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In this paper, an adaptive tracking control scheme is proposed for a class of switched nonlinear systems
with state and input unmodeled dynamics. The unmodeled dynamics are dealt with by introducing a
first-order filter and a dynamic signal. K-filters are used to estimate the unmeasured states, and the
dynamic surface control (DSC) technique is employed to construct the controller to avoid the explosion
problem of complexity. By choosing an appropriate common Lyapunov function, the boundedness of all
closed-loop signals is proved, and the tracking error can converge to a small neighborhood of zero in
finite time under arbitrary switchings. Finally, a simulation example is provided to show the feasibility
and validity of the proposed method.
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1. Introduction

Over the past years, switched systems have become an emer-
ging hot research topic due to their board applications in control
fields, such as spacecraft control [1] and vehicle control [2,3].
Switched system means a hybrid system that is composed of a
family of continuous-time and discrete-time subsystems and a
rule orchestrating the switching between the subsystems. Stabi-
lization and tracking are fundamental problems in the research
field of switched nonlinear systems [4-20]. Many significant
methods have been proposed to solve these problems, such as
common Lyapunov function method, multiple Lyapunov function
method and dwell-time approach [6,14,15,17,18,20]. For example,
common Lyapunov function method was employed to solve the
tracking control problem of switched nonlinear systems in strict
feedback form [14,17,18]. Adaptive tracking control for switched
nonlinear systems in lower-triangular form was investigated in [6]
by exploiting multiple Lyapunov function method. By using the
dwell-time approach, adaptive control for uncertain switched
nonlinear systems was studied in [15,20], where fuzzy sets [21,22]
and neural networks [19,23-25] are used to approximate
unknown nonlinearities.

As is well known, unmodeled dynamics widely exist in many
practical nonlinear systems, which can severely degrade the sys-
tem performance. Therefore, how to handle unmodeled dynamics
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is a meaningful topic when one investigates the system stability.
Generally speaking, unmodeled dynamics include state unmo-
deled dynamics [5,6,15,20,25-32] and input unmodeled dynamics
[33-38]. State unmodeled dynamics denote the parts of invalid
modeling during the parameterization, a few approaches were
proposed to handle the adverse effects caused by them. In
[5,6,20,26,27,29-32], the state unmodeled dynamics were domi-
nated by introducing available dynamic signals. In [15,28], several
specific Lyapunov functions were selected to remove the state
unmodeled dynamics. On the other hand, input unmodeled
dynamics mean modeling errors or external disturbances act upon
the controller. In [33-38], a first-order filter was introduced to
generate a dynamic signal to overcome the input unmodeled
dynamics, which were of relative degree zero and minimum-
phase.

In recent years, finite-time stabilization and finite-time track-
ing have drawn considerable attention due to theirs practical
importance [1,16-18,39-42]. The aim of finite-time stabilization or
tracking is to design the control law to make system states or
tracking errors converge to the origin or the small neighborhood of
it in finite time. In [39], the problem of global finite-time stabili-
zation for a class of stochastic nonlinear systems was solved. In
[16-18], finite-time stabilization was studied for several classes of
switched nonlinear systems in strict feedback form. Finite-time
tracking and stabilization control for spacecraft systems were
respectively investigated in [1] and [40]. In [41,42], adaptive finite-
time tracking and stabilization control schemes were respectively
proposed for multi-agent and autonomous systems. However,
finite-time tracking control for switched nonlinear systems with
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unmodeled dynamics was not investigated until now, which
motivates the present study. The main contributions of this paper
are summarized as follows:

(i) An adaptive finite-time tracking control scheme is proposed
for a class of switched nonlinear systems with unmeasured
states and unmodeled dynamics. K-filters are used to estimate
the unmeasured states, and a filter is introduced to counteract
the influence of input unmolded dynamics. Moreover,
dynamic surface control (DSC) is used to overcome the
limitation of “explosion of complexity”.

(ii) Compared with previous results [29-31,33-35], the restric-
tions on the control coefficients and the reference signals are
relaxed. In this paper, the upper bound of control coefficient is
unknown and the second derivative of the reference signal is
not required to be bounded.

(iii) An output feedback controller and adaptive laws are con-
structed to guarantee that the tracking error can converge to a
small neighborhood of zero in finite time rather than in infi-
nite time presented in [20,29-31,33-35].

The rest of this paper is organized as follows. In Section 2, the
problem statement and preliminaries are given. In Section 3, sys-
tem parameterization and K-filters design are presented. In
Section 4, a control scheme is developed for switched systems by
using the DSC technique. Section 5 gives stability analysis. Simu-
lation results are presented in Section 6. Section 7 summarizes the
main conclusions.

Notations: R* denotes the set of all non-negative real numbers;
R" denotes the real n-dimensional space; R™" denotes the real

m x n dimensional matrix; R};; 2{qeR:q>0 and q is a ratio of
odd integers}; e;,i=1,2,...,n, denotes the n-dimensional vector

with the ith element being one, and other elements being all
zeros; K function denotes the set of all continuous functions which
are strictly increasing and vanishing at zero; K., function denotes
the set of all functions which are class K functions and unbounded,
C' stands for a set of functions with continuous ith partial deri-
vatives, | - || represents the Euclidean norm.

2. Problem statement and preliminaries

Consider the following switched nonlinear system with state
and input unmodeled dynamics:

2=q(zy),
xl =X2 +f1,5(t)0’)+Al,o'(t)(Z;ya t),
X2 =X3+f2 50/ ) +A260(2, Y. 1),

Xp =Xp+1 +fp,o(:)(y)+4p,a(r)(2,y, )+ bmow Vs (1)
Xn-1=Xn+fn_ 1000 +An-160Z Y, ) +b1s0)V,

Xn = frnow W) +Anet) (2, Y, D) +bo sy Vs
y=Xi.

