
Neurocomputing 353 (2019) 83–95

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Label noise filtering techniques to improve monotonic classification

José-Ramón Cano

a , Julián Luengo

b , Salvador García

b , ∗

a Department of Computer Science, EPS of Linares, University of Jaén, Campus Científico Tecnológico de Linares, Cinturón Sur S/N, Linares 23700, Jaén, Spain
b Department of Computer Science and Artificial Intelligence, University of Granada, Granada 18071, Spain

a r t i c l e i n f o

Article history:

Received 13 December 2017

Revised 8 April 2018

Accepted 26 May 2018

Available online 13 March 2019

Keywords:

Ordinal classification

Monotonic classification

Preprocessing

Noise filtering

a b s t r a c t

The monotonic ordinal classification has increased the interest of researchers and practitioners within

machine learning community in the last years. In real applications, the problems with monotonicity con-

straints are very frequent. To construct predictive monotone models from those problems, many classi-

fiers require as input a data set satisfying the monotonicity relationships among all samples. Changing the

class labels of the data set (relabeling) is useful for this. Relabeling is assumed to be an important build-

ing block for the construction of monotone classifiers and it is proved that it can improve the predictive

performance.

In this paper, we will address the construction of monotone datasets considering as noise the cases

that do not meet the monotonicity restrictions. For the first time in the specialized literature, we pro-

pose the use of noise filtering algorithms in a preprocessing stage with a double goal: to increase both

the monotonicity index of the models and the accuracy of the predictions for different monotonic classi-

fiers. The experiments are performed over 12 datasets coming from classification and regression problems

and show that our scheme improves the prediction capabilities of the monotonic classifiers instead of be-

ing applied to original and relabeled datasets. In addition, we have included the analysis of noise filtering

process in the particular case of wine quality classification to understand its effect in the predictive mod-

els generated.

© 2019 Elsevier B.V. All rights reserved.

1

t

a

fi

m

d

p

i

a

a

i

c

a

m

$

a

s

t

i

t

m

m

w

p

a

l

t

a

m

u

m

t

a

p

t

h

0

. Introduction

In the last years learning with ordinal data has increased the at-

ention of machine learning research community. Ordinal datasets

re characterized by the presence of an ordinal output variable. We

nd many examples of ordinal data in real life [1–3] .

The classification with monotonicity constraints, also known as

onotonic classification [4] or isotonic classification [5] , is an or-

inal classification problem [6] where a monotonic restriction is

resent. In monotonic classification, a higher value of an attribute

n an example, fixing other values, should not decrease its class

ssignment. The monotonicity of relations between the dependent

nd explanatory variables is very usual as a prior knowledge form

n data classification [7] . To illustrate, while considering a credit

ard application [8] , a $10 0 0 to $20 0 0 income may be considered

 medium value of income in a data set. If a customer A has a

edium income, a customer B has a low income (i.e. less than

10 0 0) and the rest of input attributes remain the same, there is

 relationship of partial order between A and B: B < A . Considering
∗ Corresponding author.

E-mail addresses: jrcano@ujaen.es (J.-R. Cano), julianlm@decsai.ugr.es (J. Luengo),

alvagl@decsai.ugr.es (S. García).

w

s

t

p

ttps://doi.org/10.1016/j.neucom.2018.05.131

925-2312/© 2019 Elsevier B.V. All rights reserved.
hat the application estimates lending quantities as output class, it

s quite obvious that the loan that the system should give to cus-

omer B cannot be greater than the given to customer A . If so, a

onotonicity constraint is violated in the decision. Monotonicity is

odelling or representing the business logic of the bank’s process,

hich depends on this order.

Several monotonic classification approaches have been pro-

osed in the specialized literature. They include classification trees

nd rule induction [9–14] , neural networks [15,16] , instance-based

earning [4,17,18] and hybridizations [19,20] . Some of them require

he training set to be purely monotone to work correctly, such

s the MKNN classifier [18] . MKNN needs as input a completely

onotonic data set and if not, it must be converted in monotonic

sing relabeling preprocessing methods [18] . Other classifiers are

ore permissive allowing as input non-monotonic datasets, but

hey may not guarantee to make monotonic predictions. An ex-

mple of this could be the MID algorithm [9] . The natural ap-

roach is to deal with non-monotonic datasets, as we will jus-

ify next. The proposals we find in the literature are designed to

ork in one way or another or even both at the same time. But

ometimes you have to delve into the papers to find out since

here is not a catalogue of methods categorized by each type of

roblem.

https://doi.org/10.1016/j.neucom.2018.05.131
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2018.05.131&domain=pdf
mailto:jrcano@ujaen.es
mailto:julianlm@decsai.ugr.es
mailto:salvagl@decsai.ugr.es
https://doi.org/10.1016/j.neucom.2018.05.131

84 J.-R. Cano, J. Luengo and S. García / Neurocomputing 353 (2019) 83–95

c

x

x

a

a

x

o

x

o

2

p

Nevertheless, real-world datasets may surely contain noise,

which is defined as anything that obscures the relationship be-

tween the features of an instance and its class [21,22] . Among

other consequences, noise can adversely impact the classification

performances of induced classifiers. By extrapolating to monotonic

classification, noise also alters the monotonicity constraints present

in the data.

In order to test the performance of monotonic classifiers, the

usual trend is to generate datasets that fulfil the monotonicity

constraint. The main argument is that models trained on mono-

tonic datasets often have better predictive performance than mod-

els trained on the original data [23] . Monotonic datasets can be

created by generating artificial data [24] or by relabeling of real

data [18,25,26] .

This paper proposes a different general approach to deal with

the construction of monotonic models by any classifier. As an alter-

native, we will consider the examples that do not fulfil the mono-

tonic constraints as noisy examples. For the first time in the liter-

ature, we propose the application of noise filtering algorithms in a

preprocessing stage for monotonic ordinal classification.

In this study, four classical noise filtering algorithms have been

readjusted to this domain. The algorithms considered are the

Edited Nearest neighbor (ENN [27]), the Relative neighborhood

Graph Editing (RNGE [28]), the Iterative Partition Filtering (IPF

[29]) and the Iterative Noise Filter based on the Fusion of Clas-

sifiers (MINFFC [30]). The monotonic version of them is noted as

MENN, MRNGE, MIPF and MINFFC, respectively. They will be re-

formulated to detect the non-monotonic samples, which are con-

sidered as noisy samples, following different heuristics and strate-

gies. The remaining samples will be those used as input in well-

known monotonic classifiers. Our objective is to analyze their per-

formances in comparison with an optimal relabeling scheme of the

original datasets in a large collection of datasets.

The paper is organized as follows. In Section 2 we present

the monotonic classification problem, its formal definition and the

monotonic classifiers used in the study. Section 3 is devoted to de-

scribing the noise filtering algorithms and their adaptation to sat-

isfy the monotonicity constraints. Section 4 describes the experi-

mental framework. Section 5 analyzes the results obtained in the

empirical study and presents a discussion and analysis of them. In

Section 6 we apply the filter process analyzed in the Winequality-

red data set to study its behavior. Finally, Section 7 concludes the

paper.

2. Monotonic classification

In this section, we introduce the monotonic classification prob-

lem and the monotonic classifiers considered in this paper.

2.1. Problem definition

The property of monotonicity commonly appears in domains of

our lives such as natural sciences, natural language, game theory or

economics [7,31] . For instance, the case of bankruptcy prediction in

companies, where appropriate actions can be taken in time con-

sidering the information based on financial indicators taken from

their annual reports. The monotonicity is clearly present in the

comparison of two companies where one dominates the other on

all financial indicators, which supposes that the overall evaluation

of the second cannot be higher than the evaluation of the first. This

rule could be applied to the credit rating strategy used by banks

[8] as well as for the bankruptcy prediction strategy.

The monotonic ordinal data can be defined as following. Let

D be a data set with f ordinal attributes A 1 , . . . , A f and one out-

put class attribute Y having c possible ordinal values. The data set
onsists of n examples x i . A partial ordering � on D is defined as

 � x ′ ⇔ A j (x) ≤ A j (x ′) , ∀ j = 1 , . . . , f (1)

Two examples x and x’ in space D are comparable if either x �

′ or x ′ � x , otherwise x and x’ are incomparable . Two examples x

nd x’ are identical if x = x’ and non-identical if x � = x ′ ;
Considering this notation, we denote a pair of comparable ex-

mples (x,x’) monotone if

 � x ′ ∧ x � = x ′ ∧ Y (x) ≤ Y (x ′) (2)

r

 = x ′ ∧ Y (x) = Y (x ′) (3)

A data set D with n examples is monotone if all possible pairs

f examples are either monotone or incomparable.

.2. Monotonic classifiers

This section reviews the monotone classifiers considered in this

aper. They are well-known in the monotonic classification topic.

• Monotonic k -Nearest neighbor Classifier (M k NN), proposed in

[18] , can be described as follows.

The first step in this proposal is to relabel the training data

aiming to remove all monotonicity violations [32] , using as few

label changes as possible.

