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Similarity and metric learning provides a principled approach to construct a task-specific similarity from
weakly supervised data. However, these methods are subject to the curse of dimensionality: as the num-
ber of features grows large, poor generalization is to be expected and training becomes intractable due to
high computational and memory costs. In this paper, we propose a similarity learning method that can
efficiently deal with high-dimensional sparse data. This is achieved through a parameterization of simi-
larity functions by convex combinations of sparse rank-one matrices, together with the use of a greedy
approximate Frank-Wolfe algorithm which provides an efficient way to control the number of active fea-
tures. We show that the convergence rate of the algorithm, as well as its time and memory complexity,
are independent of the data dimension. We further provide a theoretical justification of our modeling
choices through an analysis of the generalization error, which depends logarithmically on the sparsity of
the solution rather than on the number of features. Our experiments on datasets with up to one million
features demonstrate the ability of our approach to generalize well despite the high dimensionality as

well as its superiority compared to several competing methods.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

High-dimensional and sparse data are commonly encountered
in many applications of machine learning, such as computer vi-
sion, bioinformatics, text mining and behavioral targeting. To clas-
sify, cluster or rank data points, it is important to be able to com-
pute semantically meaningful similarities between them. However,
defining an appropriate similarity measure for a given task is of-
ten difficult as only a small and unknown subset of all features are
actually relevant. For instance, in drug discovery studies, chemical
compounds are typically represented by a large number of sparse
features describing their 2D and 3D properties, and only a few of
them play in role in determining whether the compound will bind
to a particular target receptor [40]. In text classification and clus-
tering, a document is often represented as a sparse bag of words,
and only a small subset of the dictionary is generally useful to
discriminate between documents about different topics. Another
example is targeted advertising, where ads are selected based on
fine-grained user history [16].
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Similarity and metric learning [7] offers principled approaches
to construct a task-specific similarity measure by learning it from
weakly supervised data, and has been used in many application
domains. The main theme in these methods is to learn the param-
eters of a similarity (or distance) function such that it agrees with
task-specific similarity judgments (e.g., of the form “data point x
should be more similar to y than to z”). To account for correla-
tions between features, similarity and metric learning typically es-
timates a number of parameters which is quadratic in the data di-
mension d. When data are high-dimensional, these methods are
thus particularly affected by the so-called “curse of dimensional-
ity”, which manifests itself at both the algorithmic and general-
ization levels. On the one hand, training the similarity quickly be-
comes infeasible due to a quadratic or cubic complexity in d. In
fact, the O(d?) parameters may not even fit in memory. On the
other hand, putting aside the training phase, learning so many pa-
rameters would lead to severe overfitting and poor generalization
performance (especially for sparse data where some features are
rarely observed). Simple workarounds have been used to address
this limitation, such as projecting the data into a low-dimensional
space before learning the similarity [see e.g., 20, 29, 58]. However,
such heuristics do not provide satisfactory solutions: they often
hurt the performance and make the resulting similarity function
difficult to interpret.
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In this paper, we propose a novel method to learn a bilinear
similarity function Sy (%, X') = x My’ directly in the original high-
dimensional space while escaping the curse of dimensionality. This
is achieved by combining three ingredients: the sparsity of the
data, the parameterization of M as a convex combination of rank-
one matrices with a special sparsity structure, and an approximate
Frank-Wolfe procedure [24,34] to learn the similarity parameters.
The resulting algorithm greedily incorporates one pair of features
at a time into the learned similarity, providing an efficient way to
filter out irrelevant features as well as to guard against overfitting
through early stopping. Remarkably, the convergence rate of the
algorithm as well as its time and memory complexity are all inde-
pendent of the dimension d. The resulting similarity functions are
extremely sparse, which makes them fast to compute and easier to
interpret.

We provide strong theoretical and empirical evidence of the
usefulness of our approach. On the theory part, we perform a gen-
eralization analysis of the solution returned by our algorithm after
a given number of iterations. We derive excess risk bounds with
respect to the minimizer of the expected risk which confirm that
our modeling choices as well as our Frank-Wolfe algorithm and
early stopping policy provide effective ways to avoid overfitting in
high dimensions. A distinctive feature of the generalization bound
we obtain is the adaptivity of its model class complexity term to
the actual sparsity of the approximate solution found by our al-
gorithm, again removing the dependence on the dimension d. We
also evaluate the proposed approach on several synthetic and real
datasets with up to one million features, some of which have a
large proportion of irrelevant features. To the best of our knowl-
edge, it is the first time that a full similarity or distance metric
is learned directly on such high-dimensional datasets without first
reducing dimensionality. Our experiments show that our approach
is able to generalize well despite the high dimensionality, and even
to recover the ground truth similarity function when the training
similarity judgments are sufficiently informative. Furthermore, our
approach clearly outperforms both a diagonal similarity learned in
the original space and a full similarity learned in a reduced space
(after PCA or random projections). Finally, we show that our simi-
larity functions can be extremely sparse (in the order of 0.0001% of
nonzero entries), thereby drastically reducing the dimension while
also providing an opportunity to analyze the importance of the
original features and their pairwise interactions for the problem at
hand.

The present work extends a previously published conference
paper [43] by providing additional technical and experimental re-
sults. Firstly, we present a novel generalization analysis which fur-
ther backs up our approach from a statistical learning point of
view. Secondly, we conduct experiments on high-dimensional syn-
thetic data showing that our approach generalizes well as the di-
mensionality increases and can even accurately recover the ground
truth notion of similarity. Finally, we extend the discussion of
the related work and provide additional details on algorithms and
proofs.

The paper is organized as follows. Section 2 introduces some
background and related work on similarity learning and Frank-
Wolfe algorithms. Section 3 describes our problem formulation, the
proposed algorithm and its analysis. Generalization bounds are es-
tablished in Section 4. Finally, Section 5 describes our experimental
results, and we conclude in Section 6.

2. Background and related work
In this section, we review some background and related work

in metric and similarity learning (Section 2.1) and the Frank-Wolfe
algorithm (Section 2.2).

2.1. Metric and similarity learning

Metric and similarity learning has attracted a lot of interest
over the past ten years. The great majority of work has focused on
learning either a Mahalanobis distance dy (%, %) = (x —x/)TM(x —
x’) where M is a symmetric positive semi-definite (PSD) matrix,
or a bilinear similarity Sy (x, %) = xIMx' where M is often taken
to be an arbitrary d x d matrix. A comprehensive survey of exist-
ing approaches can be found in [6]. We focus below on the two
topics most relevant to our work: (i) efficient algorithms for the
high-dimensional setting, and (ii) the derivation of generalization
guarantees for metric and similarity learning.