The minimal realization of input ummodeled dynamics is
represented as

{ 5 = AA,a(f)(f)'F bA,o'(t)u’

2
V=Cao(&)+da s ll, @

where X = [X1,X2, ...,X]” € R" and u € R are the unmeasured system
states and input respectively. y € R is the measured system output;
o(t) : [0, +c0)—>M={1,2,...,m} is the switching signal and all
system states do not jump at each switching instant, t; = 0; For
any i=1,2,...,n,k=1,2,....m, fi;() is the unknown smooth

nonlinear function; zeR™ is the state unmodeled dynamics;
Ai(z,y,0),i=1,2,...,n,is the external dynamic disturbance, which
is an unknown smooth nonlinear function; q(z,y) is the unknown
continuous function; veR is the unmeasured signal which acts
upon the nonlinear system; £ 0eR? is the input unmodeled
dynamic; Aj k(-), bay are unknown vectors; Cy k(-) is an unknown
function and d, is an unknown constant. b;; #0,i=1,2,...,n, is
the unknown control coefficient; p+m=n.

Remark 1. It should be emphasized that switched system (1) and
(2) does not have strict feedback or pure feedback structures
studied in [10,15-18]. Furthermore, due to the existence of the
state and input unmodeled dynamics, finite-time tracking control
for switched system (1) and (2) becomes more difficult.

The objective is to design a controller and adaptive laws for
switched system (1) and (2) such that the output y follows the spe-
cified desired trajectory y,, and the tracking error can converge to a
small neighborhood of zero in finite time under arbitrary switchings.

Assumption 1 (Zhang and Xia [29,30], Xia and Zhang [31]). The
external disturbance A;i(z.y.t),i=1,2,...,n, is an unknown
smooth function satisfying

|4ix(@.Y, 0] < iy k(121N + i (1Y 1),

where ¢;; ,(-) > 0 is an unknown increasing function and ¢, ,(-) >
0 is an unknown smooth function.

Assumption 2 (Xia et al. [33], Chen et al. [34,35]). The input
ummodeled dynamics (2) has relative degree zero, that is, ds  # 0,
and there exists an unknown positive constant C; > 0 such that

|Car(&(tN)] < Crli&D)1.
Assumption 3 (Zhang and Xia [29,30], Xia and Zhang [31]). The

system z=gq(z,y) is exponentially input-state-practically
stable (exp-ISPS), that is, there exists a C! function V(z) such that
a1z < Vo) < da(lzIl), 3)
oV,

(;’Z(Z)q(z, Y < —Vo@+y(lyl)+d, )

where @1(-),@2(-) and y(-) are the class K, functions, c>0,d>0
are constants.

Assumption 4 (Xia et al. [33], Chen et al. [34,35]). For input

unmodeled dynamics (2), there exists a C' function V(&) satisfying

BIENIZ <V(E) < B, E12,

oV -
af)AA,k(f) < =280,V ($),

V(&)

o&

where f; > 0,5, > 0,; >0 and J; > 0 are constants.

AR

Assumption 5. The desired trajectory x, =[y,,y,]" € 2, is known,
where £, = {x, : y2+y2 < Dy}, and Dy is a constant.

Remark 2. In [10,29-31,33-35], the upper bounds of control
coefficients should be known, and the second derivative of track-
ing signals was required to be bounded, which are somewhat
strict. In this paper, we relax these restrictions, and do not require
any information about the second derivative of tracking signals.

Lemma 1 (Krstic et al. [26]). If Vo is a C' function for a system z =
q(z,y) such that (3) and (4) hold, then, for any constant ¢* € (0, ¢), any
initial instant to >0, any initial condition zy=z(to),y, >0, any
continuous function y(lyll) satisfying y(llyll) > y(llyl), there exist a
finite constant To = max{0, In(V(2)/y,)/(c—¢*)} = 0, a function D(to
,t)> 0 and an unmeasured dynamic signal described by
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0= —c*o+7(lyl)+d, v(te) = 0o, 0o > 0,

such that Vo(z) < v(t)+D(t, to), where D(t, ty) = max{0, e~ ¢~V y(z)
—e*f*“*f‘ﬁyo}, D(t,top) =0 for t > To+to. Without loss of generality,
we assume 7(lly 1) =y(lyl).

Lemma 2 (Krstic et al. [26]). For any continuous function f(x,y),
there exist smooth functions ¢,(x) >0, ¢,() =0, such that the fol-
lowing inequality holds:

fex.y)| < @) +@,(y), V¥Xx,yeR.

Lemma 3 (Lu and Xia [40]). Consider a switched nonlinear system
X =f(x), if there exist a positive definite function V : R" >R, and
constants 0 < <1,c > 0,d > 0, such that, for any xo € £29 c R", the
following inequality holds:

V(x) < —cV*(x)+d,
then,

a d s__ 1

where 0 <5 < 1, and to is the initial time.

