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a b s t r a c t

A method for estimating time delays between signals that are irregularly sampled is presented. The

approach is based on postulating a latent variable model encoding the assumption of slow variability of

the underlying source signal. The posterior distribution of the delay is obtained partly by exact

marginalisation computable by a specific type of Kalman filter and partly by Markov chain Monte Carlo.

Experiments with artificial data show the effectiveness of the proposed approach while results with

real-world gravitational lens data provide the main motivation for this work.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

The estimation of a delay between two signals is concerned
with the following question: given two time series x1ðtÞ and x2ðtÞ,
for which time lag t does the relation x1ðtÞ ¼ ax2ðt � tÞ þ b hold
most accurately? The question is of importance in many fields of
signal processing, from underwater acoustics to satellite position-
ing. Much of the work done in answering the question has dealt
with evenly sampled signals, and the solution is most often based
on the cross correlation function or a variation of it.

The problem drastically changes when the signals are unevenly
sampled, which is a frequently encountered case in certain fields.
In observational astronomy, for example, uneven sampling results
from the sampling times being largely determined by external
factors, such as observing conditions, instrumental availability,
and scheduling. In the uneven sampling case, the cross correlation
function cannot usually be exactly evaluated for any case other
than t ¼ 0. For other values, some form of interpolation needs to
be performed, which means that one implicitly assumes that the
signals are slowly varying. Even when that is a legitimate
assumption, interpolation can pose a risk of inventing new data
that have little to do with reality [5]. Consequently, several
methods have been proposed as alternatives to the standard cross
correlation function. Of these, perhaps the most widely used are
the discrete correlation function [5] (especially the locally
normalised version [12]) and the dispersion spectrum [13].

A recent study [4], involving one of the authors of this paper,
shows that the delay estimation problem with irregular sampling,
mainly in the context of the determination of time lags in
ll rights reserved.
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,

gravitationally lensed multiple images of distant celestial objects,
is far from completely solved.

In this paper, we propose a Bayesian approach to solving the
delay estimation problem with unevenly sampled signals. We
avoid any kind of interpolation on the noisy data by formulating a
latent-variable model which exploits the assumption of the
signals being slowly varying. We derive an inference algorithm
for our model partly based on exact marginalisation and partly on
MCMC methods [6]. Although the main motivation of this work is
solving the delays in gravitational lensing, no domain specific
assumptions are made, and the method is of general applicability
as long as the assumption of slow variability can be made.

In the next section we delineate our modelling assumptions. In
Section 3 the algorithm for computing the posterior probability
distribution of the delay is derived. Section 4 reports both
comparison experiments against other methods as well as results
with real-world gravitational lensing data.

This article extends our earlier conference paper [7] on the
same topic. Here, we give an alternative derivation for the
computation of the marginal likelihood and report the experi-
ments in more detail showing results against one additional
comparison method.
2. Modelling assumptions

In the basic setting, we have two sets of observations, x1ðtÞ and
x2ðtÞ, measured at time instants ft0i : i ¼ 1; . . . ;Ng. Both of these
observations are due to a common source sðtÞ, but the second
observation is delayed by t. With a fixed delay t, we can think
of having observations at 2N distinct time instants, ft0i : i ¼

1; . . . ;Ng [ ft0i � t : i ¼ 1; . . . ;Ng. By ordering these we obtain a
signal xðtiÞ, measured at time instants fti : i ¼ 1; . . . ;2Ng, which
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incorporates the samples from both x1 and x2. We denote the
correspondence with kðiÞ 2 f1;2g such that xðtiÞ ¼ xkðiÞðt

0
jÞ for

some j. The source can also be shifted and scaled individually
for each of the two observations. Denoting the data as
X ¼ fxðtiÞ : i ¼ 1; . . . ;2Ng, the source as S ¼ fsðtiÞ : i ¼ 1; . . . ;2Ng,
the scaling coefficients and the shifts as ak and bk, respectively,
and finally the log-variances of the noise as vk, we can write the
likelihood for the model parameters as

pðXjS; fakg; fbkg; fvkg; tÞ ¼
Y2N

i¼1

NðxðtiÞjakðiÞsðtiÞ þ bkðiÞ; e
vkðiÞ Þ. (1)

Here, Nðxjm;s2Þ denotes the normal distribution with mean m
and variance s2. As we have no a priori knowledge about the
nature of the noise, the Gaussian assumption is justified by the
maximum-entropy principle [9].