Metric learning in high dimensions. Both Mahalanobis distance
metric learning and bilinear similarity learning require estimating
0(d?) parameters, which is undesirable in the high-dimensional
setting for the reasons mentioned earlier. In practice, it is thus
customary to resort to dimensionality reduction (such as PCA,
SVD or random projections) to preprocess the data when it has
more than a few hundred dimensions [see e.g., [20,29,42,44,48,57 -
59,61]]. Although this strategy can be justified formally in some
cases [44,47], the projection may intertwine useful features and ir-
relevant/noisy ones and thus hurt the performance of the resulting
similarity function. It also makes it hard to interpret and use for
data exploration, preventing the discovery of knowledge that can
be valuable to domain experts.

There have been very few satisfactory solutions to this essen-
tial limitation. The most drastic strategy is to learn a diagonal ma-
trix M [26,50], which is very restrictive as it amounts to a simple
weighting of the features. Instead, some approaches assume an ex-
plicit low-rank decomposition M = L'L and learn L e R™ in order
to reduce the number of parameters [27,37,58]. This results in non-
convex formulations with many local optima [38], and requires to
tune r carefully. Moreover, the training complexity still depends on
d and can thus remain quite large. Another direction is to learn
M as a combination of rank-one matrices. In particular, Shi et al.
[54] generate a set of rank-one matrices from the training data
and then learn a metric as a sparse combination. However, as the
dimension increases, a larger dictionary is needed and can be ex-
pensive to generate. Some other work has studied sparse and/or
low-rank regularization to reduce overfitting in high dimensions
[46,49,60] but this does not in itself reduce the training complex-
ity of the algorithm. Zhang and Zhang [62] proposed a stochas-
tic gradient descent solver together with low-rank regularization in
an attempt to keep the intermediate solutions low-rank. The com-
plexity per iteration of their approach is linear in d but cubic in
the rank of the current solution, which quickly becomes intractable
unless the regularization is very strong.

Finally, some greedy algorithms for metric learning have been
proposed in the literature to guarantee a tighter bound on the
rank of intermediate solutions. Atzmon et al. [2] use a block co-
ordinate descent algorithm to update the metric one feature at a
time. Shen et al. [53] selects rank-one updates in a boosting man-
ner, while DML-eig [61] and its extension DML-p [11] rely on a
greedy Frank-Wolfe algorithm to optimize over the set of PSD ma-
trices with unit trace. However, these greedy methods still suffer
from a computational cost of O(d%) per iteration and are thus un-
suitable for the high-dimensional setting we consider in this work.
In contrast, we will propose an algorithm which is linear in the
number of nonzero features and can thus be efficiently applied to
high-dimensional sparse data.

Generalization bounds for metric learning. The derivation of gener-
alization guarantees for metric and similarity learning has been in-
vestigated in the supervised setting, where the metric or similar-
ity is learned from a labeled dataset of n points by (regularized)
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empirical risk minimization. For a given family of loss functions,
the results generally bound the maximal deviation between the ex-
pected risk (where the expectation is taken over the unknown data
distribution) and the empirical risk of the learned metric.! These
bounds are generally of order O(1/+/n).

Several technical tools have been used to address the chal-
lenge of learning from dependent pairs/triplets, leading to differ-
ent trade-offs in terms of tightness, generality, and dependence on
the feature dimension d. The results of Jin et al. [36] apply only
under Frobenius norm regularization of M and have a v/d factor in
the rate. Using an adaptation of algorithmic robustness, Bellet and
Habrard [4] obtain bounds which hold also for sparsity-inducing
regularizers but with a covering number term that can be expo-
nential in the dimension. Bian and Tao [8] rely on assumptions on
the data distribution and do not show an explicit dependence on
the dimension. Cao et al. [10] derive bounds based on Rademacher
complexity and maximal deviation results for U-statistics [19]. De-
pending on the regularization used, the dependence on the dimen-
sion d ranges from logarithmic to linear. [56] show that the v/d fac-
tor of Jin et al. [36] is in fact unavoidable in the worst case without
some form of regularization (or restriction of the hypothesis class).
They derive bounds which do not depend on the dimension d but
on the Frobenius norm of the optimal parameter M. Note however
that their analysis assumes that the metrics are learned from a set
of i.i.d. pairs or triplets, which is rarely seen in practice.

In all the above work, generalization in metric learning is stud-
ied independently of the algorithm used to solve the empirical risk
minimization problem, and none of the bounds are adaptive to the
actual sparsity of the solution. In contrast, we will show that one
can use early stopping in our algorithm to control the complexity
of the hypothesis class so as to make the bounds independent of
the dimension d, effectively balancing the empirical (optimization)
error and the generalization error.

2.2. Frank-Wolfe algorithms

The Frank-Wolfe (FW) algorithm was originally introduced by
Frank and Wolfe [24] and further generalized by Clarkson [17] and
Jaggi [34]. FW aims at solving constrained optimization problems
of the following general form:

rng;eigf(M), (1)

where f is a convex and continuously differentiable function, and
the feasible domain D is a convex and compact subset of some
Hilbert space equipped with inner product (-, -).

Starting from a feasible initial point M(®) € D, the standard FW
algorithm iterates over the following steps. First, it finds the fea-
sible point S® ¢ D which minimizes the linearization of f at the
current point M);

S$® ¢ argmin (S, VF(M®)). (2)

SeD

The next iterate M®**? is then constructed as a convex combina-
tion of M(X) and S, where the relative weight of each component
is given by a step size y¥). The step size can be decreasing with
the iteration number k or set by line search. The overall algorithm
is summarized in Algorithm 1. FW is guaranteed to converge to an
optimal solution of (1) at rate O(1/k), see for instance [34] for a
generic and concise proof.

Unlike projected gradient, FW is a projection-free algorithm:
each iterate M(®) is feasible by construction since it is a convex
combination of elements of D. Instead of computing projections

T This is in contrast to a different line of work, inspired by the problem of ordinal
embedding, which aims to learn a metric which correctly orders a fixed set of known
points [see for instance 35]

Algorithm 1: Standard Frank-Wolfe algorithm.

