ELM variance divided by the number of models. The bias variation of the LS
step is reduced by a 1/M factor. Although the average variance of the LS step
represented by the RHS first term seems to decrease by a 1/M factor, models are125

pairwise dependent which yields the RHS second term. Notice that if M = 1,
equation (3) is recovered. If M grows, the RHS second term tends to dominate
the model variance. Remark also that using the law of total covariance, it
is easily checked by analogous computation that the covariance between two
members of an ELM ensemble correspond to E

[
hTHα

]
ΣE

[
HαTh

]
.130
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2.4. Use of random variable quadratic forms

Formulation of variance in equations (3) and (4) are convenient for the in-
terpretation of ELM as a MLR on random features. However, quadratic forms
in random variables appears in these formulas, which allows to pursue calcu-
lations. With the Corollary 3.2b.1 of [20], the expectation of random variable135

quadratic form can be computed as the quadratic form in its expected values
plus the trace of its covariance matrix times the matrix of the quadratic form.
This Corollary will be used extensively in this paper, each time an expectation
of a quadratic form in random variables appears.

Setting the random vector z = HαTh and assuming the existence of its
expectation µ and covariance matrix C, equation (3) becomes

Var
[
f̂(x0)

]
= Tr [ΣC] + µTΣµ+ fTCf ,

where Tr [·] denotes the trace of a square matrix. Although the notation do not
specify it, the quantities z,µ and C depend on the Tikhonov factor α in the
regularized case. Similarly, zm = HαT

m hm is set for ELM ensembles and the
variance becomes

Var
[
f̂(x0)

]
=

1

M
Tr [ΣC] + µTΣµ+

1

M
fTCf . (5)

2.5. Correlation between two ELMs140

As the covariance between two single ELMs f̂1(x0) and f̂2(x0) is µTΣµ,
their linear correlation at x0 is given by

Corr
[
f̂1(x0), f̂2(x0)

]
=

µTΣµ

Tr [ΣC] + µTΣµ+ fTCf
.

Remark that considering the input weights and biases as fixed is equivalent to
ignore Tr [ΣC] + fTCf and to have a correlation of 1 between the two models.

An interesting insight is provided by the case of independent and homoskedas-
tic noise, i.e. Σ = σ2

ε I with σ2
ε ∈ R, which yields

Corr
[
f̂1(x0), f̂2(x0)

]
=

µTµ

Tr [C] + µTµ+ 1
σ2
ε

fTCf
.

Notice that in this particular case, when σ2
ε is small the linear correlation be-

tween two ELMs vanishes. Contrariwise, when σ2
ε is large the linear correlation

between two ELMs tends to b = µTµ/(µTµ+Tr [C]). Therefore, the amount of145

noise has a direct impact on the linear correlation which takes its value between
0 and b ≤ 1. The trace of C can be interpreted as a variability measure of z,
called sometimes the total variation or the total dispersion of z [21]. In our
case, it controls the linear correlation bound b, in the sense that more variable
is z, farther from 1 is the maximal value that the linear correlation can take,150

regardless the noise in the data.
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3. Variance estimation of ELM ensemble

This section introduces novel estimates of the ELM variance. Although
several ELMs are necessary to allow the estimation of quantities related to
z — which motivates the use of ELM ensembles — reliable results are also155

obtained with very small ensemble. First, the variation of the LS step bias
overall random feature space is estimated. Then, assuming noise independence,
the variance of the LS step averaged on all possible random feature spaces
is estimated under homoskedasticity and heteroskedasticity for non-regularized
and regularized ELM ensembles.160

3.1. Estimation of the least squares bias variation

The quantity fTCf = Var
[
hTHαf

]
doesn’t depends on noise. It is the

variance induced by the randomness of W , knowing the true function f at
training points. Tentatively assume that the output weights are not regularized.
As f is unknown, one approximate it by the model prediction at the training
points f̂ = HH†y. For each model of the ensemble,

Var
[
hTH†f

]
≈ Var

[
hTH†f̂

∣∣∣ ε
]
= Var

[
f̂(x0)

∣∣∣ ε
]
.

This motivate the following estimate for fTCf ,

σ̂2
f̂
=

1

M − 1

M∑

m=1

(
f̂m(x0)−

1

M

M∑

l=1

f̂l(x0)

)2

. (6)

The same estimate will be used for the regularized case.
The expectancy of σ̂2

f̂
can be easily computed. Knowing the noise at the

training points,

E

[
σ̂2
f̂

∣∣∣ ε
]
= Var

[
f̂(x0)

∣∣∣ ε
]
= Var

[
zTy

∣∣ ε
]

= Var
[
zT f

∣∣ ε
]
+Var

[
zTε

∣∣ ε
]
+ 2Cov

[
zT f , zTε

∣∣ ε
]

= Var
[
zT f

]
+ εTCε+ 2fTCε,

using the unbiasedness of the estimate in the first equality. By taking the
expectation over ε on both side,

E

[
σ̂2
f̂

]
= Var

[
hTHαf

]
+Tr [ΣC] .

This shows that the bias of the estimate defined in equation (6) is given by
Tr [ΣC], which is the first term of the RHS of equation (5) up to a factor 1/M .
Therefore, regardless of a particular form of Σ or whether ELM is regularized165

or not, it is unnecessary to estimate the latter and (1/M) σ̂2
f̂
is an unbiased

estimate of the sum of the first and last terms of equation (5).
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3.2. Estimation under independence and homoskedastic assumptions

Only the second term of RHS of equation (5) remains to be estimated. If the
noise is assumed to be independent and have a constant variance, the covariance170

matrix of ε writes Σ = σ2
ε I and the second term of RHS of equation (5) becomes

µTΣµ = σ2
ε µ

Tµ. The quantity µTµ — which, knowing X, stochastically
depends only on W — will be estimated separately from σ2

ε .

3.2.1. Estimation of µTµ

As a first step, µTµ is naively estimated with

µ̂
T
µ̂ =

1

M2

M∑

m,l=1

zTmzl, where µ̂ =
1

M

M∑

m=1

zm. (7)

However, remark that

M2
E

[
µ̂

T
µ̂
]
=

M∑

m=1

E
[
zTmzm

]
+
∑

m 6=l

E [zm]
T
E [zl]

= M
(
Tr [C] + µTµ

)
+M(M − 1)µTµ

= M Tr [C] +M2 µTµ,

and dividing by M2 shows that the estimate given in (7) has a bias equal to175

(1/M)Tr [C], which comes from the expected values of the M quadratic terms
in zm.

To remove this bias, one can estimate it by

1

M
Tr[Q̂], where Q̂ =

1

M − 1

M∑

m=1

(zm − µ̂) (zm − µ̂)
T
. (8)

This is an unbiased estimate of (1/M)Tr [C], which immediately follows from

the fact that Q̂ is an unbiased estimate of C. Therefore, subtract (8) from (7)
yields an unbiased estimate of µTµ. Note that

(M − 1)Tr[Q̂] =

M∑

m=1

(zm − µ̂)
T
(zm − µ̂)

=

M∑

m=1

zTmzm −M µ̂
T
µ̂.

Hence, the unbiased estimate of µTµ that was just developed results in

µ̂
T
µ̂− 1

M
Tr[Q̂] = µ̂

T
µ̂− 1

M(M − 1)

M∑

m=1

zTmzm +
1

M − 1
µ̂

T
µ̂

=
M

M − 1
µ̂

T
µ̂− 1

M(M − 1)

M∑

m=1

zTmzm.