The mere likelihood above does not relate the individual
observations to each other in any way, and thus using it alone it is
not possible to estimate the delay. The additional assumption we
make is that the source varies slowly in time, such that the next
state sðtiþ1Þ is dependent on the previous state sðtiÞ. We
incorporate this assumption to the model by specifying a
Wiener-process prior on S:

pðSjw; g; tÞ ¼
Y2N

i¼2

pðsðtiÞjsðti�1Þ;w; gÞ � pðsðt1ÞÞ

¼
Y2N

i¼2

NðsðtiÞjsðti�1Þ; ðti � ti�1Þ
gewÞNðsðt1Þj0;s2

s Þ. (2)

The prior states that the fluctuations in the source are propor-
tional to the temporal distance between consecutive observations.
We see this formulation as least restrictive while still incorporat-
ing the prior knowledge. The constant s2

s specifies the prior
variance of the source at the first time instant. Since the data can
be normalised as a preprocessing step, we can use a moderate
value of s2

s ¼ 102.
On the surface, it might seem that the delay has no role in

Eqs. (1) and (2). It of course does, but the effect is of structural
nature as it affects the combined time instants ti and conse-
quently the order in which the data samples appear in the model.
This is illustrated in Fig. 1.
x1 (t)

x2 (t)

x1 (t)

x2 (t)

τ1

τ2

s (t)

s (t)

t

Fig. 1. A schematic illustration of how the time delay t affects the structure of the

model.
For the parameters we choose the following priors:

pðtÞ ¼Nðtjmt;s2
t Þ,

pðwÞ ¼Nðwj � 5;52
Þ,

pðvkÞ ¼Nðvkj � 5;52
Þ. (3)

The constants mt and s2
t are chosen to reflect the earlier

knowledge of the delay (if such exists), but so that they do
not constrain the delay too much. We have considered g both
as a variable and a constant, but have found that little
difference is made in estimating it, and so we keep it fixed
to g ¼ 2.

For the scale and shift parameters to be identifiable, we fix a1

and b1 to 1 and 0, respectively. Due to the normalisation, the
values of the parameters a2 and b2 should not be too far from a1

and b1. Hence, for them we have the following priors:

pða2Þ ¼Nða2j1;1Þ,

pðb2Þ ¼Nðb2j0;1Þ.

When we have knowledge of the uncertainties related to the
measuring process, we want to incorporate that to the model as
well. In that case, we actually postulate X as hidden variables from
which we have the noisy observations Y ¼ fyðtiÞ : i ¼ 1; . . . ;2Ng

with known standard deviations syðtiÞ:

pðYjXÞ ¼
Y2N

i¼1

NðyðtiÞjxðtiÞ;s2
y ðtiÞÞ. (4)

This concludes the formulation of the model in the case of two
observed signals. The same construction extends straight-
forwardly to the multiple ð42Þ signals case. Also, when several
measurements from different wavelengths or distinct time
intervals are available, we can use them jointly. If we have
M datasets, we also have M set of parameters, excluding the delay
(delays) which is (are) common to all datasets.
3. Learning the model

We are only interested in the posterior distribution of the delay
pðtjYÞ and consider all the other variables in the model to be
nuisance parameters which we would like to marginalise out. In
the next subsection we show how to get rid of most of the
nuisance parameters by exact marginalisation which results in a
recursive formula for the marginal likelihood. This reduces the
dimensionality of the parameter space radically making sampling
from the rest of the variables effective. The sampling procedure is
discussed in Section 3.2.