Input: Initial point M©® e D
for k=0,1,2,... do
s® — argming.p (S, Vf(M®))

y® é (or determined by line search)

M&+D 1- )/(k>)M(k) + J/(k)s(k)
end for

onto the feasible domain D, FW solves the linear optimization sub-
problem (2). The linearity of the objective (2) implies that a solu-
tion S always lies at an extremal point of D. This leads to the in-
terpretation of FW as a greedy algorithm which adds an extremal
point to the current solution at each iteration [17]. In other words,
M®) can be written as a sparse convex combination of extremal
points:

M© = 3 als®,

sPes

(k) _ (k)
where )" ag) =1and ag) =0,
s® st

(3)

where S® denotes the set of “active” extremal points that have
been added up to iteration k. When the extremal points of D have
specific structure (such as sparsity, or low-rankness), this structure
can be leveraged to compute a solution of (2) much more effi-
ciently than the projection operator, see Jaggi [33], 34] for com-
pelling examples.

A drawback of the standard FW algorithm is that “removing”
an extremal point %) from the current iterate (or significantly re-
ducing its weight as(fk))) can only be done indirectly by adding (in-
creasing the weight of) other extremal points. The variant of FW
with away steps [28] addresses this issue by allowing the algorithm
to choose between adding a new extremal point (forward step) or
reducing the weight of an existing one (away step), as shown in
Algorithm 2. This can lead to sparser solutions [17,28,33] and faster
convergence in some cases [28,39].

Algorithm 2: Frank-Wolfe algorithm with away steps.

Input: Initial point M©® e D
for k=0,1,2,... do
S® — argming.p (S, VFM®)), DI = s - m®
dirlsc[ion v .
Sf(\ ) arg maxg,_ g (S, VF(M®)), Df(\ )= m® —S/(q )
direction
if (DX, VFM®Y)) < (D, VF(MP)) then
D® D;k) and Ymax < 1

// forward

// away

// choose forward step

else
D® < D® and yimgx < a;’(})) /(1 - as(g")>) // choose away step
end if
y® ﬁ (or determined by line search)
ME+D pplo y(k)D(k)
end for

In the present work, we will introduce a FW algorithm with
away steps to efficiently perform similarity learning for high-
dimensional sparse data. One of our key ingredients will be the
design of a feasible domain with appropriate sparsity structure.

3. Proposed approach

This section introduces HDSL (High-Dimensional Similarity
Learning), the approach proposed in this paper. We first describe
our problem formulation (Section 3.1), then derive and analyze an
efficient FW algorithm to solve it in Section 3.2.
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3.1. Problem formulation

In this work, our goal is to learn a similarity function for high-
dimensional sparse data. We assume the data points lie in some
space X C RY, where d is large (d > 10%) but points are s-sparse on
average (s <« d). In other words, their number of nonzero entries is
typically much smaller than d. We focus on learning a similarity
function Spy : X x X — R of the form

Sm(x, X)) =x TMmx = (xx'T M),

where M € R94 and (., -) denotes the Frobenius inner product.
Notice that for any M, Sy, can be computed in O(s?) time on aver-
age if data points are stored in a sparse format.

Feasible domain. We will derive an algorithm to learn a very
sparse M with time and memory requirements that depend on s
but not on d. To this end, given a scale A >0 which will play the
role of a regularization parameter, we parameterize M as a convex
combination of rank-one, 4-sparse d x d bases:

MeD, = COI‘IV(B}L), with By = U {P;:J),Nil])},

where for any pair of features i, j e {1,..., d}, i#],
R U W
P =i(e+e)e+e) = - - - - .|
A A
A —A
N =)(e;—ej)(ei—e) = :
—A A

The use of such sparse matrices was first suggested by Jaggi [33].
Besides the fact that they are instrumental to the efficiency of our
algorithm (see Section 3.2), we give some additional motivation for
their use in the context of similarity learning.

First, any M € D, is a convex combination of symmetric PSD
matrices and is thus also symmetric PSD. Unlike many metric
learning algorithms, we thus avoid the O(d3) cost of projecting
onto the PSD cone. Constraining M to be symmetric PSD provides
useful regularization to prevent overfitting [15] and ensures that
Sy can be interpreted as a dot product after a linear transforma-
tion of the inputs:

Sux,x) =xTMx' = (o) T (Lx),

where M = LLT with L e R4k, Because the bases in 5, are rank-
one, the dimensionality k of the transformed space is at most the
number of bases composing M.

Second, each basis operates on two features only. In particular,
Sp;’” (%, %) = A(xx; + xjx; + x,-xg. +x;x;) assigns a higher similarity

score when feature i appears jointly in ¥ and &' (likewise for j),
as well as when feature i in X and feature j in y co-occur (and vice
versa). Conversely, S NG penalizes the cross-occurrences of features

i and j. In the context of text data represented as bags-of-words
(or other count data), the semantic behind the bases in B, is quite
natural: they can be intuitively thought of as encoding the fact that
a term i or j present in both documents makes them more similar,
and that two terms i and j are associated with the same/different
class or topic.

Optimizing over the convex hull D, of B, will allow us to eas-
ily control the number of active features, thereby learning a very
compact representation with efficient similarity computations.

Optimization problem. We now describe the optimization problem
to learn the similarity parameters. Following previous work (see
for instance [15,50,58]), our training data consists of weak super-
vision in the form of triplet constraints:

= {x; should be more similar to y;, than to zt}tT:1.

Such constraints can be built from a labeled training sample (see
Section 4), provided directly by domain experts or crowdsourc-
ing campaign, or obtained through implicit feedback such as clicks
on search engine results. For notational convenience, we denote
A" = x.(y, — z)T € R4 for each constraint t = 1,..., T so that we
can concisely write Sy (X, y:) — Sm (¢, z¢) = (A", M). We measure
the degree of violation of each constraint ¢t with the smoothed
hinge loss ¢ : R — R* defined as

0 if (A", M) > 1
(A M) = {1 (A" M) if (A", M) <0.
1(1- (A", M))?> otherwise

This convex loss is a continuously differentiable version of the
standard hinge loss which tries to enforce a margin constraint of
the form Sp(x¢,¥¢) > Sy (%, z:) + 1. When this constraint is satis-
fied, the value of the loss is zero. On the other hand, when the
margin is negative, i.e., Sy (X¢, ¥r) <Sp(X:, z¢), the penalty is linear
in the margin violation. A quadratic interpolation is used to bridge
between these two cases to ensure that the loss is differentiable
everywhere.

Remark 1 (Choice of loss). One may use any other convex and
continuously differentiable loss function in our framework, such as
the squared hinge loss, the logistic loss or the exponential loss.