Starting from the original nearest neighbor rule, the class label

assigned to a new data point x 0 must lie in the interval [y min ,

y max] in order to preserve the monotonicity conditions, where

y min = max { y | (x, y) ∈ D ∧ x � x 0 } (4)

and

y max = min { y | (x, y) ∈ D ∧ x 0 � x } (5)

y max is the minimum class value of all those instances (x) in

the data set (D) whose attribute values are all bigger than, or

equal to, those of x 0 . And y min is determined as the maximum

class value of all those instances (x) in the data set (D) whose

attributes values are all smaller than, or equal to, those of x 0 .

The nearest neighbor rule considered takes the k nearest neigh-

bors of x 0 from D whose labels are included in [y min , y max] and

makes predictions according to majority voting. If there is not

any neighbor which has its class in the range [y min , y max] means

that any class assigned will result in a violation of monotonicity

and a random class is assigned as prediction [18] .

• Ordinal Learning Model (OLM). It was the first method pro-

posed for ordinal classification with monotonicity constraints

[4] . Its goal is to choose a subset D

′ ⊆ D of training samples

in which all meet the monotonicity conditions. The classifica-

tion of new objects is done by the following function:

f OLM

(x) = max { y i : x i ∈ D

′ , x i � x } (6)

If there is no object from D

′ which is dominated by x , then a

class label is assigned by the nearest neighbor rule. D

′ is chosen

to be consistent and not to contain redundant examples. An ob-

ject x i is redundant in D

′ if there is another object x j such that

x i � x j and y i = y j .

• Ordinal Stochastic Dominance Learner (OSDL). It was presented

in [17] and [33] as an instance-based method for ordinal clas-

sification with monotonicity constraints based on the concept

of ordinal stochastic dominance. The rationale behind it can be

given through an example: In life insurance, one may expect a

stochastically greater risk to the insurer from older and sicker

applicants than from younger and healthier ones. Higher premi-

ums should reflect greater risks and vice versa. There are sev-

eral definitions of stochastic ordering. The most commonly used

J.-R. Cano, J. Luengo and S. García / Neurocomputing 353 (2019) 83–95 85

3

s

n

b

w

t

t

a

h

t

b

i

l

s

t

t

t

t

t

s

w

t

p

c

s

r

r

i

r

V

a

f

o

p

t

p

j

[

b

m

t

u

p

s

c

p

3

t

e

n

c

b

d

n

S

t

c

s

A

is the following: For each example x i , the OSDL computes two

mapping functions: one that is based on the examples that are

stochastically dominated by x i with the maximum label (of that

subset), and the second is based on the examples that cover

(i.e., dominate) x i , with the smallest label. Later, an interpola-

tion between the two class values (based on their position) is

returned as a class.

• Monotone Induction of Decision trees (MID) [9] . Its main idea

was to modify the conditional entropy in the ID3 algorithm

([34]), by adding a term called order-ambiguity-score , which

adapts the splitting strategy towards the building of monotonic

trees. However, this strategy did not guarantee the tree to be a

completely monotone function.

. Label noise filtering in monotonic classification

As in standard classification, the correct labeling of the training

et is crucial to obtain accurate models that will correctly predict

ew examples. Most classification algorithms assume that the la-

eling in the data is correct and follows the underlying distribution

ithout any disturbances. However, in the real world, this assump-

ion is naive. Real-world data is far from being perfect and corrup-

ions usually affect the dependence between the input and output

ttributes [21] . These disturbances will alter or bias the models,

indering their quality.

In classification, the noise may affect the data registration of

he input attributes or the labeling process made automatically or

y an expert [35] . If the noise has affected the input attributes, it

s usually named attribute noise . On the other hand, class noise or

abel noise means that the noise has corrupted the correct label of

ome instances. Some studies have analyzed the impact of these

ypes of noise, indicating that class noise is more harmful than at-

ribute noise, as the bias introduced is greater. For this reason, in

his work, we will focus on label noise and the different ways to

ackle its greater impact.

To address this, a conventional strategy consists of relabeling

he input data to fulfil the monotonicity assumptions [18,23,25] . In

ummary, this process alters the class of those pairs of instances

hich violate the monotonic restrictions, trying to minimize the

otal number of changes.

As an alternative strategy, we focus our attention on the ap-

roaches to deal with class noise in the specialized literature for

lassification, which is often grouped into three families.

1. We can adapt the classifiers to take into account noise and be-

come robust learners , less influenced by noise. Some classifiers

were designed as robust against noise from their very concep-

tion, as Kernel Logistic Regression [36] , a robust SVM [37] or

robust Fisher discriminant analysis learners [38,39] just to men-

tion a few. We can find adaptations of noise sensitive learners

as AdaBoost [40] to become robust learners in recent propos-

als [41] .

2. While robust learners can deal with noisy data directly, not all

classifiers have been modified to be robust. The solutions de-

signed to make a classifier robust cannot be easily extrapolated

to other learners. Thus, a popular option is to apply noise fil-

tering methods [42–44] , which work at data level before the

classifier is applied. Noise filters aim to detect and eliminate

the corrupted instances that would hinder the model built by

the classifier, enabling any classifier model to work with noisy

datasets.

3. Noise filters are a popular option due to their easy application

and independence with the classifier. However, the cost of elim-

inating instances cannot be disregarded, especially in highly

noisy problems. In these cases, the number of instances elimi-

nated would be high enough to produce a data shift in the class
borders. An optimal preprocessing technique would recover the

noisy instances, relabeling them with their true label. This fam-

ily of techniques are known as data correcting methods [45,46] .

Frénay and Verleysen [21] point out that filtering noisy in-

tances is more efficient than correcting them [47,48] . Since cor-

ection is never perfect (as a perfect classifier is rarely held), er-

ors will be further added and can accumulate with the noise we

ntend to remove. Obtaining correctors with low wrong correction

ates are computationally expensive (“less efficient” as Frénay and

erleysen meant). Therefore, correcting methods have drawn less

ttention in the literature than filtering approaches. Thus, we will

ocus on filtering approaches for noise. Among filters, those based

n similarity measures and multi-classifiers of ensembles are very

opular.

We propose the application of data preprocessing techniques

o the original data, which have been successfully applied in the

ast in similar domains [49–53] . In particular, we consider read-

usted noise filtering algorithms to tackle the monotonic domain

21] . These methods identify and remove some of the examples

elonging to the data set presenting a negative effect to the fulfil-

ent of the monotonicity constraints, keeping unaltered the rest of

he information held in the original data set. Our selection of pop-

lar noise filters is justified based on those that obtained the best

erformances in other learning domains, such as standard clas-

ification [30] , imbalanced classification [54] or semi-supervised

lassification [55] . Next, we describe the filters used in this

aper.

.1. Monotonic Edited Nearest neighbor (MENN)

The Monotonic Edited Nearest neighbor (MENN) evolves from

he classical Edited Nearest neighbor algorithm [27] . It iterates over

ach instance x in the dataset, and finds the k monotonic nearest

eighbors for x . Once such neighbors are found, the k labels are

ounted. The label with the highest frequency among the k neigh-

ors’ labels is compared to the actual label of x . If the label of x is

ifferent than the most frequent label of its k monotonic nearest

eighbors, x is removed from the training set.

The use of the monotonic k -nearest neighbors (see

ection 2.2 for further details on how to obtain the k mono-

onic neighbors) instead of the classical k -nearest neighbors rule

onstitutes the adaptation of this algorithm to the monotonic

cope. The pseudo-code of MENN is presented in Algorithm 1 .

lgorithm 1 MENN algorithm.

function MENN (T - training data, k - number of nearest neigh-

bor)

initialize: S = T

for all x ∈ S do

X ′ = ∅
y min = max { class (x ′) | x ′ ∈ T ∧ x ′ ≤ x }
y max = min { class (x ′) | x ′ ∈ T ∧ x ≤ x ′ }
for i = 1 to k do

Find x ′
i
∈ T s.t. x � = x ′

i
and || x − x ′

i
|| = min x j ∈ (T \ X ′)

|| x − x j || and class (x ′
i
) ∈ [y min , y max]

X ′ = X ′ ∪ { x ′
i
}

end for

if class (x) � = ma jorityClass (X ′) then

S = S \ { x }
end if

end for

return S

end function

86 J.-R. Cano, J. Luengo and S. García / Neurocomputing 353 (2019) 83–95

3

n

i

s

e

c

fi

i

t

t

w

t

i

A

3

C

o

s

g

t

i

d

i

g

o

i

t

t

m

i

i
3.2. Monotonic Relative neighborhood Graph Editing (MRNGE)

The Monotonic Relative neighborhood Graph Editing (MRNGE)

works in a decremental fashion like MENN and it is based on prox-

imity graphs [28] . In a first phase, MRNGE creates a proximity

graph, where the closest instances are linked together in such a

way that no other closest example is found between them. This is

the goal of the Proximity Graph function. Once the proximity graph

has been built, we can rapidly access to the nearest neighbors of

any instance.

In the second phase, MRNGE utilizes the graph to remove the

examples by looking at is neighbors. However, substantial differ-

ences can be found with respect to MENN: instead of only count-

ing the direct neighbors of the reference example x , MRNGE will

access to the neighbors’ neighbor. Without the proximity graph,

this operation would be computationally expensive.