(V(x(t0))' ~* +to,

Lemma 4 (Wang [43]). For any unknown continuous function h(z),
a neural network can be constructed as the following form to
approximate it:

hz)=W*T(@2)+D(z), Vzef2,

where T(z) =[T1(2), T2(2), ..., i@ e Rl is the basic function vector
with the node number > 1, W* =[W* W3... Wi’ eR! is the ideal
weight vector, and D(z) is the approximate error. The basic function
Ti(z) is taken as the Gaussian function, which has the following form:

N P
(Z—CI)(ZCI)) i=1,2,...1, ®)

Ti(z) = exp <—
1 ﬂlz

where c; is the center of the radial basic function and u; > 0 is the
width of the Gaussian function. The value of the ideal weight vector
W™ is determined by W that minimize the approximate error D(z) for
all ze §2;:

W* = arg min { sup ‘h(z)—WTT(z)‘}. (6)
WeR zef2,

Proposition 1 (Qian and Lin [44]). Let x e R,y € R and given any real
numbers ¢ > 0,d > 0,y > 0, the following inequality holds:

c+d

clq, 19 c c+d d
IXI°[y| <od WM g ~dy|

Proposition 2. Consider the input unmodeled dynamics satisfying
Assumption 4 and the following first-order filter:

m = —Som+ul, @)
the following inequality holds:
IED I < cE(I1E0) Il + [m(0)|)e %ot

where 8o =ming. y{Sox}.ci = max{\/ﬁz,/&},c"z‘: Ps and
VP VP
Ba=3L3maxice{ 1bal}.

Proof. According to Assumption 4, we obtain

V< ; (Aa.00(©)+ba gl < = 28060V (E) +P3 1€ by o) ul.

Setting W(&) = 1/ V (&), we have

V() [ Bslibasy! “é”,
* 2\/B, 1€l 'u

W)= V() < —8oow

®)
2\/V(© V(&)

From (8), we obtain
W(&) < W(E(O0)e ™" + 4, /0 et |u(o)|dz. )
Since e~ %~ D(71 (1) + Som(1)) = Le %~ m(r)] , we obtain
/Ote"io(t”’|u(r)|dr:ﬁ(t)—ﬁ(O)e"sﬂf. (10)
According to Assumption 4 and substituting (10) into (9) yields
IEDI < {\/@g(ow +\ﬁ|m(0)}

Then, (11) can be rewritten as the following form:

IE®) I < (1 EO) | +|m(0)|)e %t +c5 [me))|. 12)

] N é’/‘;w (11)

The proof of Proposition 2 is completed.o

Remark 3. In Proposition 2, the first-order filter (7) plays a critical
role in dealing with input unmodeled dynamics. With the aid of
the filter (7), the state of the input unmodeled dynamics can be
restricted by (12), which will be used for controller design in the
later section.

Proposition 3 (Qian and Lin [44]). Let xeR,yeR ,and p>1 be a
constant, the following inequality holds:

X1+ 1yD'P < 1x]VP 4 |y| VP < 2@~ D/P(1x] 4|y )P,

3. System parameterization and K-filters design

In this section, the parameterization of switched system (1) and
(2) is given to construct the state observer.
Substituting (2) into (1), we have

2=q(zy).
X1 =X2+f1 50V + 41602, D),

Xp=Xpi1 +f/),(f(t) ) +A/),o'([) (.Y, 0)+bmsw CA,o-(t) + bm,o—(t)dA,rr(t)U,
Xp_1=Xn+fn_ ) +45 1602, Y, D+ b1.606)Ca oty + D160 da o0 Us

*n :fn,g(t) 0/) +An,a(t) (Z, Y, t) + bOﬁ(t)CA,g(t) + bO,H([)dA,U([)us
y=X.

13)

In order to facilitate the parameterization, we let

010 - 0 f1om®) A0z, 1)
001 -0 Fa600®) A2z, Y, 0)
= . . . . L Fo‘(t) = : aAO'([) = .
000 - 0 Fnom®) Anon(2,Y,0)
Then, (13) can be rewritten as follows:
z2=qzy),
m m
X =AX+Fo)(y)+A000(2,y, )+ Zenfrbr,ﬂ(t)CA,g(t)_._ Zen—rbr,ﬁ(t)dA,a([)u,
r=0 r=0
y=elx.

(14)

Since fi,(y) is a continuous function, we adopt radial basic
function neural networks f ik = QZkG,»(y) to approximate it on the
compact set y e 2, CR, Gi,k:[é,‘],k,...,ﬁwbk]T e RN represents the
weight vector, N;>1 is the number of neuron nodes, G;(y)=
[Gh (), G (), ..., G,—Ni(y)]T € RV is the basic function vector and it is
chosen as the commonly used Gaussian function with the
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following form:
-k
2

i

Gij(y)zexp< ) i=1,2,..,n, j=1,2,...,N;,

where k;; is the center of the receptive field and b;; > 0 is the width
of the Gaussian function. Gfk represents the unknown ideal weight
vector defined as follows:

sz =arg minN_ { sup H;I:Icci(y) *fi_k(y)‘ },
OikeRY | yeQ,

then, we have

Fioty®) = O, G + 81003 (15)

where 0 4¢)(y) denotes the approximation error.
In view of (14), (15) can be represented as the following form:

2=q@z.y),
. T m m
X =Ax+S O’)Hh,ﬁ(t) + 50‘(t) +Aa(t)(za)’a t)+ Zen —rbr,cr(t)CA,n(r) + Z en— rbr,amdA,a([)U,
r=0 r=0
y=eix,
(16)
where

G?(y) ‘9?,0@)
G
GTO’) = 2 . > z,(r(r) =

G ) (.