Given A > 0, our similarity learning formulation aims at finding
the matrix M € D, that minimizes the average margin penalty (as
measured by ¢) over the triplet constraints in 7

17
_ t
mﬂ;drld M) = T lee(m M)) st. MeD;. (4)
t=

Due to the convexity of the smoothed hinge loss, (4) involves
minimizing a convex function over the convex domain D,. Note
that the gradient of the objective is given by

.
VM) = % DG,
t=1
0 if (A", M) > 1 (5)
with G (M) = { -A' if (A", M) <0.
((a", M) — 1)A"  otherwise

In the next section, we propose a greedy algorithm to efficiently
find sparse approximate solutions to this problem.

3.2. Algorithm

3.2.1. Exact Frank-Wolfe algorithm

We propose to use a Frank-Wolfe algorithm with away steps
(see Section 2.2) to learn the similarity. We will exploit the fact
that in our formulation (4), the extremal points (vertices) of the
feasible domain D, are the elements of B, and have special struc-
ture. Our algorithm is shown in Algorithm 3. During the course of
the algorithm, we explicitly maintain a representation of each iter-
ate M) as a convex combination of basis elements as previously
discussed in Section 2.2:

MY =3" aB, where > al) =
BeBy, BeB;,

1and o > 0.

We denote the set of active basis elements in M) as s® = (B ¢
B, :a;") > 0}. The algorithm goes as follows. We initialize M(©
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Algorithm 3: Frank Wolfe algorithm for problem (4).

1: initialize M© to an arbitrary B € B,
2: fork=0,1,2,... do

3. B < argmings (B.VF(M")), DY « B — mM® Y
forward dir.

4 B/gk) < argmaxg_ (B, VF(M®©)), Dﬁ‘k) Py (O B/gk) // away
dir.

5. if (D, VFM®)) < (D, VF(MDY)) then

6: D® DI(;k) and Ymax < 1 // choose forward step

7 else

8 Dk D/(%k) and Ymax < Ol;’((,z) /(1 - Ol;l({z)) // choose away step

A A
9:  end if

10 y® —arg minye[o,ymax]f(M(k) + ]/D(k)) // perform line search
ne o MOED MO 4y p®

12: end for

// update iterate towards direction

to a random basis element. Then, at each iteration, we greed-
ily choose between moving towards a (possibly) new basis (for-
ward step) or reducing the weight of an active one (away step).
The extent of the step is determined by line search. As a result,
Algorithm 3 adds only one basis (at most 2 new features) at each
iteration, which provides a convenient way to control the num-
ber of active features and maintains a compact representation of
M® for a memory cost of O(k). Furthermore, away steps provide
a way to reduce the importance of a potentially “bad” basis ele-
ment added at an earlier iteration (or even remove it completely
when y® = pn.). Recall that throughout the execution of the FW
algorithm, all iterates M) remain convex combinations of basis
elements and are thus feasible. The following proposition shows
that the iterates of Algorithm 3 converge to an optimal solution of
(4) with a rate of O(1/k).

Proposition 1. Let A >0, M* be an optimal solution to (4) and
L= 13T | IIA"|2 At any iteration k=1 of Algorithm 3, the iterate
M® e D, satisfies fF(M®) — f(M*) < 16LA2/(k + 2). Furthermore,
it has at most rank k + 1 with 4(k + 1) nonzero entries, and uses at
most 2(k + 1) distinct features.

Proof. We first show that Vfis L-Lipschitz continuous on D, with
respect to the Frobenius norm, i.e., for any My, My € Dy,

IVf(My) — V(M) |lr <L||M; — My||F (6)

for some L> 0. Note that

IVf(My) =V f(M2)|[F

1< 1<
T > G (M) - T > G (M)
t=1 t=1 F

IA

T
Y6 M) -G,
t=1

Let t € {1,...,T}. We will now bound A; = ”Gt(M1)—G[(M2)||F
for any M, M, € D;. The form of the gradient (5) requires to con-
sider several cases:

(i) If (Af, M;)>1 and (Af, M) > 1, we have A; = 0.
(ii) If (Af, M;) <0 and (Af, M) <0, we have A; = 0.
(iii) If 0 < (Af, M;) <1 and 0 < (Af, M) < 1, we have:

Ar = [(A, My — Mp)A'|[F = [|A"[[r| (A", My — M)
< A |IFIM; — My .
(iv) If (AY, M;) > 1 and (Af, M,) <0, we have
A = ||A"|lF < [|A"[[F (A", My — My)| < [|A"[IF]IM; — My |lr.

Table 1
Complexity of iteration k (ignoring logarithmic factors) for different
variants of the algorithm.

Variant Time complexity = Memory complexity

Exact (Algorithm 3) O(Ts? + Tk) O(Ts? + k)
Mini-batch O(Ms? + Tk) O(T + Ms? + k)
Mini-batch + heuristic ~ O(Ms + Tk) O(T + Ms + k)

(v) If (Af, M;)>1 and 0 < (Af, M) < 1, we have:
Ac = || (A" M) = DA'[[r = |A"||[F(1 - (A", My))
< |IA"[lF(1 — (A", M) + [|A"[| ((A". M) — 1)
= [|A"[|F(A". My — M) < ||A"||F]IM; — My
(vi) If (Af, M;) <0 and 0 < (Af, M) < 1, we have:
Ar=| - A" = (A" My) — DA"||F = || A"(A". M) ||F
= [|A[|F (A", M)
< |A"||F(A". M) — ||A" || (A", M)
= ||A"||F (A" My — My) < ||A"|IZ]IM; — M|

The remaining cases are also bounded by ||At||,27||M1 — M, || by
symmetry to cases (iv)-(v)-(vi). Hence Vf is L-Lipschitz continuous
with L = [|A"|2.

It is easy to see that diamy (D) = V/8A. The convergence rate
then follows from the general analysis of the FW algorithm [34].

The second part of the proposition follows directly from the
structure of the bases and the greedy nature of the algorithm. O

Note that the optimality gap in Proposition 1 is independent
of d. Indeed, A’ has O(s?) nonzero entries on average, hence the
term ||A"||Z in the Lipschitz constant L can be bounded by s?||A¢||,
where ||Al|s = max;?fj:1 |A; ;. This means that Algorithm 3 is able
to find a good approximate solution based on a small number of
features in only a few iterations, which is very appealing in the

high-dimensional setting we consider.

3.2.2. Complexity analysis

We now analyze the time and memory complexity of
Algorithm 3. The form of the gradient (5) along with the structure
of the algorithm’s updates are crucial to its efficiency. Since M*+1)
is a convex combination of M(®¥) and a 4-sparse matrix B), we can
efficiently compute most of the quantities of interest through care-
ful book-keeping.