3.1. Marginalisation

We denote by h all the time-independent parameters in the
model, excluding the delay. We are going to compute the marginal
likelihood pðYjt;hÞ ¼

R
d X dS pðY;X; Sjt; hÞ. This integral is analy-

tically tractable and can be directly computed by recursive
integration, and that is how it was evaluated in [7]. But it is
perhaps more illuminating to derive the likelihood by noting that
conditional on t and h, pðY;X; Sjt; hÞ is essentially a Kalman-filter
model. By identifying the correspondence, the results concerning
Kalman filtering apply. This derivation is straightforward but a bit
lengthy, and hence it is postponed to Appendix A. Here, we
directly proceed to give the expression for the marginal likelihood.
First, we need the following notation:

ŷðtiÞ ¼
yðtiÞ � bkðiÞ

akðiÞ
and ~yðtiÞ ¼

evkðiÞ þ s2
y ðtiÞ

a2
kðiÞ

.
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Now the ingredients of the marginal likelihood can be computed
by the following recursive filter:

~sðt1Þ ¼ ðs�2
s þ ~y

�1
ðt1ÞÞ

�1,

ŝðt1Þ ¼ ~sðt1Þŷðt1Þ=~yðt1Þ (5)

and for i41

~sðtiÞ ¼ f½ðti � ti�1Þ
gew þ ~sðti�1Þ�

�1 þ ~y�1
ðtiÞg

�1,

ŝðtiÞ ¼ ~sðtiÞfŝðti�1Þ=½ðti � ti�1Þ
gew þ ~sðti�1Þ� þ ŷðtiÞ=~yðtiÞg. (6)

Finally, equipped with the above quantities, we can express the
marginal likelihood as

pðYjt; hÞ ¼
Y2N

i¼2

1

jakðiÞj
NðŷðtiÞjŝðti�1Þ; ðti � ti�1Þ

gew þ ~sðti�1Þ þ ~yðtiÞÞ

�
1

jakð1Þj
Nðŷðt1Þj0;s2

s þ ~yðt1ÞÞ. (7)

3.2. Sampling procedure

The final step in obtaining summaries from pðtjYÞ is to sample
from pðt; hjYÞ. As an alternative, we considered numerically
marginalising over h, but the dimensionality is still high enough,
especially in the case of more than one delay and more than two
datasets, to render the task intractable.

The Metropolis–Hastings algorithm [8] is particularly suitable
here, as it only requires us to be able to evaluate the unnormalised
posterior density—something we can readily accomplish by
multiplying the marginal likelihood of the previous section with
the prior. In addition, a suitable jumping distribution needs to be
formulated such that the resulting Markov Chain converges
reasonably fast. In the experiments that follow, the form of the
0 100 200 300

Time

Std = 0.1

0

0 100
Time

Std = 0

Fig. 2. An example dataset from
jumping distribution was either Gaussian or a mixture of
Gaussians. The parameters were set up experimentally to obtain
a rejection ratio that was not too small or too big.

A crucial part in using MCMC methods is the evaluation of the
convergence of the chain. If the Markov chain has not converged to
its equilibrium distribution, the samples do not come from the
desired distribution making further inferences invalid. Although
there is no fool proof method to assess the convergence, there exists
several schemes that have proved to be useful in practice. One such
method, and the one we have used here, is to compute the so-called
potential scale reduction factor [3] from several parallel Markov
chains started from random initial states. It should give an estimate
of how much the scale of the empirical posterior could be reduced
by obtaining more samples. Practically, it compares the first and
second order moments of the parallel chains.
4. Experimental results

The main motivation of this work is the estimation of delays in
gravitational lensing systems. But comparing methods using real
datasets is difficult as the true delay remains unknown. Hence, we
have made comparison experiments using artificial datasets, as
then we can make well-justified claims about the accuracy of
different methods. These are reported in the next subsection.
Results with real-world gravitational lensing datasets are reported
and discussed in Section 4.2.