>

i
02,17(0

O1,60)(Y)

026
B = 2, (:r)(V)

§n,()'([)(y)
Further, (16) can be expressed as follows:
2=q(z.y),

m
X=Ax+F(y, W01 6ty + 0oty + A2, Y. D)+ Z en—rbrotyCa o)
r=0

y=eix,
17)
where

bmﬁ(f)dA,o‘(t)

O 1« :
FT(y, u) _ |: |: p 11) (m+1) :| u, GT(Y):| , 91.0_([) — bl,o‘(t)dA,(r(t)
m+1 bO.o‘(t) dA,ﬂ(t)

i
h,o(t)

Since the states of system (1) are unavailable, the following filters
are employed to reconstruct the states:

Eo=Aoo+Ly. & eR",
{QT=A09T+FT(y,u),QTeRnx«m+1)+ Z}’ZIN,.), (18)
where
- I
Ao =A—LCT = 7,12 o . L= 1,2 )
_.ln 0 - 0 l.n

|sI—Ao|=s"+lis" "1+ +I,_1s+I, is a Hurwitz polynomial,
AlP+PAy = —hI, h> 0 is a design constant, P =P > 0.

Denote the first (m+1) columns of Qr by fm, .- 11, Mo, then,
we get QTz[,um,...,y],,uo,E]. According to (18), the vectors y,,,

..., }41, Mo are generated by only one input filter

fi, =Agp,+en_ru, r=0,1,...m, u,eR>M+D (19)
It is easy to show that Aje, =e,_,,r=0,1,...,m. Let

u,=AA, r=0,1,...m, u, eR>M*D

Then, (19) can be rewritten as the following form:
A =Aod+enl. (20)

Let y,;,r=0,1,...,m,i=1,2,...,n, be the ith element of the vector
u,, and 4 be the kth element of the vector A respectively. Based on
the discussion of [26], we have

A

A2
Mr,i:[*,*a~~,1] . >

lrﬂ

=0, k>n, 21

where 3 is the polynomial consisting of I, L, ..., I,. Since I1, I, ..., I,
are design parameters, the polynomial which # represents is
bounded.

According to (18)—(20), K-filters used for state estimation can
be described as follows:

éO =A0§0+Ly, éoERn,
A=Aod+equ, AeRY, (22)
E—AE+GT(y), EeR™Xi N,

The nominal state estimate is X =&, +QT6’1’gm and the observe
error is €=x-—X. Therefore, the states can be rewritten as
x:!2701,,,([)+§0+8, and we have

m
x=&E+ Z Hrbr o da o +59’Z,m) +E. (23)
r=0
Further, according to (22), the observer error equation can be
expressed as

m
& =Aoe+ 051 Y)+As0)(2.y, 1)+ Z en—rbrotyCa o) ®. (24)
r=0

4. Adaptive dynamic surface controller design

In this section, a tracking control scheme based on DSC tech-
nique will be developed for switched system (1) and (2), which
makes that the tracking error can converge to a small neighbor-
hood of zero in finite time under arbitrary switchings. The whole
design procedure needs p steps based on the following coordinate
transformations: Sy =y—y,,S;i=py;—w;,i=2,3,...,p, w; is the
output of a first-order filter.

Step 1: Taking the derivative of S, and combining (1) with (23),
we have

51 =X +fl,a(t)0’) +A1 6502,y 0) = ﬂm,zbm,a(t)dA,a(r) +wT§1,o’(t)
+0160) V) +A160(2. Y, )+ E2—Vy, (25)

where @ =[£05,0, Hm_ 12 -+ H12- Moz E)+ Gy W E and G, ()
denote the second and first rows of the matrices Z and G'(y)
respectively. 01 ) =[1, vaa([)]T_

Choose a Lyapunov function candidate for the first step as fol-
lows:

BL
Ve= y—osTPs, (26)
&
1.
Vs, = 551, (27)
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Vi = Vs, +10pL2  Tiplp?  Trpglp? (U Ly, 28)
2 2 2 2F

where 09 =0y—00,0, =0, —0,,H=H—H, 0, is the estimate of

O :LS“’/2 IW§I1+7. Lo, 7, W§, 61, H will be given later. y, > 0,7,

>0,yy>0,7,> 0,2*>0 are design parameters. Bo.oty = bmot

A4 o0 Bo = miny ¢ pr{Boy}-

Differentiating Vs, with respect to time t, and combining
Assumption 1 with (25), we have

Vs, = Sthmabmotdasey +S10" 01,00 +5181.00)
+514160(Z. Y, t)+S182 —S1¥;. (29)
According to Assumption 3, () is a class K, function, therefore,

a; () is a non-decreasing function. From Lemmas 1 and 2, we
have

111410002, O] < IS11¢h11 0,07 ' (6)+D(E, t0)) +IS11P12 ey (|V])
< 111911606 @)+ 1511012,50 (DL, £0)) + 1S11¢h12, 50 |V s
(30)

where ¢, () =0 and @,,()>0,k=1,2,...,m, are two unknown

smooth functions.
According to Lemma 1, one can show that D(t, ty) is a bounded
function, thus, there exists a constant QT’,{ >0,k=1,2,...,m,

satisfying ¢, ((D(t, t)) < gik . Noting (30), we obtain
I1S11]41,66)(Z, Y5 O] < IS119011,66@(O) + 151112 5)(D(E, o))

+1S11¢12, a(f)(M) = BOS%(PII o(t)+BLS 91 a(t)+BL52¢12 a(t)(|y|)+4BL-

31

Furthermore, in view of (29), and using the inequality as shown in
Proposition 1, we have

- - T

1001 50y < IS1ND 101 g0y I| € ————————

{a +T)a'1r(]1 +T)(B[6)1/T

7(1+7)

+ail+ \S |1+75*91BL, (32)

where 7 e R}, is a constant satisfying 0 <7< 1. @* = ll@ll'+* and
— 1+7 ..

61 ={maxy {11011} are two unknown positive constants.

ay; >0 is a design parameter.