This “second order neighborhood” aims to diminish the in-

fluence of small clusters of noisy examples by extending the

examined neighborhood. Thus, MRNGE first examines the k mono-

tonic neighbors for the given example x by accessing the proximity

graph. Only in the case where the most frequent class label among

the k neighbors differs from the label of x , we go further and ex-

amine the labels of x neighbors’ neighbors (please note that MENN

would have stopped here, removing x). MRNGE will count the la-

bels of this “second order neighborhood” and only in the case of

the most frequent label of the neighbor’s neighbors is different

to the label of x will mean that x is removed from the dataset.

Again, the precomputed proximity graph enables the fast gather-

ing of the neighbors of any given instance.

To work with monotonic classification problems, the graph

will be created considering the monotonicity constraints (see

Section 2.1). Algorithm 2 depicts in detail the procedure MRNGE.

Algorithm 2 MRNGE algorithm.

function MRNGE (T - training data, k - number of nearest neigh-

bor)

initialize: P G = P roximity _ Graph (T) , S = T

for all x ∈ S where x is misclassified by its k neighbors in P G

do

Consider the subgraph, R , given by x and all its graph

neighbors from its same class

S = S \ { x } if the graph neighborhood of R has a majority

of neighbors from different class than x .

end for

return S

end function

function Proximity_Graph (T - training data)

initialize: P G = (V, E) , V = T , E = ∅
for all x i ∈ E do

for all x j ∈ E do

for all x k ∈ E do

if (k � = i and k � = j) then

d i j = EuclideanDistance (x i , x j)

d ik = EuclideanDistance (x i , x k)

d jk = EuclideanDistance (x j , x k)

if d 2
i j

≤ d 2
ik

+ d 2
jk

then

E = E
⋃

(x i , x j)

end if

end if

end for

end for

end for

return P G

end function
.3. Monotonic Iterative Partition Filtering Editing (MIPF)

The Monotonic Iterative Partition Filtering (MIPF) is a global

oise filter which applies a classifier to several subsets of the train-

ng data set to detect possible noisy examples. It removes noisy in-

tances in multiple iterations until the number of identified noisy

xamples, for a number of consecutive iterations, is less than a per-

entage of the size of the original training data set [29] . The classi-

er embedded in the classic Iterative Partition Filtering algorithm

s the C4.5 [56] . Since C4.5 does not takes into account the mono-

onic restrictions of examples, for our MIPF proposal, we consider

he ordinal interpretation of C4.5 [57] as the base classifier. It is

orth mentioning that the ordinal C4.5 does not produce mono-

onic models but ensures ordinal classification. MIPF is described

n Algorithm 3 .

lgorithm 3 MIPF algorithm.

function MIPF (T - dataset with Monotonic Violations, � - num-

ber of subsets, y - amount of good data to be eliminated in each

step, p - minimum percentage of noisy instances to continue)

initialize: T G = {} , F = Ordinal C4.5

repeat

Split the training data set T into T i , i = 1 . . . � equal sized

subsets

for each subset T i do

Use { T j , j � = i } to train F resulting in F i different classi-

fiers

end for

D N = {} , D G = {}
for each instance t in T do

Classify t with every F i

if t is voted as noisy then

D N = D N ∪ t

end if

end for

D G = { t l ∈ T | t l / ∈ D N ; l = 1 , . . . , y }
T G = T G ∪ D G

T = T − { D N ∪ D G }
until | D N | < p · | T |
return T ∪ T G

end function

.4. Monotonic Iterative class Noise Filter based on the Fusion of

lassifiers (MINFFC)

Finally, we include the Monotonic Iterative Noise Filter based

n the Fusion of Classifiers (MINFFC), based on the proposal for

tandard classification made in [30] . It is an advanced filter that

athers strategies and techniques from different kinds of noise fil-

ers: ensembles of filters, noise scoring and an iterative process-

ng. It is based on an ensemble of classifiers to select a candi-

ate set of noisy instances. It first performs a preliminary filter-

ng, generating a temporarily reduced set, which is then used to

enerate the final filtering ensemble. The final filtering ensemble

nly points out the set of noisy candidate instances. Such a set

s the foundation to compute a noise score for all the instances,

hus removing those that are detected as noise with a score greater

han 0. The process is applied iteratively until the number of re-

oved examples is below a percentage for a given number of

terations.

For monotonic classification, the computation of the noiseScore

s adapted from that described in [30] . We multiply the clean

J.-R. Cano, J. Luengo and S. García / Neurocomputing 353 (2019) 83–95 87

v

v

A

4

o

n

S

S

m

i

s

o

Table 1

Description of the 12 datasets used in the study.

Data set Ins. At. Cl. #Mon. features

Balance 625 4 3 4

BostonHousing 506 12 4 10

Car 1728 6 4 6

Era 10 0 0 4 9 4

Esl 488 4 9 4

Lev 10 0 0 4 5 4

CPU 209 6 4 6

QualitativeBankruptcy 250 6 2 6

Swd 10 0 0 10 4 7

WindsorHousing 545 11 2 2

Winequality-red 1599 11 11 8

Wisconsin 683 9 2 9

4

e

t

d

T

c

b

c

1

a

p

g

v

i

p

i

a

o

1

f

w

p

t

n

l

l

a

o

f

f

a

1 http://www.keel.es/datasets.php .
alue of each instance by the NMI1 index (see Section 4.2) pre-

iously computed. MINFFC is described in Algorithm 4 .

lgorithm 4 MINFFC algorithm.

function MINFFC (T - dataset with Monotonic Violations, g - num-

ber of iterations to stop, p - minimum percentage of noisy in-

stances to stop, k - number of neighbors to compute the noise

score, NMI1 - Non-monotonic index for each instance)

initialize: T G = {} , F 1 = Ordinal C4.5, F 2 = 3-NN, F 3 = Logistic

Regression, it = 0

repeat

Split the training data set T into T i , i = 1 , . . . , � equal sized

subsets

for each subset T i do

Use { T j , j � = i } to train F i
j
, j = 1 , . . . , 3 different classi-

fiers

end for

D N = {} , D G = {}
for each instance t in T do

Classify t with every F i
j

where t / ∈ T i
if t is voted as noisy then

D N = D N ∪ t

end if

end for

D G = { t l ∈ T | t l / ∈ D N ; l = 1 , . . . , y }
Split the training data set D G into D i , i = 1 , . . . , � equal

sized subsets

for each subset D i do

Use { D j , j � = i } to train F i
j
, j = 1 , . . . , 3 different classi-

fiers

end for

D

′
N = {}

for each instance t in T do

Classify t with every F i
j

where t / ∈ T i
if t is voted as noisy then

D

′
N = D

′
N ∪ t

end if

end for

for each instance t in T do

score = noiseScore (t) ·NMI1(t)

if score ≥ 0 then

T = T − t

end if

end for

if | D N | < p · | T | then

it = it − 1

else

it = g

end if

until it = 0

return T

end function

. Experimental framework

In this section, we present the experimental framework devel-

ped to analyze the proposal of application of four well-known

oise filtering algorithms readjusted to work in this domain.

ection 4.1 introduces the datasets used in the comparison.

ection 4.2 describes the metrics used to evaluate the compared

ethods. Section 4.3 lists all the parameters used for each method

n the experimental comparison. Finally, Section 4.4 describes the

tatistical procedures employed to support the analysis carried

ut.
.1. Datasets

The study includes 12 datasets whose class attribute can be

xpressed as ordinal and presents a monotonic relationship with

he features. Four datasets are actual classical ordinal classification

atasets commonly used in this field (Era, Esl, Lev and Swd [4]).

he other 7 are regression datasets whose class attribute was dis-

retized into 4 categorical values, maintaining the class distribution

alanced. The last one is Winequality-red, a well-known data set in

lassification which is extensively analyzed in Section 6 . All of the

2 datasets are classical problems used in the classification scope

nd extracted from the UCI [58] and KEEL 1 repositories [59,60] .

In order to evaluate the performance of the different ap-

roaches with different amounts of monotonic violations, we have

enerated three corrupted versions of each dataset. These altered

ersions are created by changing a noise % of instances by relabel-

ng them with a new class label. The new label can only be the

recedent or the following one, thus generating realistic disorders

n terms of monotonic violations:

• When corrupting to the next label, the modified instance is

not the corrupted datum, but the instances that have been

surpassed by such noisy instance.

• When applying this corruption scheme, the class order is

considered as cyclical. If the last label is to be corrupted to

the next class label, we will select the first label as the new

output value. On the other hand, if the first label is to be

corrupted to the previous label, we will select the last label

instead. These exceptional cases will induce even more noise

than the intermediate labels.

Such a noise introduction scheme follows the NAR mechanism

s described in [21] , in which the true label has influence in the

bserved (and possibly corrupted) label. We have applied noise % =
0% , 20% and 30% levels only in the training partitions to simulate

rom low to high noisy scenarios. Since the true labels are known,

e can later examine the performance of the preprocessing ap-

roaches in term of the well and wrongly filtered instances.

All the algorithms are run using run a 10-fold cross valida-

ion scheme (10-fcv). For all the training partitions, three different

oisy versions are generated (with different seeds) for each noise

evel. Therefore, we obtain 30 executions per dataset and noise

evel.