(9)
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Substituting equation (7) into equation (9), the computation still goes on, and

µ̂
T
µ̂− 1

M
Tr[Q̂] =

1

M(M − 1)

∑

m 6=l

zTmzl. (10)

This shows that the estimate (10) removes the quadratic termsm = l from which
the bias of the naive estimate (7) was induced. However, note that formulation
(9) is more convenient to compute than (10), from an algorithmic perspective.180

3.2.2. Noise estimation

The estimation of σ2
ε is separated in two cases, the non-regularized and

the regularized ones. A couple of notations is needed to make readable the
equations. The residuals for the m-th model are rm = y − Pmy, where Pm =
HmHα

m. Also, b = f − E[̂f ] = (I − E [P ])f is the vector of bias of the model185

predictions at the training points f̂ , and bw,m = f − E[̂f | Wm] = (I − Pm)f is

the vector of conditional bias of the model predictions at the training points f̂
for the m-th model knowing Wm.

Let us first concentrate on the non-regularized case. Then, Pm is a projection
matrix. A natural way to obtain estimate for σ̂2

ε is to start with the expectation
of the residual sum of squares (RSS) based on the averaged ensemble. However,
mainly due to the fact that the expectation of a projection matrix is not a
projection matrix, it is preferred here to work with the RSS of each model.
Using this, the expectation of the residual sum of squares for the m-th ELM
knowing input weights and biases is given by

E
[
rTmrm

∣∣Wm

]
= E

[
yT (I − Pm)y

∣∣Wm

]

= σ2
ε Tr [I − Pm] + fT (I − Pm)f

= σ2
ε(n−N) + fTbw,m,

(11)

and taking the expectation over the input weights and biases yields E[rTmrm] =
σ2
ε (n−N) + fTb. This motivates the following estimate,

σ̂2
ε =

1

M(n−N)

M∑

m=1

rTmrm, (12)

which is the average of all MLR estimates of σ2
ε . Its bias is directly obtained

from previous calculation, yielding

Bias
[
σ̂2
ε

]
=

1

n−N
fTb ≥ 0 , (13)

where non-negativity results from the facts that a projection matrix is posi-
tive semidefinite and expectation of a positive semidefinite matrix is positive190

semidefinite.
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If regularized ELMs are used, Pm is no more a projection matrix, and the
expected RSS for each ELM of the ensemble knowing Wm becomes

E
[
rTmrm

∣∣Wm

]
= E

[
yT (I − Pm)T (I − Pm)y

∣∣Wm

]

= σ2
ε Tr

[
(I − Pm)T (I − Pm)

]
+ fT (I − Pm)T (I − Pm)f

= σ2
ε

(
n− 2Tr [Pm] + Tr

[
P 2
m

])
+ bT

w,mbw,m.

(14)

Analogously to what is done in [22], the effective degrees of freedom for error can
be defined as n− γ, with γ = 2E [Tr [P ]]− E

[
Tr
[
P 2
]]
. Expectation over input

weights and biases of equation (14) gives E
[
rTmrm

]
= σ2

ε (n− γ) + E[bT
wbw] ,

hence,

E

[
1

M(n− γ)

M∑

m=1

rTmrm

]
= σ2

ε +
1

n− γ
E
[
bT
wbw

]

= σ2
ε +

1

n− γ

(
bTb+Tr [Var [bw]]

)
,

which make appears the squared bias and the total variation of the conditional
bias. This motivates the following estimate in the regularized case,

σ̂2
ε =

1

M(n− γ̂)

M∑

m=1

rTmrm, with γ̂ =
1

M

M∑

m=1

(
2Tr [Pm]− Tr

[
P 2
m

])
, (15)

and it is easy to check that

Bias
[
σ̂2
ε

]
= E

[
1

n− γ̂
bT
wbw

]
≥ 0 . (16)

Computationally, γ̂ can be efficiently calculated using the singular value
decomposition of Hm. Indeed, it can be shown [17, 23] that the trace of Pm and
P 2
m are given by

Tr [Pm] =

N∑

i=1

λm,i

λm,i + α
and Tr

[
P 2
m

]
=

N∑

i=1

(
λm,i

λm,i + α

)2

, (17)

where λm,i, i = 1, . . . , N are the eigenvalues of HT
mHm. In particular, substitu-

tion of (17) in (15) and elementary manipulations allows to writes

γ̂ = N − 1

M

M∑

m=1

N∑

i=1

(
α

λm,i + α

)2

where
√
λm,i, i = 1, . . . , N are the singular values of Hm. Note that this latter

equation also show the drop in the degrees of freedom lost due to regularization,
comparing to the non-regularized case.
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3.2.3. Estimations of ELM ensemble variance195

In [24], the authors proposed — only for the non-regularized case — the

following naive homoskedastic estimate of the variance of f̂(x0),

σ̂2
NHo = σ̂2

ε µ̂
T
µ̂+

1

M
σ̂2
f̂
.

This naive estimate directly use equation (7) to approximate µTµ without con-
sidering its bias. However, a bias-reduced estimate is obtained by estimating
µTµ by equation (10), yielding

σ̂2
BR = σ̂2

ε

(
µ̂

T
µ̂− 1

M
Tr[Q̂]

)
+

1

M
σ̂2
f̂
.

Using the covariance definition, it is easy to see that

Bias
[
σ̂2
BR

]
= Bias

[
σ̂2
ε

]
µTµ+Cov

[
σ̂2
ε , µ̂

T
µ̂− 1

M
Tr[Q̂]

]
, (18)

where the bias of σ̂2
ε is (13) or (16). Note that in both cases, while the first term

of the RHS of equation (18) is always non-negative, the estimates of σ2
ε and µTµ

could be correlated, introducing the second term. However, this supplementary
bias could be negative, potentially compensating the first term. Note that its
magnitude is bounded by

∣∣∣∣ Cov
[
σ̂2
ε , µ̂

T
µ̂− 1

M
Tr[Q̂]

] ∣∣∣∣ ≤
2

M(n−N)

√
fTVar [bw] f · µTCµ, (19)

in the non-regularized case — see the appendix — showing that this covariance
term vanishes with large M . Remark also that the bias of σ̂2

NHo has an addi-
tional non-negative term, (1/M)Tr [C]E

[
σ̂2
ε

]
, which disappears in (18) thanks

to the unbiasedness of µ̂T
µ̂− (1/M)Tr[Q̂].

200

3.3. Estimation under independence and heteroskedastic assumptions

Suppose the noise is independent but have variance which have a dependence
of unknown form on x. Then S = µTΣµ has to be estimated considering the
noise covariance matrix Σ as diagonal. To this aim, it could be possible to reuse
estimates from MLR. However, several estimates are based on the evaluation
of the covariance matrix Hα

mΣmHαT
m of the output weights β̂m. In this paper,

the modified heteroskedastic-consistent covariance matrix estimator (HCCME)
obtained from the (ordinary) Jackknife [25] — noted HC3 and extended to the
ridge regression case [26] — is used,

HC3 = Hα
mΣ̂mHαT

m , with Σ̂m =
n− 1

n

[
Ω̂m − 1

n
r̃mr̃Tm

]
, (20)

where r̃m is the vector defined element-wise by r̃m,i = rm,i/(1−pm,i), pm,i is the

i-th diagonal element of Pm and Ω̂m is the diagonal matrix with the i-th diagonal

12



element equal to r̃2m,i. This estimate is still valid for the non-regularized case,
for which — under some technical assumptions — it is consistent [27, 25], while205

Σ̂m is an inconsistent estimator of Σ. Nevertheless, other HCCME estimates
could be used, such as HC0 [27], HC1 got from the weighted Jackknife [28],
HC2 proposed in [29] or HC4 proposed more recently in [30]. The HC notation
follows what can be found in [13], which provides useful insight on this kind

of estimators. Note that for sufficiently large n, HC3 is close to Hα
mΩ̂mHαT

m ,210

which corresponds to the estimate used in [9] to build prediction intervals for
large amounts of data, assuming fixed input weights.