Remark 4. According to (32), we just need to estimate the scalar
0, rather than the vector gl,k, which makes that the number of
adaptive parameters is greatly reduced and the burdensome
computation is alleviated.

Substituting (31) and (32) into (29), we obtain

1(1+1)

Vs, <S1fmabmowdasn + 7151 " T@*601 By + BGST 031 o)

5291 o(t) +BGSTVE + S%¢]2,o(t)(|y| )+305%5%,a<t)0’)+305T8

5 1 2 T
IR O — (33)
4B5 By ' (1+7a OB

Taking the derivative of V., and combining Assumptions 1 and
2 with Lemma 2, we have
L
Ve= %[eT(AgPJrPAO)eH f 0£Tps

€ €

TPAO-([)

L
+%eTPB,,®CA,6m < ——O(h—3)8T€+%HPH 211wy 112
&

23 2B
y Z20)Pi2g, G(t)(v(t))—»—y—o\IPH 20, am+—n P12 Z 5 so(¥D

23’6 2 2
+ 2200 P2 1Bty Cp o0y (E) 12, (34)

£

where ¢ (-) > 0 is an unknown smooth function and H’S,k >0isan
unknown constant.
Further, using Proposition 2, we obtain

|Ca.000( D)) Ca(t)CT( I1£(0) Il + [TI(0) | )e ~ %ot + C iy C3 | TI(E) |
1+|m)| ~ 1+|m(t)|
< max({C, ,CoC3) = Hmo) (35)

where Hp, > 0 is an unknown constant.
Let Hpey = IIPI2 11 By 1 2HZ, ), H = {maxy c i {H ) 7, then we
have

m,o(t)?

2
2 _ Caon)(&)
P12 1B 12| Cap (&) :(1+|m|)2IP2IBG(t)I2<|1+?n||>

< (PnH)/0 9, (36)

where Py, = (1+ )% +7.
Taking the derivative of V; and substituting (33)-(36) into it
leads to

1(1 +17)

V1 < Stfmabmondase + |5 ' *@*61 By +BEST 0% )

5 1,
—L+—le

2% 2
+B’65101,6([)+4B

Bhe e—yo(h 3)ele

Bj 2B} 2B§ "
yOHPHZ I 86y (¥) 12 4 . =0yp| v, 2IIP1I26] 4

23 .
y°\|PHZZ¢,26m(|y\)+ 0(P H)YA+9 _y BL 0060

i=1

. A o Iyl T
B0,y BLAf - Cp ! 4,

Y1boV101—Yybg 7 Fe Fe (1+T)a§(11+r)(35)1/r
+BgSIyE +Bé$%¢%2’0([)(|y\)+Bé$%5ia(t)(y)~ G7)

Taking the virtual control law for the first step as follows:

T(]+T) T(l+f) A2
a;=-S ( \/1+¢91+ \/1+ ot
251+1 T(1+‘[)P n
+w\/1+1-12 —c1Sq, (38)

7.€2(1+7)
where ¢;>0,a12>0,a13>0 and &*>0 are four design
parameters.
A first-order filter is designed as follows:
ToWa+wy =ai, wz(0)=ai(0),
where 7, > 0 is a constant. Let y, = w, —aq, then W, = —{—;.

Since p,,, =y, +a; +S;, we obtain from (37) that

r(1+‘r)

1. .
V1 <252 +51(11305(t)+ \S |1+T *913

L5 2Bga§g””PmHsf“”> s?
4B 7e€2(1+7)

1
|51|</)0(X1)+§J/%

)230(13 H)l/(] +17)

8*2
Bg T L7 ) L7 ) Lof C
—y—(h—3—]/£)€ 8—}’0309090—7]309191 —]/HBOHH — 0
e

T L4 27B} s? L
—+ - ,0)Bg,

(1+T)a1(1+r)(BL)1/‘r /1* 8*2}/&(1+T)GT(1+T) ( ex2 Q(y )
(39)

—32
where ¢o(X1) = maxicc w {I11(0%,@(O)+ 015+ BT (V) + g+ Q0. 0)
+ B Y248 o0 X1 =109 9,17, QY. 0) = maxee  {L1PI218,)17+

%HPH2¢0_k(v(t))+%\IPHZQz’kJr%HPH 25 ¢f2,k(\y})+%}, BY = max;. . i {Bo)-

Since the neural network is used to approximate the unknown
continuous function in this paper, ¢,(X1) can be further rewritten
as the following form:

BhoX1) = Wl o(X1)+B1(X1),
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where W represents the unknown ideal weight vector. y(X1)
represents the basic function vector and its dimension is Ly. B;(X1)
denotes the approximate error.

Using the inequality as shown in Proposition 1 and noting
Wi XDwo(X1) < Lo, we obtain

L l()ar(] +9 1 B’é’l’ BO 1
12 +7 4T
Bo|51|¢o(xl)§ﬁ\sl\ ‘90+ )am+f)+1+r‘5 1l
L
Bor (40)

Thus, there exists a continuous function K;(y,0,y,,y,) >0
satisfying

L
BOT

|31(X1) T <Ki(.0.9,. ). 41)

Substituting (38) into (39), and combining (40) with (41), we
have
1 , La‘r(1+‘r) | N . 7(1+7)
ﬁ?’z"‘Bo il+ 141 +f(u*91+BOiZT
ZBL T(1+T)P 52(l+1)

88*2(1 +7)

1S11'%00

H+Ko(y, vyr,m)——(h 3-ye"e

~ A ~ A - A d 5
—70B0000 —y1B50101 —yyBsHH + 5+
¥ 4Bt

T n 27B
(+Daf "PBH'" ey, (1+1)afy T
<o B
A 4nag

C]S1 o+

1 .
+553 + K1 (0,0, Y. Y1)~ (42)

where Ko(y,0,y,, M) = B(L) (1 _E) Q,v)+ Z(PmH)l/(l +1),

The parameter adaptive laws are updated as follows:

T(1+7)
412

A
1+r 09 43
4}/0(] e 0, (43)

9%

0=

T(1+7)
an 1+r—*

A1
7(A+2)! 91’ @4

>

1=

: 25%(1+1)a‘;(31+1) ZH .
H_iyse*z(l—i-r) m_EH’ 45)

where 1o > 0,1; >0 and 1y > 0 are three design parameters.