In particular, storing M® at iteration k requires O(k) memory.
We can also recursively compute (A", M*+1D) for all constraints in
only O(T) time and O(T) memory based on (Af, M)y and (At, B¥),
This allows us, for instance, to efficiently compute the objective
value as well as to identify the set of satisfied constraints (those
with (Af, M(K)) >1) which are ignored in the computation of the
gradient. Finding the away direction at iteration k can be done in
O(Tk) time. For the line search, we use a bisection algorithm to find
a root of the gradient of the 1-dimensional function of y, which
only depends on (Af, M) and (At, B®)), both of which are readily
available. Its time complexity is O(T log %) where € is the precision
of the line-search, with a memory cost of O(1).

The bottleneck is to find the forward direction. Indeed, se-
quentially considering each basis element is intractable as it takes
0(Td?) time. A more efficient strategy is to sequentially consider
each constraint, which requires O(Ts2) time and O(Ts2) memory.
The overall iteration complexity of Algorithm 3 is given in Table 1.

3.2.3. Approximate forward step
Finding the forward direction can be expensive when T and s
are both large. We propose two strategies to alleviate this cost by
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finding an approximately optimal basis (see Table 1 for iteration
complexity).

Mini-batch approximation. Instead of finding the forward and away
directions based on the full gradient at each iteration, we can es-
timate it on a mini-batch of M « T constraints drawn uniformly at
random (without replacement). The complexity of finding the for-
ward direction is thus reduced to O(Ms?) time and O(Ms2) mem-
ory. Consider the deviation between the “value” of any basis el-
ement B € B; on the full set of constraints and its estimation on
the mini-batch, namely

1 1<
|37 2 B.G) - 1 Y (8.6, (7)

teM t=1
where M is the set of M constraint indices drawn uniformly and
without replacement from the set {1,...,T}. Under mild assump-

tions, concentration bounds such as Hoeffding’s inequality for sam-
pling without replacement [3,51] can be used to show that the
probability of (7) being larger than some constant decreases ex-
ponentially fast with M. The FW algorithm is known to be ro-
bust to inexact gradients, and convergence guarantees similar to
Proposition 1 can be obtained directly from [25,34].

Fast heuristic. To avoid the quadratic dependence on s, we propose
to use the following heuristic to find a good forward basis. We
first pick a feature ie[d] uniformly at random, and solve the lin-
ear problem over the restricted set Uj{PS]),N;”)}. We then solve

it again over the set Uk{Pf\kJ),N;k”} and use the resulting basis
for the forward direction. This can be done in only O(Ms) time and
O(Ms) memory and gives good performance in practice, as we shall
see in Section 5.

4. Generalization analysis

In this section, we derive generalization bounds for the pro-
posed method. Our main goal is to give a theoretical justification
of our approach, in particular by (i) showing that our choice of
feasible domain D, helps to reduce overfitting in high dimensions,
and (ii) showing that the proposed greedy Frank-Wolfe algorithm
provides a simple way to balance between optimization and gen-
eralization errors through early stopping.

4.1. Setup and notations

As in previous work on generalization bounds for metric learn-
ing, we consider the supervised learning setting where the training
sample is a set of labeled points S = {z; = (x;.y;)}[; drawn iid.
from a probability distribution @ over the space Z = X x ), where
X cR? and Y ={1,...,C} is the label set. We assume that By =
SUDy x x7cx |¥(¥ —&")T|| is bounded for some convenient matrix
norm || - ||

For simplicity, we assume that the univariate loss function ¢ :
R — RT is 1-Lipschitz, which is the case for the smoothed hinge
loss used in our algorithm. Given a triplet (z,2/,z") € 23, we say
that it is admissible if y =y’ #y”. Since we only want to con-
sider admissible triplets, we will use the triplet-wise loss func-
tion Ly(z,2,2")=1ly=y #y"] ¢((x(* —x”)T,M)) indexed by
M e D,, which is equal to zero for non-admissible triplets.

Given a matrix M € D,, we define its empirical risk associated
on the training set S as follows:

1
Ls(M) = m Z Lm(zi, 2}, z). (8)
i j#k
Similarly, its expected risk is defined as
L(M) = Ezzz0~p [LM (2,7, Z”)]‘ 9)

In contrast to the standard supervised classification setting, note
that the empirical risk (8) takes the form of an average of depen-
dent terms known as a U-statistic [41].

From our feasible domain D, = conv(; ), we can define a se-
quence of nested sets as follows:

k k
’D)(Lk)z Z(X,‘B,’ZB,‘GBA,O[;ZO,Z(XI'21 s
i=1 i=1
k=1,...,2d(d-1). (10)

In other words, Dka) consists of all d x d matrices which can be
decomposed as a convex combination of at most k elements of the
basis set B,. Clearly, we have Df\]) C Diz) c---C Dfd(d’])) =D;.
Note also that since ¢ is 1-Lipschitz, by Holder’s inequality we have
Vk:

sup ILm(z,2',2")| < sup le((x(x' —x")T. M))|
2.2 2’cZMep® XX XX MDY
< By sup [|M]., (11)
MeD}(_k)

where || - ||+ is the dual norm of || - ||.

In the following, we derive theoretical results that take advan-
tage of the structural properties of our algorithm, namely that the
matrix M) returned after k> 1 iterations of Algorithm 3 belongs
to Dik). We first bound the Rademacher complexity of Dik) and de-
rive bounds on the maximal deviation between £(M) and Lg(M)
for any M ¢ Dik). We then use these results to derive bounds on
the excess risk £L(M®)) — £(M*), where M* & arg miny.p, £(M) is
the expected risk minimizer. All proofs can be found in the ap-
pendix.

4.2. Main results

We first characterize the Rademacher complexity of the loss
functions indexed by elements of Df\k). Given ke {1,...,2d(d -
1)}, consider the family 7® = {Ly : M ¢ D;")} of functions map-
ping from 23 to R*. We will consider the following definition of
the Rademacher complexity of 7 with respect to distribution u
and sample size n> 3, adapted from [10,19]:

[n/3]
Ro(F®)=E, 5. [ sup ——— oilm(zi, z;  Ziio ]
n( ) 0,5~ Meplfj") |_n/3J ; i M( i» %i+|n/3]> %i+2 Ln/3J)
(12)
where ¢ = (01, ...,0|,3)) are independent uniform random vari-

ables taking values in {—1, 1}. The following lemma gives a bound
on the above Rademacher complexity.