If a unique ELM model is performed, the use of the HCCME is straight-
forward. Nonetheless, as one attempts to take into account the input weight
variability through ELM replications, the HCCME is applied in three different
ways. Suppose first that Σ is known and write the estimate

µ̂
TΣµ̂ =

1

M2

M∑

m,l=1

zTmΣzl =
1

M2

M∑

m,l=1

hT
mHα

mΣHαT
l hl. (21)

Inspecting equations (20) and (21), a first natural suggestion is to estimate
µTΣµ with

Ŝ1 =
1

M

M∑

m=1

zTmΣ̂mzm.

Note that Ŝ1 estimates the covariance matrix of the output weights with the
HCCME for each of the M random feature spaces. Although it has the ad-
vantage of reusing the HCCME in its original formulation, the quadratic forms
in random vectors depending on input weight may produce an additional bias.
Another estimator is obtained by naively evaluating all cross terms of equation
(21),

ŜNHe =
1

M2

M∑

m,l=1

zTmΣ̂mzl.

Note that this is equivalent to estimate Σ with (Σ̂m+Σ̂l)/2 in equation (21), see
[24]. However, terms for whichm = l may produce additional biases, similarly to
what was shown for the homoskedastic estimate of equation (7), which motivates

Ŝ2 =
1

M(M − 1)

∑

m 6=l

zTmΣ̂mzl.

Analogously to the homoskedastic case — see equation (10) — the terms corre-

sponding to m = l are not taken into account in Ŝ2, avoiding the introduction
of potential biases from quadratic forms. Remark also that

Ŝ2 =
1

M − 1

[
M ν̂

T
µ̂− Ŝ1

]
, where ν̂ =

1

M

M∑

m=1

Σ̂mzm,
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which is algorithmically be more convenient to compute. Also, ŜNHe = ν̂
T
µ̂.

The estimates ŜNHe and Ŝ2 have some similarities with µ̂
T
µ̂ and µ̂

T
µ̂ −

(1/M)Tr [C] as estimated in the homoskedastic case, see section 3.2.1. How-
ever, zm still interacts with the covariance matrix estimate within ν̂. This
motivates a third estimate,

Ŝ3 =
(M − 3)!

M !

∑

(m,l,k)∈A3

M

zTmΣ̂kzl,

where A3
M is the set of 3-permutations of M . Looking at equation (21), Ŝ3 can

also be obtained by replacing Σ by a single estimate consisting of the average
of the estimate of each model, where terms corresponding to m = l, m = k, or
l = k are ignored to avoid additional biases. To compute efficiently Ŝ3, it can
be rewritten as

Ŝ3 =
1

(M − 1)(M − 2)

[
M2µ̂

T Û µ̂−MV̂ − 2(M − 1)Ŝ2

]
,

with

Û =
1

M

M∑

m=1

Σ̂m and V̂ =
1

M

M∑

m=1

zTmÛzm.

Finally, the proposed heteroskedastic estimates of ELM ensemble variance, noted
σ̂2
S1, σ̂

2
S2, σ̂

2
S3 and σ̂2

NHe, are given by respectively adding (1/M)σ̂2
f̂
to Ŝ1, Ŝ2,

Ŝ3 and ŜNHe.215

To increase computation speed, approximated versions of Ŝ1, Ŝ2, Ŝ3, and
ŜNHe can be obtained by replacing Σ̂m by Ω̂m in the above reasoning. As a
matter of fact, these two matrices are very close for sufficiently large n, but Ω̂m

is a diagonal matrix, while Σ̂m is a full matrix. Remark that the approximated
version of σ̂2

NHe is exactly the heteroskedastic estimate proposed in [24].220

4. Synthetic experiments

This section discusses the results obtained over different experimental set-
tings. First, a simple non-regularized homoskedastic one-dimensional experi-
ment is conducted. The variance estimate is thoroughly examined and assessed225

with quantitative measures and visualizations. Subsequently, the results are
generalized to multi-dimensional settings with homoskedastic or heteroskedastic
noise, both for the regularized and non-regularized cases. Finally, CI estimation
is discussed. All the experiments presented will adopt the sigmoid as activation
function, while input weights and biases will always be drawn uniformly between230

−1 and 1. All computations are done with the provided Python library, see the
software availability at the end of the paper for more details.
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Figure 1: One-dimensional synthetic experiment : (left) In magenta, a single estimation of

f̂(x) with M = 10 and its estimated ±1.96 standard-error bands based on σ̂2

BR
. In black

dashed line, the mean of 10’000 ensembles for M = 10, with ±1.96 standard-error bands. The
true f(x) is displayed in full black line; (right) In magenta, the mean of σ̂2

BR
for M = 10 with

±1.96 standard-error bands, based on 1’000 replications of the experiment. In black dashed
line, the variance computed from the 10’000 ensembles, considered as ground truth. Note the
logarithmic scale on the y-axis.

4.1. One-dimensional case

To assess operationally the estimates proposed in section 3, a simple one-
dimensional simulated case study of n = 60 training points is firstly proposed.
A trapeze shape probability density function defined by

ρ(x) = − x

4π2
+

3

4π
, if x ∈ [0, 2π],

ρ(x) = 0 otherwise, is used to draw the input, i.e. the number of data decreases
as x increases. Outputs are generated according to

y = sin(x) + ε,

where ε is an independent uniform noise ] −
√
0.3,

√
0.3[ of constant variance

σ2
ε = 0.1.235

ELM ensembles are trained with M = 5, 10, 20, 100, allowing variance es-
timation. This experience is repeated 1’000 times. Each time, new outputs
and new weights are drawn, but inputs are fixed. In order to avoid variability
induced by hyper-parameter selection, a fixed number of neurons N = 4 was
chosen by a 5-fold cross validation process repeated 5 times on 1’000 dataset240

generations. An example of one prediction is displayed in Figure 1 (left) for
M = 10. Estimation of pointwise standard-error bands based on ±1.96 σ̂BR is
also reported.