Table 1 shows the names of datasets, their number of instances,

ttributes, and classes. In the last column, we present the number

f features which present monotonic relation with the class, using

or this the RMI measure [61] . This metric is calculated using each

eature and the class and takes values in the range [−1; 1], where

 −1 means that the relationship is totally inverse (if the feature

http://www.keel.es/datasets.php

88 J.-R. Cano, J. Luengo and S. García / Neurocomputing 353 (2019) 83–95

Table 2

Parameters considered for the algorithms compared. Underlined parame-

ters has been optimized by grid search. The others have been fixed follow-

ing the suggestions of the original authors.

Algorithm Parameters

MENN k = 3

MRNGE firstOrderEdition = true

MIPF numberPartitions = 5, consensus filter

confidence = 0.25, 2 items per leaf

MINFFC numberPartitions = 3, majority filter

k = 3 , threshold = 0

confidence = 0.25, 2 items per leaf

M k NN k = 3, distance = euclidean

OLM modeResolution = conservative

modeClassification = conservative

OSDL classificationType = media, balanced = No

weighted = No, tuneInterpolationParameter = No,

lowerBound = 0, upperBound = 1

interpolationParameter = 0.5, interpolationStepSize = 10

MID confidence = 0.25, 2 items per leaf, R = 1

4

m

T

s

t

p

[

e

5

n

v

c

increases, the class decreases), and a 1 represents a completely di-

rect relation (if the feature increases, the class increases). When

the RMI value is in the range [−0.1; 0.1], we consider that there

is no relation between the feature and the class. Counting features

whose RMI value is out of that range, we calculate the number of

features with order respect to the class. If all the features present

order, we refer that the data set presents total ordering. In case of

that number is lower than the total number of features, the data

set presents partial order. In this paper, instances having missing

values have been ignored.

4.2. Evaluation metrics

In order to compare the four monotonic filters, we will use five

metrics commonly employed in the monotonic classification field.

They are listed as follows:

• Mean Absolute Error (MAE), is calculated as the sum of the

absolute values of the errors and then dividing it by the

number of classifications. Various studies conclude that MAE

is one of the best performance metrics in ordered classifica-

tion [62,63] .

• Accuracy (ACC) is computed as the percentage of correctly

classified instances. Is a traditional measure in the classifi-

cation topic that we include as a reference metric.

• Non-Monotonicity Index 1 (NMI1) [64] , is defined as the

number of clash-pairs divided by the total number of pairs

of examples in the data set:

NMI1 =

1

n (n − 1)

∑

x ∈ D
NClash (x) (7)

where x is an example from the data set D . NClash(x) is the

number of examples from D that do not meet the mono-

tonicity restrictions (or clash) with x and n is the number of

instances in D .

• Non-Monotonicity Index 2 (NMI2) [26] , is defined as the

number of non-monotone examples divided by the total

number of examples:

NMI2 =

1

n

∑

x ∈ D
Clash (x) (8)

where Clash(x) = 1 if x clashes with some examples in D ,

and 0 otherwise. If Clash(x) = 1, x is called a non-monotone

example.

• Non-Comparable. This is a metric related to the number of

pairs of non-comparable instances in the data set. Two in-

stances x and x ′ are non-comparable if they do no satisfy

x � x ′ ∧ x � = x ′ . This measure is also considered due to

the fact that for some monotonic classifiers, it is harder

to construct accurate models agreeing the number of non-

comparable pairs raises.

• Size of the subset selected using the noise filtering algo-

rithms. We include it to analyze the noise removing capa-

bilities of each method.

4.3. Parameters configuration

See Table 2 . The parameters of the four techniques that are the

same as the original algorithms have been fixed following the sug-

gestions of their authors. These original parameters are related to

the neighborhood size or the number of partitions (i.e. base classi-

fiers used), which have a great impact in the computational cost of

the filtering methods. We understand that the authors of the stan-

dard classification versions obtained a compromise between the

noise detection accuracy and the computational complexity that

can be translated to our monotonic problems.
.4. Statistical procedures

Several hypothesis testing procedures are considered to deter-

ine the most relevant differences found among the methods [65] .

he use of nonparametric tests is preferred over parametric ones,

ince the initial conditions that guarantee the reliability of the lat-

er may not be satisfied. Friedman statistical test, a multiple com-

arison tests, is used to contrast the behavior of the algorithms

66] by ranking them and showing which are significantly differ-

nt than the best thanks to Holm’s posthoc test.

. Analysis on the usage of monotonic filters to remove

on-monotonic instances

This section is devoted to analyzing the results obtained, pro-

iding a summary of results including graphics and statistical out-

ome. We present the results considering two perspectives:

1. We compare the behavior of the algorithms using prediction

quality measures MAE and Accuracy. In addition to the noise

removal algorithms, we include the results obtained using

the original datasets as input and datasets after relabeling

the training partitions (keeping the tests partitions as they

are). As we mentioned before, the relabeling is introduced

to study its behavior in the real data when new unseen ex-

amples have to be classified using as input the relabeled

training sets. The relabeling used is the optimal proposal de-

scribed in [18] .

From the original data, one can create a graph representing

the monotonicity violations between the instances. The in-

stances correspond to vertex, and the violations are edges.

A subset of the vertexes of a graph is an independent set

if there are not two vertices in the subset that are adjacent

[25] . In a monotonic violation graph, a maximum weights

independent set corresponds to a monotone subset of the

maximum size.

Re-labeling the complement of the maximum independent

set produces a completely monotonic set, with the fewest

number of label changes in the instances. Although finding

the maximum independent set is an NP-Hard problem, this

is not the case for partial order graphs (comparability graphs

or networks). In these graphs, the maximum independent

set corresponds to a maximum antichain in the correspond-

ing partial order and can be calculated in polynomial time

by resolution of a minimum flow problem on a transporta-

tion network that is simply created from the comparability

J.-R. Cano, J. Luengo and S. García / Neurocomputing 353 (2019) 83–95 89

Table 3

Average accuracy results for the filters and relabel with all the classifiers and each noise level. Best values are stressed in

bold with respect to full precision results. Friedman rankings are provided indicating the best rank (control algorithm) in

bold. When Holm’s posthoc indicates a p -value < 0.05 the cell of the compared algorithm is grayed, whereas a p -value

< 0.1 is indicated by underling the rank of the compared algorithm.

5

t

m

l

a

c

t

T

a

c

i

a

h

c

a

M

c

g

n

w

0

T

t

t

s

w

r

a

t

m

t

f

M

p

m

m

M

t

c

e

p

a

p

M

t

i

c

5

t

r

b
graph [67] . As can be noted, the monotone violation network

is a comparability network.

This analysis is carried out in Section 5.1 .

2. We study the algorithms using different metrics to study

how the filtering and relabeling process affects the

monotonic properties of the datasets: NMI1, NMI2, Non-

Comparable and Size . Section 5.2 is devoted to study such

measures.

.1. Performance measures

In this section, we provide the accuracy and MAE results for all

he classifiers and preprocessing strategies described above. These

easures are computed over the test partitions after applying Re-

abeling, MENN, MRNGE, MIPF and MINFFC. We also include the

bsence of preprocessing, named as No preprocessing , to show the

onsequences of leaving an increasing amount of monotonic viola-

ions in the training set.

Table 3 shows the averaged accuracy values for all the datasets.

he algorithm with the best value is stressed in bold. As we can

ppreciate, MIPF is the best performing technique on average, ex-

ept for OSDL at 30% noise, where MINFFC is the best choice. It

s interesting to note that Relabeling is not performing as well

s expected, obtaining poor accuracy values when we introduce

igher amounts of noise by forcing violations in the monotonic

onstraints.

On the right side of Table 3 the rankings of Friedman’s test

re shown. Friedman’s test rejects the null-hypothesis in all cases.

IPF is again the best ranked algorithm, except for OSDL when we

onsider the original datasets. Relabeling is the worst ranked al-

orithm when we add any quantity of noise, suggesting that it is

ot a suitable technique in these environments. Grey cells depict

hen Holm’s posthoc test indicates that there is a p -value below

.05 rejecting the null hypothesis in favor of the control algorithm.

he large amounts of shaded cells support the choice of MIPF as
he best performing algorithm, while MINFFC is the only alterna-

ive that it is not statistically different.

Next, we include the averaged MAE results in Table 4 with the

ame format as that described for Table 3 . In this case, MIPF is al-

ays the algorithm with the best average MAE, as well as the most

obust choice as its MAE increases less than the other techniques

s noise increases. MRNGE and Relabeling are the algorithms with

he worst average MAE, being greatly affected by noise.

If we attend to the Friedman’s test rankings and p -values, we

ay indicate that MIPF is the best choice overall. Again, Friedman’s

est rejects the null-hypothesis in all cases. Only not preprocessing

or MID and OSDL and MINFFC in some cases are comparable to

IPF, as no statistical differences are found. However, the better

erformance of MIPF for all the four classifiers promotes it as the

ost recommendable strategy to apply in noisy environments for

onotonic classification.