4.1. Controlled comparisons

We compare the proposed approach to the following three
widely used methods: locally normalised discrete correlation
50 100 150 200
Time

Std = 0.2

200 300

.4

each of the three classes.
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function (LNDCF) [12], linear interpolation followed by standard
cross correlation analysis (similar scheme used e.g. in [11]), and
dispersion spectrum [13].

We did repeated experiments with artificial datasets generated
from our model with a fixed delay of 35 units. The datasets were
composed of two observed signals having 100 samples each. The
sampling times t0i were generated from the following mixture
model:

pðlÞ ¼
0:2 when l ¼ 0:1;

0:8 when l ¼ 1:0;

(

pðDtjlÞ ¼ EðDtjlÞ;

t0i ¼ t0i�1 þDt,
0.1 0.2 0.4
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Fig. 3. Average errors of the methods.
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Fig. 4. The distribution
where EðxjlÞ denotes the exponential distribution with inverse
scale l. This model was used to simulate the gaps that are typical
in astronomical datasets. The source was generated using Eq. (2)
with g ¼ 2 and w ¼ 2 ln 0:05. The observations were generated
from the distribution 1 with a1 ¼ 1, b1 ¼ 0, a2 ¼ 0:8 and b2 ¼ 0:2.
The noise variances evk were same for both observations and three
different levels (resulting in three classes of datasets) of it were
used, namely 0:12, 0:22 and 0:42. Since the source was normalised
to unity variance, these noise variances directly translate to
equivalent signal-to-noise ratios. No additional measurement
noise was added to the data, so s2

y ðtiÞ ¼ 0, 8i. Each of the three
classes contained 225 datasets, and an example from each of them
is shown in Fig. 2.

The LNDCF method contains one tunable parameter: the
binning size. To make the comparison as fair as possible, we
optimised this by trying various bin sizes between 5 and 60. We
found that the bin size of 10 produced the best results on average.
With the linear interpolation approach one can vary the sampling
frequency. Again we tried several possibilities between 0.01 and
1.0, but found that within this interval, it did not make much of a
difference what the exact value was, so we set this parameter to
0.05. The dispersion spectra come in many varieties. We used
the D2

A;B statistic [13] which is completely nonparametric. With all
the above comparison methods, we computed the value of the
appropriate statistic varying the delay between 0 and 70 with
stepping of 0.2 and selected the delay giving the best value for the
statistic.

The proposed approach contains several tunable parameters in
the proposal distribution. But as opposed to the comparison
methods, these can be selected without knowing the true delay,
by monitoring the rejection ratio and adjusting the parameters
appropriately. The prior on t (see Eq. (3)) was chosen to be vague
with mt ¼ 0 and st ¼ 200. We drew 10 000 samples from
five independent chains, having sampled the initial values for
the delay from the uniform distribution on ½0;70�. To reduce the
possibility of including samples not coming from the posterior
due to failure to converge, we tried to prune one to two of the
chains by computing the potential scale reduction factor for each
of the subset of chains and selecting the subset with the lowest
Noise level
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Table 1

Our estimates of time delays ðmean� stdÞ compared to previous results

System Image Our delay Previous measures Ref.

B0218þ 357 10:9� 0:7 10:5� 0:4 [2]

PG1115þ 080 AC �11:7� 1:7 �13� 1 [1]

�9:4� 3:4 [15]

BC �22:7� 1:8 �25� 1 [1]

�23:7� 3:4 [15]

M. Harva, S. Raychaudhury / Neurocomputing 72 (2008) 32–3836
value. Finally, half of the samples from each of the chains were
discarded as the burn-in period, and the rest of the samples were
combined. To be able to compare against the other methods,
we collapsed the posterior distribution of the delay to a point
estimate by computing the sample mean.