Lemma 1 (Bounded Rademacher complexity). Let n>3, A >0 and
1<k<2d(d—-1). We have

R.(F®) < 8ABy /%.

Proof. See Appendix B. O

There are two important consequences to Lemma 1. First, re-
stricting the set of feasible matrices M to D, = D)(\Zd(d’l)) in-
stead of R9*? Jeads to a Rademacher complexity with a very mild
0(,/logd) dependence in the dimension. This validates our design
choice for the feasible domain in the high-dimensional setting we
consider. Second, the Rademacher complexity can actually be made
independent of d by further restricting the number of bases k.

Using this result, we derive a bound for the deviation between
thﬁ)expected risk £(M) and the empirical risk £5(M) of any M ¢
D;".
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Theorem 1 (Maximal deviations). Let S be a set of of n points drawn
iid from u, A>0and 1 <k <2d(d —1). For any § > 0, with proba-
bility 1 — § we have

[2logk [21n(2/8)
MSEL]Dli’Olﬁ(M) - ﬁS(M)] = 16)"BX m + BBXBDS() f7

(13)

where BDik) = supMd);k) |M]]...

Proof. See Appendix C. O

The generalization bounds given by Theorem 1 exhibit a stan-
dard O(1+/n) rate. They also confirm that restricting the number
k of bases is a good strategy to guard against overfitting when the
feature dimension d is high. Interestingly, note that due to the con-
vex hull structure of our basis set, B, = sup,,_, [[M]|. can be

easily bounded by a quantity indepenAclent of d for any k>1 and
any dual norm || -||«. We thus have complete freedom to choose
the primal norm || - || so as to make By = Supy y yrcy [1¥(x' —&")T||
as small as possible. A good choice of primal norm is the infin-
ity norm ||Al|»x = max;{jzl |A; I, which is independent of d. For in-
stance, if X = [0, 1]¢ we have By = 1. The dual norm of the infinity
norm being the L; norm, we then have for any k> 1:

d
sup [IM[l; = sup ) M| <4A. (14)

(k) k) =
MeD;’ MeD;" i j=1

B

(k) =
Dk

Theorem 1 is directly comparable to the results of Cao et al.
[10], who derived generalization bounds for similarity learning un-
der various norm regularizers. Their bounds have a similar form,
but exhibit a dependence on the feature dimension d which is at
least logarithmic (sometimes even linear, depending on the norm
used to regularize the empirical risk). In contrast, our bounds de-
pend logarithmically on k<« d. This offers more flexibility in the
high-dimensional setting because k can be directly controlled by
stopping our algorithm after k « d iterations to guarantee that the
output is in D/(\k). This is highlighted by the following corollary,
which combines the generalization bounds of Theorem 1 with the
0O(1/k) convergence rate of our Frank-Wolfe optimization algorithm
(Proposition 1).

Corollary 1 (Excess risk bound). Let S be a set of n points drawn
iid. from pu, A>0. Given k € {1,...,2d(d — 1)}, let M¥) be the solu-
tion returned after k iterations of Algorithm 3 applied to the problem
minyep, Ls(M), and let M* e argminMEDA L(M) be the expected
risk minimizer over D,. For any & >0, with probability 1 -5 we
have

16LA2 [2logk [In (4/8)
(k)y_ * .
LMY —L(M*) < K12 +16ABy (/3] +5BXBD;) e

Proof. See Appendix D. O

Corollary 1 shows that the excess risk with respect to the ex-
pected risk minimizer M* depends on a trade-off between opti-
mization error and complexity of the hypothesis class. Remarkably,
this trade-off is ruled by the number k of iterations of the algo-
rithm: as k increases, the optimization error term decreases but
the Rademacher complexity terms gets larger. We thus obtain an
excess risk bound which adapts to the actual sparsity of the solu-
tion output by our algorithm. This is in accordance with our over-
all goal of reducing overfitting by allowing a strict control on the
complexity of the learned similarity, and justifies an early-stopping
strategy to achieve a good reduction in empirical risk by select-
ing the most useful bases while keeping the solution complexity
small enough. Again, the excess risk is independent of the feature

dimension d, suggesting that in the high-dimensional setting it is
possible to find sparse solutions with small excess risk. To the best
of our knowledge, this is the first result of this nature for metric
or similarity learning.

Remark 2 (Approximation of empirical risk by subsampling). The
empirical risk (8) is a sum of O(n3) term, which can be costly
to minimize in the large-scale setting. To reduce the computa-
tional cost, an alternative to the mini-batch strategy described in
Section 3.2.3 is to randomly subsample M terms of the sum (e.g.,
uniformly without replacement) and to solve the resulting approx-
imate empirical risk minimization problem. For general problems
involving U-statistics, Clémencon et al. [18] showed that sampling
only M = 0(n) terms is sufficient to maintain the O(1/4/n) rate.
These arguments can be adapted to our setting to obtain results
similar to Theorem 1 and Corollary 1 for this subsampled empiri-
cal risk.

5. Experiments

In this section, we present experiments to evaluate the perfor-
mance and robustness of HDsL. In Section 5.1, we use synthetic
data to study the performance of our approach in terms of similar-
ity recovery and generalization in high dimensions in a controlled
environment. Section 5.2 evaluates our algorithm against compet-
ing approaches on classification and dimensionality reduction us-
ing real-world datasets.

5.1. Experiments on synthetic data

We first conduct experiments on synthetic datasets in order to
address two questions:

1. Is the algorithm able to recover the ground truth sparse simi-
larity function from (potentially weak) similarity judgments?

2. How well does the algorithm generalize as the dimensionality
increases?

5.1.1. Similarity recovery

To investigate the algorithm’s ability to recover the underly-
ing similarity, we generate a ground truth similarity metric M e
R9*d where d = 2000. M is constructed as a convex combination
of 100 randomly selected rank-one 4-sparse bases as specified in
Section 3.1. The combination coefficients are drawn from a Dirich-
let distribution with shape parameter 9 and scale parameter 0.5.
Without loss of generality, we choose the metric to be block struc-
tured by restricting the basis selection from two blocks. This makes
the resulting matrix easier to visualize, as show in Fig. 2(a).

We then generate 5000 training samples from the uniform dis-
tribution on [0,1] with 2% sparsity. From this sample, we create
30,000 training triplets {(xy, x5, x3)} where x; is randomly picked
and x, (or x3) is sampled among x;’s top o% similar (or dissimilar)
samples as measured by the ground truth metric M. The param-
eter o controls the “quality” of the triplet constraints: a larger o
leads to less similar (or dissimilar) samples in the triplets, thereby
providing a weaker signal about the underlying similarity. We ex-
periment with various « (10%, 20%, 25%, 30%) to investigate the
robustness of HDSL to the quality of the supervision. In all our ex-
periments, we use A = 100.