Remark 5. Unlike those adopted in [18,27-32], the adaptive laws
(43)-(45) are not dependent upon the dynamical signal v, which
means that the dynamical signal introduced is not required to be
measured in this paper.

Substituting (43)-(45) into (42), we obtain

1 BL - o
Vi <iy§+—52 O(h 3— ]/S)E €+BL100()90+B /1 919]+BBAHHH
L2 C
—1BgSy _FIH— G +K1,0,y,,Y) +Ko(y, 0, y,, M), (46)
T Bz 2Bkt
where C; = /1*+(l+r)a?,l”’(Bf,)"”+(l+r)?1"“”+y £2(1 +Ur)a"“"+4B"

Further, there exists a continuous function By(S3,¥,,¢, &g, =,
Am2,00,01,H,1,y,,9,) >0 such that

‘5’2 +}T% <By(52.¥3.€.60. 2, Ierz,éo,él,H,m,yr,J"r), (47)

Y22 < **HJ’z\Bz(Sz V2.€.E0.5 Am+2.00.01, H. 1., y,.9,)

VLB
-5ty (48)
where S, =[51,5,1" and 4,40 =[A1,42, ..., Am2]’
Stepi (2<i<p-1): Define the ith dynamic surface
Si =My —wW;, then
Si= —lithyy +Umis1—Wi. (49)

Choose a Lyapunov function candidate for inductive step as the
following form:

1
Vs =5 S2, (50)

Select the virtual control law as follows:

3
-3Si (51)

where ¢; > 0 is a design parameter.
Similar to the first step, a first-order filter is designed as fol-
lows:

= — c,—S,-T + li:um.l +W;

Tit1Wip1+ Wi =, Wiy 1(0) = 4(0),

where 7;,1>0 is a constant.
. v
Wit = -7+

Since ;41 =Si+1+Yir1+ai taking the derivative of Vs, and
substituting (51) into it, we have

Let y;,1=Wi;1—a;, then

1 1
_Sili/"m,l +Si0 —Siw; +S +251+1+2y12+1
_CSHT+;SZ 1+;y12+1 ;sz (52)

Further, there exists a continuous function B; 1(Si;1,¥i,1.& &
:E,Am+2a 90» 91 J‘Lm,}’r,}m = 0 SUCh that

Vi1

y,+1+—1 <Bi1Sii1.Vir 1,6 80,5 Amy2,00,01, H My, 7)),

(33)

i+18i+1,Vir 1,6 €0, =, Ama2, 00,01,

yi2+1+312+1
2 27
where y; =[y,.¥s, ~~~,.Vj] and S;=[51,52,....51".j=2.3, ....p.
Step p: Define the last dynamic surface S,=p,,,—w,. The
derivative of S, is represented as

yz+1

Hmy,.9,)< — T (54)
Tiy

SP = —lpHma +ﬂm,p+l +u_wﬂ' (55)
Choose the following Lyapunov function candidate:

1
Vs, =5 S5 (56)

Select the control law as follows:

o1
U= —CpS,+lphm1 —Hmp1+Wp 55 (57)
Taking the derivative of Vs, and substituting (57) into it, we
have

e (58)

y _ 1+7
Vgﬂ = C/;Sp 3°p

5. Stability analysis

In this section, we will state our main results.
Define some compact sets as follows:

0 = {[Sl,eT,u,éo,él,FI]T Vv sp} CRP,
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{[S, e 0,00,0,, 0] : V,-sp} CRPi, i=2.3,..,p.

where p >0 denotes an arbitrary given constant, p;
i+3,i=1,2,...,p, and

i 1 i
Vi=Vi+ ZVSJ+§ZyJZ'
i=2 =2

Theorem 1. Consider the closed-loop system consisting of (1) and
(2) under Assumptions 1-5, control law (57), and adaptive laws (43)-
(45). For any bounded initial conditions, there exist constants h, ¢, t;

,YerYo- Y1, ¥y Satisfying V(ty) < p and

=p+n+

h >3+}’5+(~3/1max(P),
1 o (59
?1224—1 i=2,3,...,p,

such that the tracking error converges to a small neighborhood of zero
in finite time under arbitrary switchings, where ¢ > 0 is a parameter
satisfying ¢ <min;_ 1, ,{c}.