In summary, the application of a noise filtering stage based on

IPF is beneficial for all the classifiers considered. In particular,

he combination of MID and MIPF seems to be the most robust

ombination, showing the best accuracy values across all noise lev-

ls. While some classifiers, as OSDL, are less affected by a previous

reprocessing stage based on noise filtering, sensitive classifiers

s MKNN take more advantage from noise filtering comparing No

reprocessing against any other filtering technique. Nevertheless,

ENN and MRNGE filters are not the best choices in noisy mono-

onic classification. In the next section, we will try to get some

nsights on why MIPF is able to attain better performance than the

ompared algorithms and why MENN and MRNGE perform poorly.

.2. Monotonicity metrics

Table 5 is dedicated to the monotonic metrics considered. The

able is structured into five columns, first for the name of the algo-

ithm and others for the noise levels studied. The results, grouped

y metric, are the average metric values of the 12 datasets for the

90 J.-R. Cano, J. Luengo and S. García / Neurocomputing 353 (2019) 83–95

Table 4

Average MAE results for the filters and relabeling with all the classifiers and each noise level. Best values are stressed in

bold with respect to full precision results. Friedman rankings are provided indicating the best rank (control algorithm) in

bold. When Holm’s posthoc indicates a p -value < 0.05 the cell of the compared algorithm is greyed, whereas a p -value

< 0.1 is indicated by underling the rank of the compared algorithm.

Table 5

Average of the monotonicity metrics with respect to monotonic noise filtering algorithms.

Preprocessing 0% (Original) 10% 20% 30%

NMI1 No preprocessing 0.021 0.024 0.026 0.028

Relabeling 0.002 0.001 0.001 0.002

MENN 0.005 0.007 0.008 0.009

MRNGE 0.001 0.001 0.0 0 0 0.0 0 0

MIPF 0.017 0.018 0.019 0.021

MINFFC 0.015 0.015 0.014 0.015

NMI2 No preprocessing 0.649 0.822 0.858 0.876

Relabeling 0.123 0.111 0.107 0.114

MENN 0.385 0.467 0.495 0.524

MRNGE 0.045 0.026 0.019 0.016

MIPF 0.368 0.405 0.455 0.487

MINFFC 0.263 0.257 0.245 0.263

Non-Comparable No preprocessing 63265.24 67441.60 70829.14 74165.93

Relabeling 604 4 4.83 71906.22 75223.07 69595.63

MENN 25806.34 10088.76 8691.59 8729.69

MRNGE 23132.81 8202.12 3830.44 3129.12

MIPF 38383.60 33834.46 30491.37 28302.81

MINFFC 29075.15 22584.23 17492.62 13228.82

Size No preprocessing 657.41 657.41 657.41 657.41

Relabeling 657.41 657.41 657.41 657.41

MENN 372.39 277.89 257.80 249.65

MRNGE 335.69 278.98 245.15 229.25

MIPF 537.28 503.53 477.15 453.03

MINFFC 447.65 401.61 360.39 317.65

v

N

i

s

a

a

t

a

n
noise filtering algorithms, Relabeling and No preprocessing. The

best result is stressed in bold.

All the metrics results in Table 5 are intrinsically related, but

NMI1, NMI2 and Non-Comparable are specific for the monotonic

classification problem. Observing Size , the highest reduction rates

corresponds to MRNGE. Average NMI1 and NMI2 indicate the grade

of monotonicity in a data set: we must take as reference value

NMI1 and NMI2 values for No preprocessing at 0% noise level. It

is clear that in original data set the values are higher, while the

monotonic noise removal techniques introduced in this paper re-
duce them. t
In Fig. 1 we present the boxplots for NMI2, as NMI1 shows

ery low variance and is much less descriptive. As can be seen,

o preprocessing decreases its variance as noise increases, while

ts median raises the noise introduced. Relabeling achieves a

table behavior, obtaining the same median and variance for

ll noise levels. MENN work reasonably well without noise, but

dding more violations makes MENN perform much worse in

erms of the variance shown. Please note that MRNGE is also

 similarity-based filter but, while MENN performs badly with

oise, MRNGE achieves a low median and variance, which seems

o be the best outcome so far. However, MRNGE is not the best

J.-R. Cano, J. Luengo and S. García / Neurocomputing 353 (2019) 83–95 91

0.0 0.2 0.4 0.6 0.8 1.0

NoPreprocess.

Relabeling

MENN

MRNGE

MIPF

MINFFC

+

+

+

+

+

+

(a) 0% noise

0.0 0.2 0.4 0.6 0.8 1.0

NoPreprocess.

Relabeling

MENN

MRNGE

MIPF

MINFFC

+

+

+

+

+

+

(b) 10% noise

0.0 0.2 0.4 0.6 0.8 1.0

NoPreprocess.

Relabeling

MENN

MRNGE

MIPF

MINFFC

+

+

+

+

+

+

(c) 20% noise

0.0 0.2 0.4 0.6 0.8 1.0

NoPreprocess.

Relabeling

MENN

MRNGE

MIPF

MINFFC

+

+

+

+

+

+

(d) 30% noise

Fig. 1. NMI2 boxplots for each preprocessing technique in each noise level. Crosses indicate sample mean.

a

M

w

v

t

a

e

r

t

t

F

f

c

p

v

t

t

r

e

p

a

t

r

t

a

H

p

d

m

t

c

t

s

t

i

c

s

s

o

b

1

r

i

i

i

t

n

i

a

b

n

t
lgorithm in terms of accuracy or MAE. If we pay attention to

IPF and MINFFC, which obtain better performance than MRNGE

ith worse NMI2 values, their boxplots show an almost constant

ariance while the median slightly increases as noise does. While

he modification of the original data set by means of Relabeling

ims to produce completely monotonic datasets with those rates

qual to zero, it is interesting to note that MRNGE is able to

educe NMI1 and NMI2 even further than Relabeling.

We also want to pay attention to Non-comparable values, as

hey indicate the number of monotonic violations that remain in

he dataset after applying the different preprocessing techniques.

ig. 2 depicts the boxplots associated to the Non-comparable values

or each preprocessing approach. We can observe that No prepro-

essing and Relabeling show a similar variance but, while No pre-

rocessing has a higher median, Relabeling achieves a low median

alue. The case of MENN and MRNGE is interesting, as they aim

o reduce the number of violations as much as possible, and thus

hey achieve the best results for Non-comparable . MIPF and MINFCC

educe their variance as the noise increases, but MINFFC is more

xaggerated in this behavior. Since MIPF and MINFFC are the best

erforming algorithms, we may conclude that extreme behaviors

s those shown by Relabeling or MRNGE are not desirable: while

he former does not solve most of the violations, the latter tends to

emove too many instances to eliminate the violations and altering

he information contained in the dataset.

At this point, MRNGE is the preprocessing technique that is

ble to obtain the lowest amounts of non-comparable instances.

owever, we observed in Section 5.1 that MRNGE is not the best
erforming algorithm. Since MRNGE also creates the most reduced

atasets in terms of size, we may conclude that MRNGE is re-

oving too many instances, which would lead to fewer viola-

ions of monotonic restrictions as shown by NMI1, NMI2 and Non-

omparable values. This excessive removal will create an informa-

ion loss in the dataset that penalizes the model obtained and thus

howing poor performance in Accuracy and MAE values.

An alternative way to analyze the behavior of the different fil-

ers would be to examine how accurate is their noisy instances

dentification. Fig. 3 shows the percentages of good and bad de-

isions of each noise filter, both in removing and keeping the in-

tances in the dataset. Since we need to know the corrupted in-

tances to examine whether they were removed or not, we can

nly create these graphics for 10, 20 and 30% noise levels. As can

e seen, MRNGE and MENN can eliminate all the noisy instances at

0% noise level, but they also eliminate a large portion of the cor-

ect instances. On the other hand, MIPF keeps some noisy instances

n the dataset at 10% noise level, but it is able to keep more correct

nstances than the others.

As the noise increases, MENN and MRNGE lose the ability to

dentify the correct examples, while they keep removing instances

o nearly clear all the violations induced in the dataset. At 30%

oise level, both MENN and MRNGE cannot keep enough correct

nstances in the dataset as MIPF does. MINFFC is able to maintain

 larger proportion of correct instances than MENN and MRNGE,

ut not as many as MIPF does. The ability of MIPF of maintaining

ot noisy instances causes that it enables the classifiers to obtain

he best results in accuracy and MAE, even when it has the

92 J.-R. Cano, J. Luengo and S. García / Neurocomputing 353 (2019) 83–95

1e−01 1e+01 1e+03 1e+05

NoPreprocess.

Relabeling

MENN

MRNGE

MIPF

MINFFC

+

+

+

+

+

+

(a) 0% noise

1e−01 1e+01 1e+03 1e+05

NoPreprocess.

Relabeling

MENN

MRNGE

MIPF

MINFFC

+

+

+

+

+

+

(b) 10% noise

1e−01 1e+01 1e+03 1e+05

NoPreprocess.

Relabeling

MENN

MRNGE

MIPF

MINFFC

+

+

+

+

+

+

(c) 20% noise

1e−01 1e+01 1e+03 1e+05

NoPreprocess.

Relabeling

MENN

MRNGE

MIPF

MINFFC

+

+

+

+

+

+

(d) 30% noise

Fig. 2. Non-comparable boxplots for each preprocessing technique in each noise level. X axis is in log scale. Crosses indicate sample mean.

t

b

b

r

a

o

t

m

s

c

w

t
largest amount of noisy instances compared to the other filtering

algorithms.