Although simulated datasets are produced by user controlled processes, the
true value of the variance of f̂(x) remains unknown. In order to evaluate the245

estimate, 10′000 ensembles with M = 5, 10, 20, 100 and N = 4 are trained with
new outputs. The empirical mean and standard deviation of the 10′000 en-
sembles is relatively close to respectively E[f̂(x)] and sd[f̂(x)] = (Var[f̂(x)])1/2,
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n = 60 n = 100

M = 5 BR S3 Grnd tr. BR S3 Grnd tr.
sek 0.077 (0.006) 0.080 (0.007) 0.075 (—) 0.058 (0.003) 0.060 (0.004) 0.058 (—)

Training set ek 0.005 (0.004) 0.009 (0.005) — 0.003 (0.002) 0.005 (0.002) —
rek 0.066 (0.052) 0.113 (0.065) — 0.046 (0.034) 0.077 (0.039) —

sek 0.077 (0.006) 0.081 (0.007) 0.075 (—) 0.060 (0.003) 0.062 (0.004) 0.059 (—)
Testing set ek 0.005 (0.004) 0.009 (0.005) — 0.003 (0.002) 0.005 (0.002) —

rek 0.068 (0.053) 0.115 (0.066) — 0.044 (0.033) 0.080 (0.039) —

M = 10 BR S3 Grnd tr. BR S3 Grnd tr.
sek 0.076 (0.005) 0.079 (0.006) 0.074 (—) 0.058 (0.003) 0.060 (0.004) 0.057 (—)

Training set ek 0.005 (0.003) 0.008 (0.004) — 0.003 (0.002) 0.004 (0.002) —
rek 0.062 (0.046) 0.109 (0.057) — 0.044 (0.032) 0.075 (0.037) —

sek 0.076 (0.005) 0.080 (0.006) 0.074 (—) 0.060 (0.003) 0.062 (0.004) 0.059 (—)
Testing set ek 0.005 (0.003) 0.009 (0.004) — 0.003 (0.002) 0.005 (0.002) —

rek 0.062 (0.046) 0.111 (0.056) — 0.043 (0.032) 0.078 (0.037) —

M = 20 BR S3 Grnd tr. BR S3 Grnd tr.
sek 0.076 (0.005) 0.079 (0.006) 0.074 (—) 0.058 (0.003) 0.060 (0.003) 0.057 (—)

Training set ek 0.005 (0.003) 0.008 (0.004) — 0.003 (0.002) 0.004 (0.002) —
rek 0.061 (0.045) 0.109 (0.056) — 0.042 (0.031) 0.074 (0.036) —

sek 0.076 (0.005) 0.080 (0.006) 0.074 (—) 0.059 (0.003) 0.061 (0.004) 0.059 (—)
Testing set ek 0.005 (0.003) 0.008 (0.004) — 0.003 (0.002) 0.005 (0.002) —

rek 0.061 (0.044) 0.110 (0.056) — 0.042 (0.031) 0.077 (0.037) —

M = 100 BR S3 Grnd tr. BR S3 Grnd tr.
sek 0.076 (0.005) 0.079 (0.006) 0.074 (—) 0.058 (0.003) 0.060 (0.003) 0.057 (—)

Training set ek 0.004 (0.003) 0.008 (0.004) — 0.002 (0.002) 0.004 (0.002) —
rek 0.060 (0.045) 0.109 (0.055) — 0.041 (0.031) 0.073 (0.036) —

sek 0.076 (0.005) 0.080 (0.006) 0.074 (—) 0.059 (0.003) 0.061 (0.004) 0.059 (—)
Testing set ek 0.004 (0.003) 0.008 (0.004) — 0.002 (0.002) 0.005 (0.002) —

rek 0.060 (0.044) 0.110 (0.055) — 0.041 (0.031) 0.077 (0.036) —

Table 1: Results of the one-dimensional synthetic experiment. Mean (standard deviation) of
sek, ek and rek.

and is reported as such for M = 10 in Figure 1. In particular, the empirical
variance of the 10′000 ensembles will provide a reliable baseline for the variance250

estimation assessment and will be referred as the ground truth variance.
Figure 1 (right) shows the mean of σ̂2

BR across the 1′000 experiments with
±1.96 standard-error band. Compared with the ground truth variance, the
proposed estimate recovers effectively — in average — the variance from the
10′000 simulations baseline. The increasing variance in the borders due to the255

side effect of the modelling is fairly replicated. The uncertainty due to the
trapezoidal shape of the input data distribution is also captured. Qualitatively,
all aspects of the expected variance behaviour are globally reproduced. The
naive estimate σ̂2

NHo gives very similar results in one dimension, and is not

shown. The improvement due to considering the bias of µ̂
T
µ̂ will be more260

relevant in the multi-dimensional case. However, one can still observe a residual
bias for σ̂2

BR, partially due to the bias of σ̂2
ε and to the dependence between σ̂2

ε

and the estimate of µTµ — see equations (13) and (18).
To assess quantitatively each estimation, a measure is needed between the

true standard error of f̂(x) and its estimations provided by each repetition of
the experiment. Following [2], let us look at the median of the kth standard
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error estimate over the training set,

sek = median
1≤i≤n

(σ̂k(xi)) ,

and the absolute error of the kth standard error estimate over the training set
defined by

ek = median
1≤i≤n

|σ̂k(xi)− σ(xi)|,

where σ̂2
k(xi) is an estimate of σ2(xi) = Var[f̂(xi)], for k = 1, . . . , 1′000. Also,

the relative error rek of the kth standard error estimate over the training set is
defined by

rek = median
1≤i≤n

|σ̂k(xi)− σ(xi)|
σ(xi)

,

for k = 1, . . . , 1′000. Similar measures are defined on a random testing set of
1′000 points. In order to compute these quantities, σ(xi) is replaced by the265

ground truth standard deviation.
The means and standard deviations of sek, ek and rek over the 1’000 ex-

periment repetitions are presented in Table 1. For the training set, the median
of the ground truth standard error is recovered by the median of σ̂BR, judging
through the sek measure. Moreover, the mean and standard deviation of ek270

appear quite small. The relative errors allow a better interpretation by com-
paring point-wise the absolute error with the true standard error. For instance
for M = 10, the mean of rek shows that — on average — the median error at
training points represents 6.2% of the true standard error. The results on the
1’000 testing points are similar, which shows that the estimation is good both275

at testing and training points. Even for M = 5, all error measures are quite
satisfactory, as well as their standard deviations. These results are also com-
pared with σ̂2

S3. As expected for an homoskedastic dataset, estimate σ̂2
BR based

on homoskedastic assumption always results into better performance than σ̂2
S3

which is based on heteroskedastic assumption.280

The same experiment is done with n = 100 and N = 5. The results, reported
in Table 1, show that all results are improved when increasing the number of
data points, as expected.

4.2. Multi-dimensional case

An example on a multi-dimensional case study is now investigated. Specif-
ically, the synthetic dataset described by Friedman in [31] is considered, with
fixed inputs x = (x1, x2, x3, x4, x5) drawn independently from uniform distri-
bution on the interval [0, 1] and outputs generated with an independent ho-
moskedastic Gaussian noise according to

y(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + ε, (22)

with noise variance σ2
ε = 0.5. A number of n = 500 training points are drawn.285

The number of neurons is chosen by a similar cross-validation process as de-
scribed above for the one-dimensional case, and fixed to N = 91. Ensem-
bles are fitted and homoskedastic estimates σ̂2

BR and σ̂2
NHo are computed with
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Non-regularized Regularized

M = 5 BR NHo Grnd tr. BR NHo Grnd tr.
sek 0.273 (0.009) 0.279 (0.009) 0.255 (—) 0.250 (0.009) 0.252 (0.009) 0.222 (—)