The accuracy of the estimates was measured using the average
error defined as

AE ¼
1

225

X225

i¼1

jt̂i � 35j,

where t̂i is the estimate for dataset i. Ideally the AE would be zero,
meaning an exactly correct estimate every single time. The
scheme of randomly guessing a delay between 0 and 70 can be
thought of as the baseline (in the experimental setting adopted,
the comparison methods could produce an estimate only within
this interval), in which case the average error would be (on
average) 17.5.

Fig. 3 shows the accuracies of the methods. All the comparison
methods seem to perform at a roughly similar level. The proposed
approach is better on average with all noise levels and the
difference becomes more prominent as the noise condition gets
worse.

To give a fuller view to the results, we show the distribution of
the estimates in Fig. 4. If one examines the histograms of the
proposed method carefully, one can discover that there are a few
small bars far from the bulk of the probability mass. These are to
some extent comprised by estimates gone awry by the sampler
failing to converge. When analysing any given dataset, the
convergence can easily be assessed and the sampler rerun with
possibly different parameters to obtain samples from the
0

0

Fig. 5. The images and the corresponding intensity measurements for B0218 (top) and P

that there are only three distinct time series of intensity measurements. The images w
equilibrium (or sufficiently near it). Here, such fine tuning was
not performed.

4.2. Estimating the delays in gravitational lensing systems

Gravitational lensing occurs when the light coming from a
distant quasar is bent by the gravitational potential of an
intervening galaxy, such that several images of the source are
observed. Relativistic effects, as well as the different lengths of the
light travel paths, affect the time it takes for the photons
originating from the source to travel to the observer. If the source
varies in brightness over time, a delay is perceived between the
fluctuations in the intensity profiles of the images. The signifi-
cance of estimating the delays in such systems stems from the
early observation that they can be used in determining important
cosmological quantities, since the delay provides a rare method of
directly measuring distances over very large scales [14].

We have determined the delays of several lensing systems, and
compared the results with earlier estimates, obtained with
methods typically used by astrophysicists, on the same or similar
data. This whole study is of general interest to the astronomical
20 40 60 80 100
Time (days)

50 100 150 200 250
Time (days)

G1115 (bottom). With PG1115, the two images closest to each other are merged so

ere obtained from CASTLES [10].
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Fig. 6. Left: the posterior over the delay in B0218. Right: same for the delay AB in PG1115.
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Fig. 7. The posterior distribution over the two delays in the lensing system PG1115.

The time delays between the pairs of the three images ABC are related by

tAB þ tBC ¼ tAC.
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community and will be detailed elsewhere. Since the true delays
are and will remain unknown, we cannot make well-justified
claims of having measured them better or worse than our
predecessors. Instead, here we will point out the benefits of our
kind of analysis, in the sense that, in addition to being more
accurate, it equips us with full probability distributions over
the quantities of interest. This is important knowledge since the
uncertainties in the delays will translate to uncertainties in the
derived quantities.

We shall concentrate on two systems which lie at both
extremes on the well-determined/ill-determined axis. These are
the systems B0218þ 357 (with two distinct images AB of the
same source, hereafter B0218) and PG1115+080 (with at least
three distinct images ABC, hereafter PG1115). Images of the two
systems, along with their intensity profiles (‘‘light curves’’) are
shown in Fig. 5.

Table 1 summarises our results and previous measures of the
delays. In the case of B0218, we find a delay that matches with the
estimate in the previous work quite well. The situation is
somewhat different with PG1115, which has arguably a far more
complicated light curve. Earlier measures of the time delays
between pairs of the three major images had produced contra-
dictory results in the literature, as can be noted in Table 1. For the
first time, our analysis, which produces a posterior distribution,
shows why.