Results. We aim to measure how accurately we recover the entries
(i.e., pairs of features) that are active in the ground truth similarity
as training proceeds. To do so, at each iteration k of HDSL, we rank
each pair of features by descending order of the absolute value of
the corresponding entry in the current matrix M), We then com-
pute the Area under the ROC Curve (AUC) of the ranking induced
by the similarity with respect to the list of active entries in the
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Fig. 1. Similarity recovery experiment on synthetic data. (a) and (b) show the AUC scores (for feature recovery and entry recovery respectively) along the iterations of the

algorithm for different values of «.
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Fig. 2. Similarity recovery experiment on synthetic data. (a) shows the underlying ground truth similarity, where blue dots represent positive entries and red dots represent
negative entries (combination coefficients are not displayed). (b) shows the similarity learned by HDSL (o =20%), which is visually very close to the ground truth. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

ground truth similarity. The AUC is well-suited to the imbalanced
setting (as active entries in the ground truth are a small subset of
all entries). It can be interpreted as the probability that a random
entry that is active in the ground truth is ranked higher than a
random inactive one. Following a similar process, we also compute
an AUC score for individual features: this is done by ranking each
feature by the L; norm of its associated row in the matrix.

The AUC scores for feature and entry recovery along the iter-
ations are reported in Fig. 1 for different values of o. When the
quality of the triplet constraints is high (o =10%, 20%), the AUC
increases quickly to converge very close to 1.0, indicating an al-
most perfect recovery of relevant features/entries. This confirms
that HDsL is able to accurately identify the small number of correct
features and pairs of features. As « increases (i.e., the similarity
constraints become noisy and less informative), the AUC increases
at a slower pace and the final value decreases. This is expected as
the quality of the information carried by the similarity judgments
is key to recover the ground truth similarity. Yet, even for o =30%,
the final AUC score is still very high (above 0.85 for both feature
and entry recovery). This good recovery behavior is confirmed by
the visual representations of the ground truth and learned similar-
ity matrices shown in Fig. 2. We observe that the learned similar-
ity (when « = 20%) clearly recovers the block structure of the true

similarity, and is able to correctly identify most individual entries
with very few false positives.

5.1.2. Link prediction

We now investigate the ability of our algorithm to generalize
well as the feature dimensionality increases by conducting a signed
link prediction experiment, which is the task of distinguishing pos-
itive and negative interactions in a network [see e.g., 1].

We generate 500 samples with different number of features d
ranging from 5000 to 1,000,000. As the dimension d increases, we
decrease the average sparsity of data (from 0.02 to 0.002) to limit
running time. In real high-dimensional datasets, features typically
do not appear in a uniform frequency: instead, a small portion of
features tends to dominate the others. Following this observation,
we generate features whose frequency follow a power law style
distribution, as shown in Fig. 3(a). The ground truth similarity is
then a convex combination of randomly selected bases as in the
previous experiment, except that we restrict the selected bases to
those involving features that are frequent enough (a frequency of
at least 0.1 was chosen for this experiment). This is needed to en-
sure that the features involved in the ground truth similarity will
occur at least a few times in our small dataset, but we emphasize
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Fig. 3. Link prediction experiment on synthetic data. (a) shows the feature frequency distribution, which follows a power law as in many real high-dimensional datasets. (b)
shows AUC scores on the test set for different number of features (in log scale) and number of training constraints per link.

that the algorithm is exposed to the entire feature set and does
not know which features are relevant.

Based on the samples and the ground truth similarity, we
generate signed link observations of the form {xi.xi.y'}N (y' e
{-=1,1}). We associate the label y' =1 (positive link) to pairs for
which the similarity between x; and x, ranks in the top 5% of x;’s
(or x,'s) neighbors according to the ground truth similarity mea-
sure. On the other hand, y' = —1 (negative link) indicates that the
similarity ranks in the bottom 5% of x;’s (or x,'s) neighbors. We
split these link observations into training, validation and test sets
of 1,000 observations each. Triplets constraints are generated from
training links — given a pair xq, X5, ¥, we randomly sample x3 as a
similar (if y = —1) or dissimilar (if y = 1) node. The validation set
is used to tune the hyperparameter A and for early stopping.

Results. We measure the generalization ability of HDSL by the AUC
score of link prediction on the test set. Fig. 3(b) reports these AUC
scores across different dimensions. We also show results for differ-
ent numbers of constraints per training link. The results are aver-
aged over 5 random runs. As one would expect, the task becomes
increasingly difficult as the dimension becomes larger, since the
size of the training set is fixed (1000 training links generated from
500 nodes). However, the performance decreases slowly (roughly
logarithmically) with the dimension, and we achieve very high AUC
scores (larger than 0.9) even for one million features. We also see
that training from more constraints tends to improve the predic-
tion performance.

5.2. Experiments on real datasets

We now present comparative experiments on several high-
dimensional real datasets, evaluating our approach against several
baselines and competing methods.

5.2.1. Setup

Datasets. We report experimental results on several real-world
classification datasets with up to 100,000 features. Dorothea and
dexter come from the NIPS 2003 feature selection challenge
[31] and are respectively pharmaceutical and text data with pre-
defined splitting into training, validation and test sets. They both
contain a large proportion of noisy/irrelevant features. Reuters CV1
is a popular text classification dataset with bag-of-words represen-
tation. We use the binary classification version from the LIBSVM

dataset collection? (with 60%/20%/20% random splits) and the 4-
classes version (with 40%/30%/30% random splits) introduced by
Cai and He [9]. Detailed information on the datasets and splits is
given in Table 2. All datasets are normalized such that each feature
takes values in [0,1].

Competing methods. We compare the proposed approach (HDSL) to
several methods:

 poT: The standard dot product, which is equivalent to setting
M=1

+ DIAG: Diagonal similarity learning (i.e., a weighting of the fea-
tures), as done in [26]. We obtain it by minimizing the same
loss as in HDSL with ¢, and ¢; regularization, i.e.,

. T nt e
min - f(w) = = ;2((/\ ,diag(w))) + AQ(w),
where Q(w) ¢ {||w||§, lw|l1} and A is the regularization pa-
rameter. Optimization was done using (proximal) gradient de-
scent.
RP+0ASIS: Similarity learning in random projected space. Given
r«d, let R e R™" be a matrix where each entry r;j is randomly

drawn from A (0, 1). For each data instance x € RY, we generate
xX= %RTx € R" and use this reduced data in OASIS [15], a fast
online method to learn a bilinear similarity from triplet con-
straints.