We can observe that one big problem of some filters, MENN

and MRNGE, is their over-filtering behavior. This problem was al-

ready detected in standard classification and motivated the pro-

posal of advanced noise filters instead of just applying instance se-

lection methods. The leading solutions to this problem were the

iterative removal of noise since cleaner datasets will help to poste-

rior accurate filtering steps, and to establish a minimum amount of

noise to be removed since no classifier can perfectly detect noisy

instances and some false positives will always appear. In this work

we show that accurate monotonic classification filters also need to

apply these mechanisms, as MIPF and MINFFC does, to avoid over-

filtering in the dataset.

Finally, we must point out that the usage of monotonicity

metrics alone cannot describe the ability of noise preprocess-

ing algorithms in monotonic classification, as they can be largely

minimized by removing too many instances as MRNGE does. Main-

taining a good proportion of clean instances is crucial to enable

the classifiers to obtain generalizable models. MIPF is the best ap-

proach analyzed in this respect.

6. Experimental results and analysis on the benchmark data

set: Winequality-red

In this section, we apply the best combination filter-classifier

analyzed (MIPF + MID) in Winequality-red, one of the benchmark

datasets considered in the study in Section 4 . The goal is to analyze
he effect of the filter process in the predictive models generated

y the monotonic classifiers.

The Winequality-red data set was introduced in [68] and can

e found in the KEEL data set repository [59] . It is related to a

ed variant of the Portuguese Vinho Verde wine. Due to privacy

nd logistic issues, only physicochemical (inputs) and sensory (the

utput) variables are available (e.g. there is no data about grape

ypes, wine brand, wine selling price, etc.).

The classes are ordered and not balanced (e.g. there are much

ore normal wines than excellent or poor ones). The data set con-

ists of a sample of 1599 wines, described by 11 attributes and

lassified as 11 levels of quality. The attributes are:

• Fixed Acidity (Fix), with values in the range [4.6,15.9].

• Volatile Acidity (Vol), with values in the range [0.12,1.58].

• Citric Acid (Cit), with values in the range [0.0,1.0].

• Residual Sugar (Res), with values in the range [0.9,15.5].

• Chlorides (Chl), with values in the range [0.012,0.611].

• Free Sulfur Dioxide (Fre), with values in the range [1.0,72.0].

• Total Sulfur Dioxide (Tot), with values in the range

[6.0,289.0]

• Density (Den), with values in the range [0.990,1.003].

• PH (Ph), with values in the range [2.74,4.01].

• Sulphates (Sul), with values in the range [0.33,2.0].

• Alcohol (Alc), with values in the range [8.4,14.9].

Real life datasets usually contain instances (wines in this case)

hich do not satisfy the monotonicity constraints. Table 6 presents

wo instances of the Winequality-red data set which produce a

J.-R. Cano, J. Luengo and S. García / Neurocomputing 353 (2019) 83–95 93

(a) 10% noise

(b) 20% noise (c) 30% noise

Fig. 3. Percentages of the noise filters regarding to the successful/wrongly filtered instances for each noise level. Blue and green indicate correct decisions, while orange and

red are related to wrong actions. The higher the sum of blue and green areas, the better.

Table 6

Two instances which break the monotonicity constraint in Winequality-red data set.

Fix Vol Cit Res Chl Fre Tot Den Ph Sul Alc Class

13.50 0.53 0.79 4.80 0.12 23.0 77.0 1.00 3.18 0.77 13.00 5

11.20 0.28 0.56 1.90 0.07 17.0 60.0 0.99 3.16 0.58 9.80 6

Table 7

Results in Winequality-red data set for MID and MIPF+MID.

NMI1 NMI2 Non-comp Size MAE #Branches

MID 0.0 0 032 0.31345 331872 1439.1 0.46216 344

MIPF + MID 0.0 0 030 0.29717 311433.75 1404.4 0.47275 321

m

c

t

m

c

c

c

f

f

p

b

s

m

s

w

t

fi

t

s

b
onotonicity collision between them. Lower values in features

onclude with better qualification.

In this dataset, there are 471 instances with one or more mono-

onic collisions among them, which significantly affects to the

onotonicity of the prediction models.

The filter methods are necessary to reduce these number of

ollisions, thus the generated model is able to keep its prediction

apabilities while the monotonicity restrictions are taken into ac-

ount.

To analyze this situation, the data set has been evaluated

ollowing a 10-fcv using MID, and MIPF+MID. The average per-

ormance they offered appears in Table 7 . As the analysis in the
revious section reflects, the best prediction models are produced

y the MID algorithm, while its combination with MIPF keeps

imilar prediction capabilities improving all the monotonicity

etrics, and reducing the size of the model (number of rules).

The removed instances produce many differences in the deci-

ion trees generated by the MID algorithm, as we can see in Fig. 4

here we plot a portion of the tree extracted from the same par-

ition of Winequality-red data set by MID, without and with MIPF

lter. The dotted boxes in Fig. 4 a reflect violations of the mono-

onicity constraints. As it can be seen in Table 7 and Fig. 4 , the

tructure of the decision tree changes significantly in the num-

er of branches (last column in Table 7), antecedent order and

94 J.-R. Cano, J. Luengo and S. García / Neurocomputing 353 (2019) 83–95

Fig. 4. Decision trees extracted from Winequality-Red using MID with and without MIPF (dotted boxes reflect violations of the monotonicity constraints).

u

A

R

partition range, which transforms the meaning of the rules. In ad-

dition, the filter method is able to resolve many of the monotonic-

ity conflicts which already appear using the MID classifier isolate.

7. Conclusions

In this paper, we have proposed the use of noise filtering algo-

rithms as a preprocessing stage to decrease the monotonicity vio-

lations present in the original data. We have analyzed four noise

removal algorithms, adapted to the monotonic domain, using dif-

ferent prediction rates and metrics over a high number of datasets,

coming from standard classification and regression problems. The

main conclusions related to the analyzed algorithms are:

• Monotonic noise removal algorithms are able to remove in-

stances which negatively affect to the monotonicity of real

data, altering the lowest possible the concepts represented

in the original data and improving the efficiency and efficacy

of the monotone classifiers.

• Relabeling is not able to deal with noisy environments, as

its premises are skewed by the corrupted instances, wrongly

relabeling instances and creating data shifting in the training

set with respect to the test partition.

• Monotonic Iterative Partitioning Filtering (MIPF) is able to

preserve and even to improve the prediction performances

offered by classical monotonic classifiers such as M k NN,

OLM, OSDL and MID.

• In the particular case of Winequality-red analyzed as an

example, MIPF affects positively to the monotonicity con-

straints associated with the models extracted by MID.

We have also shown that monotonicity metrics cannot describe

what constitutes a good filtering, as they can be biased by remov-

ing too many instances. While we have shown that filtering can

greatly help to diminish the impact of noisy instances in mono-

tonic classification, there is still promising options to explore: al-

though Relabeling is not designed to work with noisy instances,

correct reparation of an instance can greatly help to improve even

further the results of this work. Since the monotonicity metrics can

deceive the noise filters, other measures can be designed to avoid

the greedy removal of preprocessing techniques.

Acknowledgments

This work was supported by TIN2014-57251-P and TIN2017-

89517-P , by the Spanish “Ministerio de Economía y Competitivi-

dad ” and by “Fondo Europeo de Desarrollo Regional ” (FEDER)
nder Project TEC2015-69496-R and the Project BigDaP-TOOLS –

yudas Fundación BBVA a Equipos de Investigación Científica 2016.

eferences

[1] J. Pinto da Costa , H. Alonso , J. Cardoso , The unimodal model for the classifica-
tion of ordinal data, Neural Netw. 21 (1) (2008) 78–91 .

[2] M. Cruz-Ramírez , C. Hervás-Martínez , J. Sánchez-Monedero , P.A. Gutiérrez ,
Metrics to guide a multi-objective evolutionary algorithm for ordinal classi-

fication, Neurocomputing 135 (2014) 21–31 .

[3] P.A. Gutiérrez , M. Pérez-Ortiz , J. Sánchez-Monedero , F. Fernandez-Navarro ,
C. Hervás-Martínez , Ordinal regression methods: survey and experimental

study, IEEE Trans. Knowl. Data Eng. 28 (1) (2016) 127–146 .
[4] A. Ben-David , L. Serling , Y. Pao , Learning and classification of monotonic ordi-

nal concepts, Comput. Intell. 5 (1989) 45–49 .
[5] B. Malar , R. Nadarajan , Evolutionary isotonic separation for classification: the-

ory and experiments, Knowl. Inf. Syst. 37 (3) (2013) 531–553 .

[6] K. Antoniuk , V. Franc , V. Hlaváč , V-shaped interval insensitive loss for ordinal
classification, Mach. Learn. 103 (2) (2016) 261–283 .

[7] W. Kotlowski , R. Slowi ́nski , On nonparametric ordinal classification with mono-
tonicity constraints, IEEE Trans. Knowl. Data Eng. 25 (11) (2013) 2576–2589 .