Proof. Consider the following Lyapunov function candidate:

V= v1+Zv5+ZZy, (60)
i=2

If V <p, then V; <p. From the aforementioned compact sets, we
obtain that Sp,y,y,,,e v, 90,91 and H are all bounded. Further, the
boundedness of the other signals will be proved on this basis.
According to (44) and (45), we have that @* and m are bounded.
Noting (22) and (25), we obtain that 50,5,/4”!71’2, cesH12,Ho o A€
also bounded. In view of (19), we have jiy; = =g +Hg,, thus,
Mo is bounded. Furthermore, we have

Mo 1 0 0O 0 A
Ho2 0 1 00 0 A
—1 0 1 0 0 A
H12 _ h 3 61)
Hao x L 0 1 0 A4
Hm-12 % k% ok 1] | Amsn

According to (61), 4,42,...,Am41 are all bounded. From (21),
we obtain that u,, is bounded. Noting (19), we have
fm1 = —lipy1+Hyo, which implies u,, is bounded. Since
Hma =S2+a1+Y,, it yields a; that is bounded. In view of the first-
order filters, we obtain that w,, W3, ..., W,, are all bounded. Further,
a;,i=2,3,...,p—1, is also bounded. Because p,,;, 1 =Siy1+Yi 1+
a;,i=1,2,...,p—1, Hm3sHmas - fmp aT€ all bounded. From (21),
we obtain that Ap.2,Am43,....,Am are also bounded, that is,A is
bounded. In view of K-filters (22), we obtain that yg, iy, ..., pt,, are
bounded. Noting (4), (18), (23) and (57), we have that u, £, %, z, and
x are all bounded. Therefore, all closed-loop signals are bounded.

Furthermore, it is easy to know that £2; x RP» P150;x
RPr=P25..50, 1 x RP»~Pr-150,. Due to the boundedness of A,m,
continuous functions K(-) and |K0(~)| have maximums K;™ and N;
on the compact set £2, x £2; respectively. Bi(-),i=2,3,...,p, has a
maximum B on the compact set £, x £2;.

Taking the derivative of (60) and using (46), (52), and (58), we
obtain

. p —_ o~ A —_ o~ A
V < —CBiS;— &S] ——0eTPe+ByAo000o +BiA10101
i=2 €
PR M ¢ P 1 - 12 1+17)/2
+BO/1HHH+K1 _izyl'z+C1+N]— p—20+7/ c<§S])
i

=2

214925 ]52 +=/2 21+0/25 (0 +=)/2
+ &[St + e( 5

aroa (0N T2 1 oma oot
) ¢\ +§Z(Bi -2 ¢(eTPe)
i=2

42049/2¢(gTpgy _ 21+ 0/2¢ i (1 2)<1+r>/z
- j}’i
i=2

(1422 Z a+o/2
2 ( ) . (62)

Using the inequality as shown in Proposition 1, we have

r 1-17)

S(1+9)/25 1\ 21472 g -o/asn -
¢ iS1 = (CBySY) T

1-7.{1\"°
<@BES24+——¢( =] .
=< Cbgpo7 + 3 <Bé>
Asoy2x( 0 1+1)/2 = (1+17)/2 252/(1”) %
2 Cl-=% = | 7=V ="
A A C
E* 2~2/(1+T)
sgw+4—— —_—
A+ -1
1—’1' 20-17)

P 1+17)/2 Y4 1 1+1)/2
20+9/2 Z < > = <§€yi2> 20%61+7
= i=2

-7

L (1+1)/2 ~(1+7)/(1-1) 211) Gl
2049728 Tpe)1+0/2 &ESTPE' 2C7L
ys BO

1+
By, ;. 1- —7.(2 T

< O¢eTPe4+——¢( = . (63)
e 2 (Bé)

Further, substituting (63) into (62), we obtain

(1+7)/2 YA e N
V< 2(1+T)/2 Z( ) +Bé/100000+36/116101 +Bé/1HHH

i=1

(1+1)/2
+C— 2(1+1)/2 Z ( ) _2(1+1)/2€.(€TP8)(1+1)/2

2(1+T)/2 ( )(1+T)/2 (64)
AF ’

1+7 +1

where C=Cy+Ny +3 50, B2 +157¢ () + 155(2) 7+
0

C
1—tx P 2% 1-tx(2 = KM
7€ = clg) K

Employing Proposition 1, one gets
B4 760000 < B4 <_é§+zl,éf,+£eg>

< —/1030(2(: 1):2 ﬂoC

2c

where C is a design parameter satisfying c>1
Furthermore, we have

80+5-Bsbo, (65)

BL7,0,0, < 7_’1133(? Dy? ’“CBLeﬁ,
BLA4AH <%H2 A;CBLHZ (66)
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Applying Proposition 1 again, we obtain

(1+T)/2 L\ A+972
20+9/2¢ (TopL g _ (Fot2c 18585
270 2C

-7

T)ll
20y, e¥/1+D e _ (- 1)A0B50 +1 72y e/ 1+?
Ao(2C—1) = 2c 2\ Zy2c-1

(67)

Similar to (67), we have

o\ (1472 LD ~2/(147)
2“”)/26<}/2—1869?) (2C 1AB50] 1— <2C}/ ot )

+_
2c 2\ Lie-1

S1+0/2; (77,, B 1312> o _@e- DAuBsH’

2C
~2/(1+7)
+1 T (2CyyC . (68)
2 \ Iy@2c-1

Further, substituting (65)-(68) into (64), we get

. L./ 1+1)/2 BL 1+7)/2
V< 2002y <js,?> -2+ (y%ﬁk)

i=1 €

- (1+7)/2 - (1+1)/2
72(1M)/25(%3693) *Z(HT)/zE(%OB%ﬂ?)

1 2
0072 (VgL D2 s o/
2 /'L*

4 (Hr)/z
_2(1+1)/2EZ< ) (69)
i—2
where d*=C 1 o 2epe? Y o 2Eye® = 2,200 =
1E i Zo(2e—1) T T2 -1) i Tn@e—1) +
4pLogs 4 1CBLQ$+2H6BLHZ
2

Combining (69) with Proposition 3, we have
V< —cV 972 1 g*, (70)

where ¢y = 20+7/2¢, o

Since 0 <%< 1, according to Lemma 3, 00,91,1:1,§,,,1),e and
Y, can converge to a small neighborhood of zero in finite time
under arbitrary switchings, and we have

2VA=972(¢q)

V(l +'r)/2 d* * _
con(l-7) ’

C0(1 ny -
where 0 <y <1.