Training set ek 0.018 (0.008) 0.023 (0.009) — 0.025 (0.009) 0.027 (0.009) —
rek 0.070 (0.032) 0.089 (0.037) — 0.112 (0.039) 0.121 (0.039) —

sek 0.282 (0.010) 0.289 (0.010) 0.264 (—) 0.253 (0.009) 0.255 (0.009) 0.228 (—)
Testing set ek 0.018 (0.008) 0.024 (0.009) — 0.025 (0.009) 0.027 (0.009) —

rek 0.069 (0.030) 0.090 (0.034) — 0.110 (0.039) 0.119 (0.039) —

M = 10 BR NHo Grnd tr. BR NHo Grnd tr.
sek 0.266 (0.009) 0.269 (0.009) 0.247 (—) 0.243 (0.008) 0.244 (0.008) 0.214 (—)

Training set ek 0.019 (0.008) 0.022 (0.008) — 0.028 (0.008) 0.029 (0.008) —
rek 0.078 (0.033) 0.089 (0.034) — 0.128 (0.035) 0.132 (0.035) —

sek 0.274 (0.009) 0.277 (0.009) 0.255 (—) 0.246 (0.008) 0.247 (0.008) 0.219 (—)
Testing set ek 0.019 (0.008) 0.023 (0.009) — 0.028 (0.008) 0.029 (0.008) —

rek 0.078 (0.033) 0.090 (0.034) — 0.127 (0.035) 0.132 (0.035) —

M = 20 BR NHo Grnd tr. BR NHo Grnd tr.
sek 0.263 (0.008) 0.264 (0.008) 0.243 (—) 0.239 (0.007) 0.240 (0.007) 0.210 (—)

Training set ek 0.020 (0.008) 0.021 (0.008) — 0.028 (0.007) 0.029 (0.007) —
rek 0.082 (0.033) 0.087 (0.033) — 0.134 (0.034) 0.137 (0.034) —

sek 0.270 (0.008) 0.272 (0.009) 0.250 (—) 0.242 (0.007) 0.243 (0.007) 0.214 (—)
Testing set ek 0.020 (0.008) 0.022 (0.008) — 0.028 (0.007) 0.029 (0.007) —

rek 0.081 (0.033) 0.088 (0.033) — 0.134 (0.034) 0.137 (0.034) —

M = 100 BR NHo Grnd tr. BR NHo Grnd tr.
sek 0.259 (0.008) 0.260 (0.008) 0.239 (—) 0.236 (0.007) 0.236 (0.007) 0.207 (—)

Training set ek 0.020 (0.008) 0.020 (0.008) — 0.029 (0.007) 0.029 (0.007) —
rek 0.084 (0.033) 0.085 (0.033) — 0.139 (0.033) 0.139 (0.033) —

sek 0.267 (0.008) 0.267 (0.008) 0.239 (—) 0.239 (0.007) 0.239 (0.007) 0.210 (—)
Testing set ek 0.021 (0.008) 0.021 (0.008) — 0.029 (0.007) 0.029 (0.007) —

rek 0.084 (0.033) 0.086 (0.033) — 0.140 (0.033) 0.140 (0.033) —

Table 2: Results of the multi-dimensional synthetic experiment with homoskedastic noise.
Mean (standard deviation) of sek, ek and rek.

M = 5, 10, 20, 100. This is repeated 1′000 times, while ground truth mean and
variance are computed based on 10’000 ensembles, as in the previous experi-290

ment. The same experiment is conducted with ensembles of regularized ELM.
Tikhonov factor is selected with the help of generalized cross-validation [23, 17]
repeated on 1’000 dataset generations and set to α = 6 · 10−6. Regularized
version of σ̂2

BR and σ̂2
NHo are computed.

Results of the regularized and non-regularized versions of the experiment are295

reported in Table 2. For both, the training sek tends to slightly overestimate
the true standard deviation median over the training points. The testing sek
has an analogous behaviour. Although the testing sek tends globally to be
greater than the training sek, the testing ek and rek are similar to the training
ek and rek. This suggests that regardless of the fact that the prediction is more300

uncertain at testing points, the variance estimation works at testing points as
well as at the training points, as in the one-dimensional experiment. Note also
that the true standard deviation median decreases as M increases, as suggested
by equation (5). For the non-regularized case, the bias-reduced estimate σ̂2

BR

is systematically better than the σ̂2
NHo estimate. Recalling that σ̂2

BR reduce305

the bias by a quantity inversely proportional to M — see section 3.2 — one
observes that for ek and rek the improvement over σ̂2

NHo is decreasing with M .
The regularization mechanism increases the bias of the model while its variance
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decreases, which explains the decreasing of the true standard deviation median
for a givenM from the non-regularized to the regularized case. Moreover, for the310

regularized case, as the bias of the variance estimation depends directly from the
conditional bias of the model, this could explain that the regularized experiment
yields slightly weaker results in terms of ek and rek. However, observe that σ̂2

BR

is still better than σ̂2
NHo.

To illustrate the heteroskedastic case, the same experiment is conducted with
a non-constant noise variance. The Gaussian noise ε(x) is now depending on
the inputs variables through its variance by

σ2
ε(x) = 0.5 + 2 sin2(π||x||∞),

where || · ||∞ denotes the maximum norm. The variance estimates σ̂2
S3, σ̂

2
S2,315

σ̂2
NHe, σ̂

2
S1 and σ̂2

BR are computed in their approximated version 1′000 times
with n = 1000, M = 5, 10, 20, 100, and N = 109.

Although the results on the 5-dimensional hypercube input cannot be visu-
alized, a small subset such as its diagonal can be plot, see Figure 2. On the left,
prediction with ±1.96 σ̂S2 is displayed for one experiment, for M = 5. The true320

noise variance σ2
ε(x) is also reported. On the right, averaged results for σ̂2

S2,
σ̂2
S1 and σ̂2

BR for the 1’000 experiments are shown. Results for σ̂2
S3 and σ2

Nhe

are visually close to σ̂2
S2 and are not reported. Heteroskedastic estimates repro-

duce fairly well the behaviour of the true variance, but σ̂2
S2 shows a smaller bias

than σ̂2
S1 along the input diagonal. The homoskedastic estimates σ̂2

BR clearly325

fails to reproduce a coherent behaviour of the true variance, underestimating or
overestimating it, depending on the location.

Quantitative results are shown in Table 3. Again, the true standard deviation
median decreases when M increases, and the training (testing) sek tends to
somewhat overestimate the true training (testing) standard deviation median.330

The homoskedastic estimate σ̂2
BR no longer gives the best results because of

the heteroskedastic nature of the data, which justify the use of heteroskedastic
estimates. The estimate σ̂2

S1 —which reuse HCCME in its original form — gives
the worst results as suspected in section 3.3. The naive heteroskedastic estimate
σ̂2
NHe gives in general reasonable results. However, the heteroskedastic estimates335

σ̂2
S2 — which was developed based on the insight given by the homoskedastic

case in section 3.2 — allows to improve the results by a quantity decreasing
with M , as expected. Finally, results from σ̂2

S3 are very close to σ̂2
S2.