[8] C.-C. Chen , S.-T. Li , Credit rating with a monotonicity-constrained support vec-
tor machine model, Expert Syst. Appl. 41 (16) (2014) 7235–7247 .

[9] A. Ben-David , Monotonicity maintenance in information theoretic machine

learning algorithms, Mach. Learn. 19 (1995) 29–43 .
[10] R. Potharst , J. Bioch , Decision trees for ordinal classification, Intell. Data Anal.

4 (20 0 0) 97–111 .
[11] K. Cao-Van , B. De Baets , Growing decision trees in an ordinal setting, Int. J.

Intell. Syst. 18 (2003) 733–750 .
[12] W. Kotłowski , R. Słowi ́nski , Rule learning with monotonicity constraints, in:

Proceedings of the 26th Annual International Conference on Machine Learning,

ACM, 2009, pp. 537–544 .
[13] C. Marsala , D. Petturiti , Rank discrimination measures for enforcing mono-

tonicity in decision tree induction, Inf. Sci. 291 (2015) 143–171 .
[14] J. Alcalá-Fdez , R. Alcalá, S. González , Y. Nojima , S. García , Evolutionary fuzzy

rule-based methods for monotonic classification, IEEE Trans. Fuzzy Syst. 25 (6)
(2017) 1376–1390 .

[15] H. Daniels , M. Velikova , Monotone and partially monotone neural networks,

IEEE Trans. Neural Netw. 21 (6) (2010) 906–917 .
[16] H. Zhu , E.C. Tsang , X.-Z. Wang , R.A.R. Ashfaq , Monotonic classification extreme

learning machine, Neurocomputing 225 (2017) 205–213 .
[17] S. Lievens , B. De Baets , K. Cao-Van , A probabilistic framework for the design of

instance-based supervised ranking algorithms in an ordinal setting, Ann. Oper.
Res. 163 (2008) 115–142 .

[18] W. Duivesteijn , A. Feelders , Nearest neighbour classification with monotonicity

constraints, in: Proceedings of European Conference on Machine Learning and
Knowledge Discovery in Databases, ECML/PKDD, in: Lecture Notes in Computer

Science, 1, Springer, 2008, pp. 301–316 . 5211
[19] J. García , A.M. AlBar , N.R. Aljohani , J.-R. Cano , S. García , Hyperrectangles selec-

tion for monotonic classification by using evolutionary algorithms, Int. J. Com-
put. Intell. Syst. 9 (1) (2016) 184–201 .

[20] J. García , H.M. Fardoun , D.M. Alghazzawi , J.-R. Cano , S. García , Mongel: mono-
tonic nested generalized exemplar learning, Pattern Anal. Appl. 20 (2) (2017)

441–452 .

[21] B. Frénay , M. Verleysen , Classification in the presence of label noise: a survey,
IEEE Trans. Neural Netw. Learn. Syst. 25 (5) (2014) 845–869 .

[22] J.A. Sáez , M. Galar , J. Luengo , F. Herrera , Analyzing the presence of noise in
multi-class problems: alleviating its influence with the one-vs-one decompo-

sition, Knowl. Inf. Syst. 38 (1) (2014) 179–206 .

https://doi.org/10.13039/501100003329
https://doi.org/10.13039/501100008530
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0001
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0001
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0001
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0001
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0003
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0003
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0003
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0003
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0003
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0003
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0004
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0004
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0004
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0004
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0005
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0005
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0005
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0007
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0007
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0007
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0009
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0009
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0010
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0010
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0010
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0011
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0011
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0011
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0012
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0012
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0012
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0013
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0013
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0013
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0015
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0015
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0015
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0016
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0016
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0016
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0016
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0016
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0017
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0017
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0017
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0017
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0018
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0018
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0018
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0018
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0019
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0019
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0019
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0019
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0019
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0019
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0020
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0020
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0020
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0020
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0020
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0020
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0021
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0021
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0021
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0022
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0022
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0022
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0022
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0022

J.-R. Cano, J. Luengo and S. García / Neurocomputing 353 (2019) 83–95 95

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

C

i

b

D

f

c

o

h

23] A. Feelders , Monotone relabeling in ordinal classification, in: Proceeedings of
IEEE International Conference on Data Mining, ICDM, 2010, pp. 803–808 .

[24] R. Potharst , A. Ben-David , M.C. van Wezel , Two algorithms for generating
structured and unstructured monotone ordinal data sets, Eng. Appl. Artif. In-

tell. 22 (4–5) (2009) 4 91–4 96 .
25] M. Rademaker , B. De Baets , H. De Meyer , Optimal monotone relabelling of par-

tially non-monotone ordinal data, Optim. Methods Softw. 27 (1) (2012) 17–31 .
26] I. Milstein , A. Ben-David , R. Potharst , Generating noisy monotone ordinal

datasets, Artif. Intell. Res. 3 (1) (2014) 30–37 .

[27] D. Wilson , Asymptotic properties of nearest neighbor rules using edited data,
IEEE Trans. Syst. Man Cybern. 2 (3) (1972) 408–421 .

28] J. Sánchez , F. Pla , F. Ferri , Prototype selection for the nearest neighbour rule
through proximity graphs, Pattern Recognit. Lett. 18 (1997) 507–513 .

29] T. Khoshgoftaar , P. Rebours , Improving software quality prediction by noise fil-
tering techniques, J. Comput. Sci. Technol. 22 (2007) 387–396 .

30] J.A. Sáez , M. Galar , J. Luengo , F. Herrera , INFFC: an iterative class noise filter

based on the fusion of classifiers with noise sensitivity control, Inf. Fusion 27
(2016) 19–32 .

[31] T. Tran , D. Phung , W. Luo , S. Venkatesh , Stabilized sparse ordinal regression for
medical risk stratification, Knowl. Inf. Syst. 43 (3) (2015) 555–582 .

32] A. Feelders , M. Velikova , H. Daniels , in: Two Polynomial Algorithms for Rela-
beling Non-monotone Data, 2006 .

[33] S. Lievens , B. De Baets , Supervised ranking in the weka environment, Inf. Sci.

180 (24) (2010) 4763–4771 .
34] J. Quinlan , Induction of decision trees, Mach. Learn. 1 (1) (1986) 81–106 .

[35] X. Zhu , X. Wu , Class noise vs. attribute noise: a quantitative study, Artif. Intell.
Rev. 22 (2004) 177–210 .

36] J. Bootkrajang , A. Kabán , Learning kernel logistic regression in the presence of
class label noise, Pattern Recognit. 47 (11) (2014) 3641–3655 .

[37] A. Ghosh , N. Manwani , P. Sastry , Making risk minimization tolerant to label

noise, Neurocomputing 160 (2015) 93–107 .
38] N.D. Lawrence , B. Schölkopf , Estimating a kernel fisher discriminant in the

presence of label noise, in: Proceedings of International Conference on Ma-
chine Learning, ICML, 1, 2001, pp. 306–313 .

39] C. Bouveyron , S. Girard , Robust supervised classification with mixture mod-
els: learning from data with uncertain labels, Pattern Recognit. 42 (11) (2009)

2649–2658 .

40] T.G. Dietterich , An experimental comparison of three methods for construct-
ing ensembles of decision trees: bagging, boosting, and randomization, Mach.

Learn. 40 (2) (20 0 0) 139–157 .
[41] Q. Miao , Y. Cao , G. Xia , M. Gong , J. Liu , J. Song , Rboost: label noise-robust

boosting algorithm based on a nonconvex loss function and the numerically
stable base learners, IEEE Trans. Neural Netw. Learn. Syst. 27 (11) (2016)

2216–2228 .

42] C.E. Brodley , M.A. Friedl , Identifying mislabeled training data, J. Artif. Intell.
Res. 11 (1999) 131–167 .

43] T.M. Khoshgoftaar , P. Rebours , Improving software quality prediction by noise
filtering techniques, J. Comput. Sci. Technol. 22 (2007) 387–396 .

44] S. Verbaeten , A.V. Assche , Ensemble methods for noise elimination in classi-
fication problems, in: Proceedings of the Fourth International Workshop on

Multiple Classifier Systems, Springer, 2003, pp. 317–325 .
45] C.-M. Teng , Correcting noisy data, in: Proceedings of the Sixteenth Interna-

tional Conference on Machine Learning, Morgan Kaufmann Publishers, San

Francisco, CA, USA, 1999, pp. 239–248 .
46] B. Nicholson , V.S. Sheng , J. Zhang , Label noise correction and application in

crowdsourcing, Expert Syst. Appl. 66 (2016) 149–162 .
[47] S. Cuendet , D.Z. Hakkani-Tr , E. Shriberg , Automatic labeling inconsistencies

detection and correction for sentence unit segmentation in conversational
speech, in: A. Popescu-Belis, S. Renals, H. Bourlard (Eds.), Proceedings of In-

ternational Workshop on Machine Learning for Multimodal Interaction, MLMI,

Lecture Notes in Computer Science, 4892, Springer, 2007, pp. 144–155 .
48] A.L.B. Miranda , L.P.F. Garcia , A.C.P.L.F. Carvalho , A.C. Lorena , Use of classification

algorithms in noise detection and elimination, in: E. Corchado, X. Wu, E. Oja,
Ã. Herrero, B. Baruque (Eds.), Proceedings of International Conference on Hy-

brid Artificial Intelligence Systems, HAIS, Lecture Notes in Computer Science,
5572, Springer, 2009, pp. 417–424 .