When V(t)=p, we have p,=p1+92=v1+9/2t) Select c,
satlsfymg o> im0 & o then, we obtain from (70) that
V <0, Vte[tg,T*) Smce V(tg) <p, we get V(t)<p,Vte[ty, T).
Since co > -4 o it follows from (71) that V92 <p, ie,
Vit)<p,Vt=T".

The proof of Theorem 1 is completed.o

(71

Remark 6. It can be seen from (59) that ¢ is independent of ¢*.
Since ¢,,1=1,2,...,p, is freely selected by the designers, ¢ can be
taken arbitrary large, which makes the tracking error and para-
meter estimation errors arbitrary small.

Remark 7. According to (59) and (69), we know that positive
constants co,d* are determined by these parameters
TV er Yo V1> Vi A0s AL, Ay €5, 1=1,2,...,p, and 7;,i=2,3,....p. In
what follows, we will give some suggestions in choosing these
parameters:

(i) Choosing 7 close to 1 helps to reduce d*.
(ii) Increasing z;, ¢, helps to increase co.
(iii) Decreasing Ao, A1,4n,70,7; and yy helps to reduce d*.

(iv) Increasing y,, &* helps to reduce d*.

In practical cases, choosing appropriate design parameters will
make the system show better performance. But the valid para-
meters can only be obtained after several attempts.

6. Simulation example

In this section, the effectiveness of the control scheme pro-
posed in this paper will be expressed. Consider the switched
nonlinear systems with state and input unmodeled dynamics
consisting of two subsystems:

Subsystem 1:

Z=—4z+x3 sin(xy),

3

. X1—X1 2 .2

X1 =Xy +———L 422 sin(xq)+ sin“(xy),
1=X2 1522 (x1) (X1)

%5 =x2 tanh(x;) — (X2 4+2x1) sin (x;)+22 arctan(x;)+x3 sin*(x;)+v,
y=X.

£ = arctan(é) cos2(&)+u,
v = 3&arccot?(£)+2u.

Subsystem 2:

1
X5 =X Sin(x1)+sinh(x;)cosh(x;)+2z% sin(z)+ cos?(x;) sin (x1)+v
y=X.

& = Earc cot(é) sin?(&)+3u,

= —4z+x? sin(xy),
X2
X1 =X +2(X1 J;4 1) sin (x;)+tanh(x1)x3 +z2 +x3 sin 2(2),
{ v=2& arctan®(&)+ 3u.

Furthermore, the desired tracking trajectory is taken as
¥y, =0.25 sin(0.5t) cos(0.5t), and the dynamic signal is taken as
the following form:

o= —30+0.2 sin(|y])+10~>.
From (22), the filters are designed as follows:

$1=—h& +hé+hy,

§ = —hé& +by,

Eay=[-11, NE+[G]) 01151,
5 @ =[—b,11E+[01415 Gy,
A= —liA1+22,

Ay = —LA +u.

The finite-time controller for simulation object is designed as
the following form:

u= —C255+12ﬂ0’1 +W, —%Sz.

In this example, the design parameters are chosen as 7=3/7,
=01,¢= 0211—412—4‘[2 =15,a11 =a13=0.35,a,, =0.25,
70— 03,7, =04,y,=y.=02,20=03,11 =4y =02,*=5, the
initial conditions are selected as x1(0)=0.2,x,(0)= -0.2, 50(0)_
(1,17, (0)=[0,0]", Z(0) =1, --1]" € R, Ho(0) = H(0) =0.2,6,(0)
=0.3,2(0)=0.2,£0)=0.2,0(0)=04,m (0)=w,(0)=0.2. Then,
combining K-filters (22), adaptive laws (43)-(45), and control
input (57), the simulation results are shown in Figs. 1-8.
Simulation results show that the tracking error converges to a
small neighborhood of zero in finite time under arbitrary switchings.
Thus, the validity of the proposed control strategy is demonstrated.
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Fig. 2. Trajectories of x; (solid line) and x, (dotted line).
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Fig. 4. Estimated parameter 0.

2

System mode

0.2
015H- - - - - -
01k - - -
005F- -\ -
0 " "
10 15 20
t/s
Fig. 5. Estimated parameter H.
0.4 T T T
o3l - ..
02H”H- - - - - . - T A AR NN
o1kl . ... .. S P
0 . ; .
0 5 10 15 20
t/s
Fig. 6. Dynamic signal o.
5OR - - - e
0 o
_50 ............... RN,
-100 . . L
0 5 10 15 20
t/s
Fig. 7. Control law u.
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Fig. 8. Switching signal.
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7. Conclusions

Combining DSC with K-filters, finite-time tracking control pro-
blem for a class of switched nonlinear systems with state and input
unmodeled dynamics has been solved in this paper. By introducing a
dynamical signal and a specific filter, unmodeled dynamics have
been effectively dealt with. During the controller design, neural
networks are used to approximate unknown continuous functions.
Finally, it is proved that the tracking error converges to a small
neighborhood of zero in finite time under arbitrary switchings, and a
numerical simulation is presented to show the feasibility and validity
of the proposed method. In our further work, with the aid of the
existing results [45-47], fault-tolerant control for switched nonlinear
systems with unmodeled dynamics may be considered.
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