Regularized versions of the heteroskedastic estimates were also investigated
and σ̂2

S2 and σ̂2
S3 gave quite reasonable results too.340

4.3. Towards confidence intervals

Although visually it is tempting to say so, there is so far no guarantee that
f̂(x)±1.96 σ̂BR(x) in Figure 1 (left) or f̂(x)±1.96·σ̂S2(x) in Figure 2 (left) define
a 95% CI for f(x). Let us investigate the possibility to build (approximate) CI
in particular cases. The distribution of

g(x) =
f̂(x)− f(x)

sd[f̂(x)]
,
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M = 5 S3 S2 NHe S1 BR Grnd tr.
sek 0.279 (0.008) 0.278 (0.007) 0.285 (0.008) 0.308 (0.008) 0.283 (0.007) 0.253 (—)

Training set ek 0.027 (0.005) 0.027 (0.005) 0.031 (0.006) 0.052 (0.008) 0.046 (0.004) —
rek 0.109 (0.019) 0.109 (0.019) 0.125 (0.024) 0.211 (0.032) 0.178 (0.015) —

sek 0.302 (0.009) 0.302 (0.009) 0.309 (0.009) 0.335 (0.010) 0.294 (0.008) 0.275 (—)
Testing set ek 0.029 (0.006) 0.029 (0.006) 0.035 (0.007) 0.060 (0.009) 0.043 (0.004) —

rek 0.111 (0.022) 0.111 (0.021) 0.131 (0.027) 0.230 (0.034) 0.157 (0.016) —

M = 10 S3 S2 NHe S1 BR Grnd tr.
sek 0.273 (0.007) 0.273 (0.007) 0.276 (0.007) 0.303 (0.008) 0.277 (0.007) 0.247 (—)

Training set ek 0.027 (0.005) 0.027 (0.005) 0.029 (0.005) 0.053 (0.008) 0.047 (0.004) —
rek 0.111 (0.020) 0.111 (0.020) 0.120 (0.022) 0.224 (0.032) 0.187 (0.015) —

sek 0.296 (0.008) 0.296 (0.008) 0.299 (0.008) 0.330 (0.010) 0.288 (0.008) 0.267 (—)
Testing set ek 0.030 (0.006) 0.030 (0.006) 0.032 (0.006) 0.062 (0.009) 0.045 (0.004) —

rek 0.115 (0.022) 0.114 (0.022) 0.126 (0.025) 0.246 (0.034) 0.168 (0.016) —

M = 20 S3 S2 NHe S1 BR Grnd tr.
sek 0.270 (0.007) 0.270 (0.007) 0.272 (0.007) 0.301 (0.008) 0.274 (0.007) 0.244 (—)

Training set ek 0.027 (0.005) 0.027 (0.005) 0.028 (0.005) 0.054 (0.007) 0.048 (0.004) —
rek 0.113 (0.020) 0.113 (0.020) 0.118 (0.021) 0.230 (0.031) 0.192 (0.015) —

sek 0.292 (0.008) 0.292 (0.008) 0.294 (0.008) 0.327 (0.009) 0.284 (0.007) 0.263 (—)
Testing set ek 0.030 (0.006) 0.030 (0.006) 0.031 (0.006) 0.063 (0.009) 0.046 (0.004) —

rek 0.117 (0.023) 0.117 (0.023) 0.123 (0.024) 0.254 (0.033) 0.173 (0.016) —

M = 100 S3 S2 NHe S1 BR Grnd tr.
sek 0.268 (0.007) 0.268 (0.007) 0.268 (0.007) 0.299 (0.008) 0.272 (0.007) 0.242 (—)

Training set ek 0.027 (0.005) 0.027 (0.005) 0.028 (0.005) 0.055 (0.007) 0.049 (0.004) —
rek 0.115 (0.020) 0.115 (0.020) 0.116 (0.020) 0.236 (0.031) 0.196 (0.015) —

sek 0.290 (0.008) 0.290 (0.008) 0.290 (0.008) 0.325 (0.009) 0.282 (0.007) 0.261 (—)
Testing set ek 0.030 (0.006) 0.030 (0.006) 0.030 (0.006) 0.064 (0.008) 0.046 (0.004) —

rek 0.120 (0.023) 0.120 (0.023) 0.121 (0.023) 0.260 (0.033) 0.178 (0.017) —

Table 3: Results of the multi-dimensional synthetic experiment with heteroskedastic noise.
Mean (standard deviation) of sek, ek and rek.

Figure 2: Multi-dimensional heteroskedastic synthetic experiment : (left) In green, a single

estimation of f̂(x) with M = 5 and its estimated ±1.96 standard-error bands based on σ̂2

S2
.

In black dashed line, the mean of 10’000 ensembles for M = 5, with ±1.96 standard-error
bands. The true f(x) is displayed in full black line and the noise variance in dash-dotted
black line; (right) The averaged variance estimations for σ̂2

S2
in green, σ̂2

S1
in red and σ̂2

BR
in

purple, based on 1’000 replications of the experiment. Black dashed line indicates the variance
computed from the 10’000 ensembles, considered as ground truth. The diagonal distance from
the origin on the x-axis is measured in maximum norm. Note the logarithmic scale on the
y-axis.
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Figure 3: Kernel density estimates of g(x0); (left) for the one-dimensional case, at x0 = π/4,
(middle) for the multi-dimensional case with homoskedastic noise, at x0 = 1/2 · (1, 1, 1, 1, 1),
(right) at the same point with regularized ELM ensemble of N = 300 neurons. In black dashed
line, Gaussian distributions with unit variance and mean (vertical dashed line) determined by

the ratio between the bias and the standard deviation of f̂(x0)

is unknown. However, for our simulated case studies, remark that it is very
close to a Gaussian distribution. Kernel density estimates — based on the
10’000 replications done in previous sections — are shown in Figure 3 at some
example points at which f̂(x) exhibits significant bias. Figure 3 (left) displays
the distribution of g(x0) at x0 = π/4 for the one-dmensional case. Figure 3
(middle) visualizes the distribution of g(x0) at x0 = 1/2 · (1, 1, 1, 1, 1) for the
Friedman dataset with homoskedastic noise, which corresponds to the center of
the 5-dimensional hypercube and the middle point of the input diagonal. Distri-
bution of g(x0) behaves similarly for the Friedman dataset with heteroskedastic
noise (not shown) and other experiments were conducted with noise from Stu-
dent laws showing the same behaviour. This suggests that for ELM ensembles,
g(x) and f̂(x) may asymptotically follow a Gaussian distribution. However,
dependencies exist between the components of zm, and also between the mem-
bers of the ELM ensemble. Therefore, the classical central limit theorem is not
directly applicable, and it seems hard to straightforwardly conclude to Gaus-
sianity in case of large sample size n or large M . In spite of knowing if one can
prove or disprove this conclusion, let us assume that the distribution of g(x) is
(asymptotically) Gaussian in the remainder of this section. As a matter of fact,

g(x) has a unit variance but it is not centred, due to the bias of f̂(x). Its mean
is given by

E [g(x)] =
Bias[f̂(x)]

sd[f̂(x)]
,

and is reported in Figure 3 as a vertical dashed black line. Obviously, this
quantity is unknown in practice but necessary to build a reliable CI for f(x).

However, if the bias of f̂(x) is negligible relatively to its variance, then g(x)
is close to centred, and approximate point-wise CI can be derived based solely345

on an estimation of the variance of f̂(x). That is, if g(x) is close to centred,

then the estimated ±1.96 standard-error around f̂(x) define an approximate
point-wise 95% CI for f(x).