The posterior over the delay in B0218, shown in Fig. 6, is well
behaved, having the probability mass tightly concentrated around
the mean value. This is to be contrasted to the case of PG1115,
where the posterior of one of the delays is badly multimodal
spanning a wide range of values from 5 to 15. The uncertainty is
even more visible in the joint distribution of the two delays shown
in Fig. 7. It has at least two strong modes. In this light, the
posterior average and standard deviation, that we customarily
report in the table, are not that sensible statistics. But since the
two strong modes have almost equal probability mass, we do
not feel comfortable in computing the subsequent quantities
based on just one of them either. Rather, we feel that the
indeterminacy pointed out by this analysis should be taken as a
hint that the system PG1115 (or rather the so far observed data
from it) is not the best candidate for the computation of the
derived quantities.
5. Conclusions

The estimation of a delay between unevenly sampled signals is
a recurring problem in certain fields. It is also a drastically
different problem compared to its evenly sampled counterpart,
since the standard cross-correlation methods are not well justified
and often produce questionable results. In this paper we proposed
a Bayesian approach to solve the problem, derived the learning
procedure and showed its effectiveness over several alternative
approaches.
Appendix A. Derivation of the marginal likelihood

The derivation will rely on the following Kalman-filter model:

pðh1Þ ¼Nðh1j0;s2
hÞ,

pðhijhi�1Þ ¼Nðhijhi�1; vhiÞ; i ¼ 2; . . . ; T ,

pðzijhiÞ ¼Nðzijhi; vziÞ. (A.1)

Above, h is the hidden variable and z the observed variable. The
innovation- and noise variances, vh and vz, respectively, are
time dependent but fixed. The marginal likelihood of this
model, pðfzigÞ ¼

R
dfhigpðfzig; fhigÞ, is obtained by the following
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filtering equations:

~hi ¼

ðs�2
h þ v�1

zi Þ
�1; i ¼ 1;

½ðvhi þ
~hi�1Þ

�1
þ v�1

zi �
�1; i41;

8<
:

ĥi ¼

~hizi=vzi; i ¼ 1;

~hi½ĥi�1=ðvhi þ
~hi�1Þ þ zi=vzi�; i41:

8<
: (A.2)

From these, the marginal likelihood is computed as

pðfzigÞ ¼
YT

i¼2

Nðzijĥi�1; vhi þ
~hi�1 þ vziÞNðz1j0;s2

h þ vz1Þ. (A.3)

Now we need to identify the model of this paper with the above
Kalman-filter model. The first step is to integrate out the error
model:

pðyðtiÞjsðtiÞ; t; hÞ ¼
Z

dxðtiÞpðyðtiÞjxðtiÞÞpðxðtiÞjsðtiÞ; t; hÞ

¼

Z
dxðtiÞNðyðtiÞjxðtiÞ;s2

y ðtiÞÞNðxðtiÞjakðiÞsðtiÞ

þ bkðiÞ; e
vkðiÞ Þ

¼
1

jakðiÞj
NðŷðtiÞjsðtiÞ; ~yðtiÞÞ,

where

ŷðtiÞ ¼
yðtiÞ � bkðiÞ

akðiÞ
and ~yðtiÞ ¼

evkðiÞ þ s2
y ðtiÞ

a2
kðiÞ

.

Now the model can be written as

pðsðt1Þjh; tÞ ¼Nðsðt1Þj0;s2
s Þ,

pðsðtiÞjsðti�1Þ;h; tÞ ¼NðsðtiÞjsðti�1Þ; ðti � ti�1Þ
gewÞ,

pðyðtiÞjsðtiÞ; h; tÞ ¼
1

jakðiÞj
NðŷðtiÞjsðtiÞ; ~yðtiÞÞ. (A.4)

Apart from the coefficients 1=jakðiÞj, the above equations are
exactly as in the Kalman-filter model (A.1). Since the coefficients
are independent of the variables to be integrated over (sðtiÞ that
is), they pop out from the integral and end up as the factorQ2N

i¼1jakðiÞj
�1 in the final marginal likelihood. Now it is simply a

task to find the correspondence between the variables in (A.1) and
(A.4), then make the appropriate substitutions in (A.2) and (A.3),
and finally multiply by the above mentioned factor. What follows,
is exactly (5)–(7).
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