49] S. García , J. Luengo , F. Herrera , Tutorial on practical tips of the most influential

data preprocessing algorithms in data mining, Knowl.-Based Syst. 98 (2016)
1–29 .

50] S. García , J. Derrac , J.-R. Cano , F. Herrera , Prototype selection for nearest neigh-
bor classification: taxonomy and empirical study, IEEE Trans. Pattern Anal.

Mach. Intell. 34 (2) (2012) 417–435 .
[51] J.-R. Cano , S. García , F. Herrera , Subgroup discover in large size data sets pre-

processed using stratified instance selection for increasing the presence of mi-

nority classes, Pattern Recognit. Lett. 29 (2008a) 2156–2164 .
52] J.-R. Cano , F. Herrera , M. Lozano , S. García , Making CN2-SD subgroup discovery

algorithm scalable to large size data sets using instance selection, Expert Syst.
Appl. 35 (4) (2008b) 1949–1965 .

53] D. Han , Y. Hu , G. Wang , Uncertain graph classification based on extreme learn-
ing machine, Cogn. Comput. 7 (3) (2015) 346–358 .

54] J.A. Sáez , J. Luengo , J. Stefanowski , F. Herrera , SMOTE-IPF: addressing the noisy

and borderline examples problem in imbalanced classification by a re-sam-
pling method with filtering, Inf. Sci. 291 (2015) 184–203 .

55] I. Triguero , J.A. Sáez , J. Luengo , S. García , F. Herrera , On the characterization of
noise filters for self-training semi-supervised in nearest neighbor classification,

Neurocomputing 132 (2014) 30–41 .
56] J. Quinlan , C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers,
1993 .

[57] E. Frank , M. Hall , A Simple Approach to Ordinal Classification 2167 (2001)
145–156 . Lecture Notes in Computer Science

58] K. Bache, M. Lichman, in: UCI Machine Learning Repository, 2013 . http://
archive.ics.uci.edu/ml

59] J. Alcalá, A. Fernández , J. Luengo , J. Derrac , S. García , L. Sánchez , F. Herrera ,
Keel data-mining software tool: data set repository, integration of algorithms

and experimental analysis framework, J. Mult-Valued Logic Soft Comput. 17

(255–287) (2010) 11 .
60] I. Triguero , S. González , J.M. Moyano , S. García , J. Alcalá-Fdez , J. Luengo , A. Fer-

nández , M.J. del Jesus , L. Sánchez , F. Herrera , KEEL 3.0: an open source soft-
ware for multi-stage analysis in data mining, Int. J. Comput. Intell. Syst. 10

(2017) 1238–1249 .
[61] Q. Hu , X. Che , L. Zhang , D. Zhang , M. Guo , D. Yu , Rank entropy-based decision

trees for monotonic classification, IEEE Trans. Knowl. Data Eng. 24 (11) (2012)

2052–2064 .
62] L. Gaudette , N. Japkowicz , Evaluation Methods for Ordinal Classification 5549

(2009) 207–210 . Lecture Notes in Computer Science
63] N. Japkowicz , M. Shah , Evaluating Learning Algorithms. A Classification Per-

spective, Cambridge University Press, 2014 .
64] H. Daniels , M. Velikova , Derivation of monotone decision models from noisy

data, IEEE Trans. Syst. Man Cybern. – Part C 36 (2006) 705–710 .

65] D. Sheskin , Handbook of Parametric and Nonparametric Statistical Procedures,
Chapman & Hall/CRC, 2011 .

66] S. García , A. Fernández , J. Luengo , F. Herrera , Advanced nonparametric tests for
multiple comparisons in the design of experiments in computational intelli-

gence and data mining: experimental analysis of power, Inf. Sci. 180 (2010)
2044–2064 .

[67] R.H. Möhring , Algorithmic aspects of comparability graphs and interval graphs,

in: Graphs and Order, Springer, 1985, pp. 41–101 .
68] P. Cortez , A. Cerdeira , F. Almeida , T. Matos , J. Reis , Modeling wine preferences

by data mining from physicochemical properties, Decis. Support Syst. 47 (4)
(2009) 547–553 .

José Ramón Cano received the M.Sc. and Ph.D. degrees
in computer science from the University of Granada,

Granada, Spain, in 1999 and 2004, respectively.

He is currently a Professor in the Department of Com-
puter Science, University of Jaén, Jaén, Spain.

His research interests include data mining, data re-
duction, data complexity, interpretability-accuracytrade-

off, motonic classification and evolutionary algorithms.

Julián Luengo received the M.S. degree in computer
science and the Ph.D. from the University of Granada,

Granada, Spain, in 2006 and 2011, respectively.

He currently acts as an Assistant Professor in the De-
partment of Computer Science and Artificial Intelligence

at the University of Granada, Spain.
His research interests include machine learning and

data mining, data preparation in knowledge discovery and
data mining, missing values, noisy data, data complexity

and fuzzy systems.

Salvador García received the M.Sc. and Ph.D. degrees

in Computer Science from the University of Granada,

Granada, Spain, in 2004 and 2008, respectively. He is
currently an Associate Professor in the Department of

Computer Science and Artificial Intelligence, University of
Granada, Granada, Spain. Salvador García has published

more than 70 papers in international journals (more than
50 in Q1), with more than 4500 citations, h-index 26,

over 45 papers in international conference proceedings
(data from Web of Science). He is a member of the edito-

rial board of the “Information Fusion” (Elsevier), “Swarm

and Evolutionay Computation” (Elsevier) and “AI Com-
munications” (IOS Press) journals, and he is co-Editor in

hief of the international journal “Progress in Artificial Intelligence” (Springer). He
s a co-author of the book entitled “Data Preprocessing in Data Mining” published

y Springer. His research interests include data science, data preprocessing, Big
ata, evolutionary learning, Deep Learning, metaheuristics and biometrics.

Dr. García has been given some awards and honors for his personal work or

or his publications in and conferences, such as IFSA-EUSFLAT 2015 Best Appli-
ation Paper Award and IDEAL 2015 Best Paper Award. He belongs to the list

f the Highly Cited Researchers in the area of Computer Sciences (2014–2017):
ttp://highlycited.com/ (Clarivate Analytics).

http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0023
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0023
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0024
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0024
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0024
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0024
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0025
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0025
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0025
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0025
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0026
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0026
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0026
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0026
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0027
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0027
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0028
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0028
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0028
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0028
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0029
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0029
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0029
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0030
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0030
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0030
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0030
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0030
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0031
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0031
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0031
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0031
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0031
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0032
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0032
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0032
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0032
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0033
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0033
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0033
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0034
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0034
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0035
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0035
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0035
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0036
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0036
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0036
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0037
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0037
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0037
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0037
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0038
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0038
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0038
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0039
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0039
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0039
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0040
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0040
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0041
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0041
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0041
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0041
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0041
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0041
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0041
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0042
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0042
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0042
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0043
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0043
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0043
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0044
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0044
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0044
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0045
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0045
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0046
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0046
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0046
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0046
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0047
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0047
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0047
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0047
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0048
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0048
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0048
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0048
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0048
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0049
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0049
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0049
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0049
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0050
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0050
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0050
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0050
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0050
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0051
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0051
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0051
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0051
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0052
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0052
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0052
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0052
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0052
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0053
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0053
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0053
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0053
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0054
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0054
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0054
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0054
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0054
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0055
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0055
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0055
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0055
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0055
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0055
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0056
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0056
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0057
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0057
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0057
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0057
http://archive.ics.uci.edu/ml
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0059
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0059
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0059
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0059
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0059
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0059
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0059
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0059
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0060
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0060
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0060
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0060
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0060
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0060
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0060
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0060
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0060
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0060
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0060
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0061
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0061
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0061
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0061
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0061
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0061
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0061
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0062
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0062
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0062
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0062
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0063
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0063
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0063
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0064
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0064
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0064
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0065
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0065
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0066
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0066
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0066
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0066
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0066
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0067
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0067
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0068
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0068
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0068
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0068
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0068
http://refhub.elsevier.com/S0925-2312(19)30325-X/sbref0068
http://highlycited.com/

	Label noise filtering techniques to improve monotonic classification
	1 Introduction
	2 Monotonic classification
	2.1 Problem definition
	2.2 Monotonic classifiers

	3 Label noise filtering in monotonic classification
	3.1 Monotonic Edited Nearest neighbor (MENN)
	3.2 Monotonic Relative neighborhood Graph Editing (MRNGE)
	3.3 Monotonic Iterative Partition Filtering Editing (MIPF)
	3.4 Monotonic Iterative class Noise Filter based on the Fusion of Classifiers (MINFFC)

	4 Experimental framework
	4.1 Datasets
	4.2 Evaluation metrics
	4.3 Parameters configuration
	4.4 Statistical procedures

	5 Analysis on the usage of monotonic filters to remove non-monotonic instances
	5.1 Performance measures
	5.2 Monotonicity metrics

	6 Experimental results and analysis on the benchmark data set: Winequality-red
	7 Conclusions
	Acknowledgments
	References