Figure 4 plots for some of the previous experiments the coverage probability
of the approximate point-wise 95% CI, i.e. the proportion of time that the350
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Figure 4: Coverage probabilities for the one-dimensional case with M = 10 (left), for the multi-
dimensional case with M = 5, with homoskedastic noise (middle), and with heteroskedastic
noise (right). The true coverage probability is fixed at 95 % (dotted line). The actual coverage

probability is reported for f̂(x) ± 1.96 σ̂BR (in purple) and f̂(x) ± 1.96 σ̂S2 (in green). It is

also shown for f̂(x) ± 1.96 sd[f̂(x)] in black dashed line, for comparison purpose. In the
homoskedastic multi-dimensional case, the actual coverage probability is also reported for
f̂(x)± 1.96 σ̂BR for ensemble of M = 5 regularized ELM of N = 300 neurons (in blue).

estimated confidence interval actually contains the true f(x) among all the
1′000 experiment repetitions. Figure 4 (left) shows the one-dimensional case
for M = 10. The black dashed line indicates the proportion of time that f(x)

lies within f̂(x)±1.96 sd[f̂(x)], computed on the basis of the 10′000 simulations
baseline. Observe that around each point where the bias vanishes — seen on355

Figure 1 (left) — this proportion comes closer to the true coverage probability
of 0.95 defined by the confidence level. Conversely, for instance at x0 = π/4 —
which is near the point with the smallest variance, see Figure 1 (right) — the bias
is high relatively to the variance, then g(x0) is far from centred, which implies

a wrong construction of the CI, leading to a bad result. Obviously, sd[f̂(x)]360

is not available in practice, and looking at the actual coverage probability of
the estimated CI f̂(x)± 1.96 σ̂BR(x) is more interesting. However, note that it
reproduces quite fairly the same behaviour, as expected.

The non-regularized multi-dimensional experiment for M = 5 is also dis-
played in Figure 4 for homoskedastic case, also estimated with f̂(x)±1.96 σ̂BR(x)365

(middle), and for heteroskedsatic case, estimated with f̂(x)±1.96σ̂S2(x) (right).
For both, the actual coverage probability is globaly greater than the proportion
based on the theoretical CI build with the true sd[f̂(x)]. This is partially ex-

plained by the overestimation of the f̂(x) standard deviation — see section 4.2.
In some low bias regions, this results in slightly conservative CI, i.e. the ac-370

tual coverage probability is greater than the true coverage probability of 95%.
Observe that around x0 = 1/2 · (1, 1, 1, 1, 1) the actual coverage probability is
especially bad for the homoskedastic case, while it is quite reasonable for the
heteroskedastic case. This is explained by the fact that the heteroskedastic noise
variance around the center of the hypercube is up to five times more than the375

homoskedastic variance, which implies an increase of the variance of f̂(x) and a
decrease of E[g(x)] around x0. Finally, the actual coverage probability is quite
satisfying for the heteroskedastic case.

Clearly, the effectiveness of the CI estimation for f(x) is highly dependant
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N = 91 Grnd tr. N = 300 (reg.), Grnd tr.

MSE 0.441 (0.030) — 0.361 (0.025) —
RE 0.017 (0.001) — 0.014 (0.001) —

Training set sek 0.273 (0.009) 0.255 (—) 0.297 (0.010) 0.294 (—)
ek 0.018 (0.008) — 0.009 (0.006) —
rek 0.070 (0.032) — 0.031 (0.022) —

MSE 0.679 (0.037) — 0.682 (0.041) —
RE 0.028 (0.002) — 0.028 (0.002) —

Testing set sek 0.282 (0.010) 0.264 (—) 0.312 (0.011) 0.307 (—)
ek 0.018 (0.008) — 0.009 (0.007) —
rek 0.069 (0.030) — 0.031 (0.022) —

Table 4: Comparison between non-regularized model with N = 91 neurons and regularized
model with N = 300 and α = 10−6, on the multi-dimensional synthetic experiment with
homoskedastic noise. For both model, M = 5 and the variance is estimated with σ̂2

BR
. Mean

(standard deviation) of MSE, sek, ek and rek.

on the dataset at hand and significant bias of f̂(x) relatively to its variance can380

lead to highly permissive and bad CI for f(x). However, it is possible to identify
potential paths to overcome this problem. Firstly, note that even if the bias of
f̂(x) is too important to be ignored, the estimated ±1.96 standard-error bands

around f̂(x) still provides a reliable CI for E[f̂(x)]. Secondly, the bias could be

estimated. Thirdly, a manner of reducing the bias is to smooth f̂(x) slightly385

less than what would be appropriate [32], for instance through regularization.
For the latter, one provides here an example for the multi-dimensional case with
homoskedastic noise.

Ensemble of M = 5 regularized ELM is trained with N = 300. Selecting
voluntarily a bigger number of neurons increases the model complexity, then
reduces the model bias. But increasing complexity also implies increasing the
model variability, which puts the model in an overfitting situation that the regu-
larization mechanism controls at the expense of the introduction of an additional
bias. The general cross-validation estimate results in a Tikhonov factor of 10−4

which introduces to much bias. Then, α = 10−6 is empirically set to decrease
the amount of smoothing hence alleviating the bias, at the expense of an higher
variance. To measure predictive performance of the model, the mean squared
error (MSE) and relative mean squared error (RE) are defined on the training
set by

MSE =
1

n

n∑

i=1

(
yi − f̂(xi)

)2
and RE =

1
n

∑n
i=1

(
yi − f̂(xi)

)2

1
n

∑n
i=1

(
yi − 1

n

∑n
i=j yj

)2 ,

and similar measures are defined on the testing set. Generally speaking, lower
values of MSE and RE are better. A value higher than 1 for RE indicates390

that the model performs worse than the mean [33]. Note also that RE can be
interpreted as an estimation of the ratio between the residual variance and the
data variance.

Table 4 shows the quantitative results of the regularized model with N = 300
compared to the non-regularized model done previously withN = 91. In average395
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among the 1′000 experiments, the testing MSE is slightly better for N = 91.
However, the testing RE shows that in both cases it represents 2.8% of the data
variance and no significant difference is identifiable. As expected, the sek of the
true variance — and its estimation — is greater for N = 300. The variance is
better estimated, as shown by ek and rek. This is likely due to the model bias400

reduction, which probably implies a decrease of the bias of the noise estimation,
and therefore of the bias of the variance estimates — see section 3.2. Figure
3 (right) visualizes the distribution of g(x0) at the center of the 5-dimensional
hypercube. Comparing with the first model N = 91 — Figure 3 (middle) —
the distribution of g(x0) is far closer to a centered Gaussian. The coverage405

probability is also shown and compared in Figure 4 (middle), where results
are considerably improved, especially at x0 = 1/2 · (1, 1, 1, 1, 1). Summarizing,
while the CI are then globally correctly estimated, the predictive performance
are almost the same.

5. Conclusion410

This paper discussed variance of (regularized) ELM under general hypoth-
esis and its estimation through small ensembles of retrained ELMs under ho-
moskedastic and heteroskedastic hypothesis. As ELM is nothing more than a
linear regression in a random feature space, analytical results can be derived
by conditioning on the random input weights and biases. In particular, the415

variance of f̂(x0) knowing input data has been decomposed into additive terms,
supporting the identification and the interpretation of the contribution of dif-
ferent variability sources. Based on these formulas, several variance estimates
independent of the noise distribution were provided for homoskedastic and het-
eroskedasic cases, for which a Python implementation was provided. Formulas420

and estimate-related theoretical results are supported by numerical simulations
and empirical findings. Bias-reduced estimate σ̂2

BR is likely uniformly better
than σ̂2

NHo in the homoskedastic case and should be prefer. In the heteroskedas-
tic case, σ̂2

S2 and σ̂2
S3 are empirically shown to be better than other proposed

estimates. Although these estimates are close to each other, σ̂2
S2 is computa-425

tionally more efficient than σ̂2
S3.

The paper also showed the possibility of constructing accurate CI for f(x0)

and E[f̂(x0)] despite the non-parametric, non-linear, and random nature of
ELM. It provided a detailed explanation of the bias/variance contribution in
CI estimation and highlighted that bias must be carefully consider to achieve430

satisfactory performances, especially in the regularized case which introduce
significant bias. In particular, bias was traded against variance which can be es-
timated while preserving the predicting performance of the modelling, leading to
credible uncertainty estimation. Also, as the variance estimates are distribution-
free, it is reasonable to think that CI could be built with non-Gaussian noise435

distributional assumptions.
Several aspect of ELM uncertainty quantification still need to be investi-

gated. From a theoretical perspective, (asymptotical) normality of ELM (en-
sembles) should be proved or disproved. More generally, having an analytical
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expression for the distribution of H could be very useful to develop estimation440

based on a single ELM. Additionally, random matrix theory — which already
provided theoretical results for ELM [34] — should be investigated in the un-
certainty quantification context.

Practically, prediction variance estimation is straightforward by adding σ̂2
ε to

the variance estimate in the homoskedastic case, while the noise variance could445

be estimated in the heteroskedastic case, e.g. with a second model [8, 9]. Pre-
diction interval can also be constructed, assuming convenient noise distribution.
Future studies could also involve dependant data, e.g. by adapting heteroskedas-
ticity and autocorrelation consistent (HAC) estimations of the full noise covari-
ance matrix, in the temporal, spatial or spatio-temporal cases [13, 35, 36, 37].450

6. Appendix

Proof of equation (4). Recall that W1, . . .WM are i.i.d.. Reusing Eq. (1), one
have

E

[
f̂(x0)

∣∣∣W1, . . . ,WM

]
=

1

M

M∑

m=1

E

[
f̂m(x0)

∣∣∣Wm

]

=
1

M

M∑

m=1

hT
mHα

mf .

(23)

The law of total expectation yields

E

[
f̂(x0)− f(x0)

]
= E

[
E

[
f̂(x0)

∣∣∣W1, . . . ,WM

]]
− f(x0)

=
1

M

M∑

m=1

E
[
hT
mHα

mf
]

︸ ︷︷ ︸
= cst

−f(x0)

= E
[
hTHαf

]
− f(x0),

and the bias still unchanged. Computing the first term of the law of total
variance, one get

Var
[
f̂(x0)

∣∣∣W1, . . . ,WM

]
= Var

[
1

M

M∑

m=1

hT
mHα

my

∣∣∣∣∣W1, . . . ,WM

]

=
1

M2

M∑

m,l=1

Cov
[
hT
mHα

my, hT
l H

α
l y
∣∣Wm,Wl

]

=
1

M2

M∑

m,l=1

hT
mHα

mVar [y]HαT
l hl

=
1

M2

M∑

m,l=1

hT
mHα

mΣHαT
l hl,
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which implies

E

[
Var

[
f̂(x0)

∣∣∣W1, . . . ,WM

]]
=

1

M2

M∑

m=1

E
[
hT
mHα

mΣHαT
m hm

]
︸ ︷︷ ︸

= cst

+
1

M2

∑

m 6=l

E
[
hT
mHα

m

]
ΣE
[
HαT

l hl

]

=
1

M
E
[
hTHαΣHαTh

]

+
M − 1

M
E
[
hTHα

]
ΣE
[
HαTh

]
,

(24)

where one used the fact that the input weights and biases are drawn indepen-
dently. Using (23), the second term of the law of total variance is

Var
[
E

[
f̂(x0)

∣∣∣W1, . . . ,WM

]]
=

1

M2

M∑

m,l=1

Cov
[
hT
mHα

mf , hT
l H

α
l f
]

=
1

M2

M∑

m=1

Var
[
hT
mHα

mf
]

︸ ︷︷ ︸
= cst

=
1

M
Var

[
hTHαf

]
,

(25)

as Cov
[
hT
mHα

mf , hT
l H

α
l f
]
vanishes when m 6= l, thanks again to the i.i.d. as-

sumption on the weights. By summing Eq. (24) and Eq. (25), the result is
obtained.

Proof of equation (19). First, note that for all m, l, k = 1, . . .M ,

Cov
[
rTmrm, zTk zl

]
= Cov

[
E
[
rTmrm

∣∣Wm

]
, E
[
zTk zl

∣∣Wl,Wk

]]

+ E
[
Cov

[
rTmrm, zTk zl

∣∣Wm,Wl,Wk

]]

= Cov
[
fTbw,m, zTk zl

]
,

(26)

where for the first equality uses the law of total covariance, and the second
equality uses equation (11), the fact that expectation as no effect on a constant
and that covariance between a random variable and a constant is null. Also,
using the covariance definition and the independence of weights between models,
one have for all k 6= l,

Cov
[
fTbw,k, z

T
k zl
]
= E

[
fTbw,kz

T
k zl
]
− E

[
fTbw,k

]
E
[
zTk zl

]

= E
[
fTbw,kz

T
k

]
µ− E

[
fTbw,k

]
E
[
zTk
]
µ

= Cov
[
fTbw,k, z

T
kµ
]
,

(27)
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Then, using equations (10), (12), (26) and (27), one obtains

Cov

[
σ̂2
ε , µ̂

T
µ̂− 1

M
Tr[Q̂]

]
=

1

M2(M − 1)(n−N)

M∑

m=1

∑

k 6=l

Cov
[
rTmrm, zTk zl

]

=
1

M2(M − 1)(n−N)

M∑

m=1

∑

k 6=l

Cov
[
fTbw,m, zTk zl

]

=
2

M2(M − 1)(n−N)

∑

k 6=l

Cov
[
fTbw,k, z

T
k zl
]

=
2

M2(M − 1)(n−N)

∑

k 6=l

Cov
[
fTbw,k, z

T
kµ
]

=
2

M(n−N)
Cov

[
fTbw, z

Tµ
]
,

where covariances vanish form 6= k, l in the third equality. By using the Cauchy-
Schwarz inequality on the last equation, one gets

∣∣∣∣ Cov
[
σ̂2
ε , µ̂

T
µ̂− 1

M
Tr[Q̂]

] ∣∣∣∣ ≤
2

M(n−N)

√
Var [fTbw] Var [zTµ]

from which equation (19) is obtained.455

Software Availability

UncELMe — Uncertainty quantification of Extreme Learning Machine en-
semble — is a Python package proposed on PyPI and GitHub (https://github.com/fguignard/UncELMe).
It allows interested users to compute all variance estimates for Extreme Learn-460

ing Machine ensemble discussed in the present paper. It is built within the scikit
learn estimator framework, which enable the use of all convenient functionali-
ties of scikit-learn [38]. Noise estimation are also returned to enable building of
prediction intervals.
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4 October 2020. More precisely, in [24] equations (3) and (4) and naive estimates
were presented for the non-regularized case only, with very few justifications and
without any details. All other work presented in this paper is the result of an
original research.
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