PCA+0ASIS: Similarity learning in PCA space. Same as RP+OASIS,
except that PCA is used instead of random projections to
project the data into R'.

svM: Support Vector Machines. We use linear SVM, which is
known to perform well for sparse high-dimensional data [12],
with ¢, and ¢; regularization. We also use nonlinear SVM with
the polynomial kernel (2nd and 3rd degree) popular in text
classification [14]. The SVM models are trained using liblinear
[21] and libsvm [13] with 1vs1 paradigm for multiclass.

We have also tried to compare our method with CoMET [2],
which also learns a bilinear similarity in a greedy fashion with
rank-1 updates. However, as mentioned in Section 2.1 their coor-
dinate descent algorithm has a time complexity of O(d?) per iter-
ation, as well as overall memory complexity of O(d?). We run the

2 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Table 2

Datasets used in the experiments.
Datasets Dimension  Sparsity  Training size  Validation size  Test size
dexter 20,000 0.48% 300 300 2000
dorothea 100,000 0.91% 800 350 800
rcvl_2 47,236 0.16% 12,145 4048 4049
revl_4 29,992 0.26% 3850 2888 2887

Table 3

k-NN test error (%) of the similarities learned with each method. The number of features
used by each similarity (when smaller than d) is given in brackets. Best accuracy on each

dataset is shown in bold.

Dataset DOT RP-+OASIS PCA+O0ASIS  DIAG-¢;  DIAG-{; HDSL

dexter 20.1 24.0 [1000] 9.3 [50] 8.4 8.4 [773] 6.5 [183]

dorothea 9.3 114 [150] 9.9 [800] 6.8 6.6 [860] 6.5 [731]

rcvi_2 6.9 7.0 [2000] 4,5[1500] 3.5 3.7 [5289] 34 [2126]

revl_4 11.2 10.6 [1000] 6.1 [800] 6.2 7.2 [3878] 5.7 [1888]
Table 4

Test error (%) of several SVM variants compared to HDSL. As in Table 3, the number of
features is given in brackets and best accuracies are shown in bold.

Dataset svM-poly-2  svM-poly-3  svM-linear-¢;  svm-linear-¢; HDSL
dexter 9.4 9.2 8.9 8.9 [281] 6.5 [183]
dorothea 7 6.6 81 6.6 [366] 6.5 [731]
revl_2 34 33 35 4.0 [1915] 3.4 [2126]
rcvl_4 5.7 5.7 5.1 5.7 [2770] 5.7 [1888]

sparse version of code provided by the authors® on a machine with
a 2.3GHz Intel Core i7 and 16GB memory. On the dexter dataset
(which has the smallest dimensionality in our benchmark), a single
pass over the features took more than 4 hours, while the authors
reported that about 10 passes are generally needed for COMET to
converge [2]. On the dorothea dataset, COMET returned a mem-
ory error. As a result, we did not include COMET to our empiri-
cal comparison. In contrast, on the same hardware, our approach
HDsSL takes less than 1 minute on dexter and less than 1 hour on
dorothea.

Training procedure. For all similarity learning algorithms, we gen-
erate 15 training constraints for each instance by identifying its 3
target neighbors (nearest neighbors with same label) and 5 im-
postors (nearest neighbors with different label), following [58].
Due to the very small number of training instances in dexter,
we found that better performance is achieved across all methods
when using 20 training constraints per instance, drawn at ran-
dom based on its label. All parameters are tuned using the ac-
curacy on the validation set. For HDSL, we use the fast heuris-
tic described in Section 3.2.3 and tune the scale parameter A €
{1,10, ...,10°). The regularization parameters of DIAG and svM are
tuned in {102, ..., 108} and the “aggressiveness” parameter of OA-
SIS is tuned in {1079, ..., 102}.

5.2.2. Results

Classification performance. We first investigate the performance of
each similarity learning approach in k-NN classification (k was set
to 3 for all experiments). For RP+0ASIS and PCA+OASIS, we choose
the dimension r of the reduced space based on the accuracy of
the learned similarity on the validation set, limiting our search to
r<2000 because OASIS is extremely slow beyond this point.* Sim-
ilarly, we use the performance on validation data to do early stop-

3 https://github.com/yuvalatzmon/COMET
4 Note that the number of PCA dimensions is at most the number of training
examples. Therefore, for dexter and dorothea, r is at most 300 and 800 respectively.

ping in HDsL, which also has the effect of restricting the number
of features used by the learned similarity.

Table 3 shows the k-NN classification performance. We can first
observe that RpP+0Asis often performs worse than DpoT, which is
consistent with previous observations showing that a large number
of random projections may be needed to obtain good performance
[23]. pca+oasis gives much better results, but is generally outper-
formed by a simple diagonal similarity learned directly in the orig-
inal high-dimensional space. HDsL, however, outperforms all other
algorithms on these datasets, including piAG. This shows the good
generalization performance of the proposed approach, even though
the number of training samples is sometimes very small compared
to the number of features, as in dexter and dorothea. It also shows
the relevance of encoding “second order” information (pairwise in-
teractions between the original features) in the similarity instead
of considering a simple weighting of features as in DIAG.

Table 4 shows the comparison with SVMs. Interestingly, HDSL
outperforms all SVM variants on dexter and dorothea, both of
which have a large proportion of irrelevant features. This shows
that its greedy strategy and early stopping mechanism achieves
better feature selection and generalization than the ¢; version of
linear SVM. On the other two datasets, HDSL is competitive with
SVM, although it is outperformed slightly by one variant (svMm-
poly-3 on rcvi_2 and svm-linear-¢, on rcv1_4), both of which rely
on all features.

Feature selection and sparsity. We now focus on the ability of HDSL
to perform feature selection and more generally to learn sparse
similarity functions. To better understand the behavior of HDsSL, we
show in Fig. 4 the number of selected features as a function of the
iteration number for two of the datasets. Remember that at most
two new features can be added at each iteration. Fig. 4 shows that
HDSL incorporates many features early on but tends to eventually
converge to a modest fraction of features (the same observation
holds for the other two datasets). This may explain why HDsL does
not suffer much from overfitting even when training data is scarce
as in dexter.
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Fig. 4. Number of active features learned by HDsL as a function of the iteration number.

(a) dexter (20000 x 20<000 matrix, 712
nonzeros)

(b) revl_4 (29992 x 29<992 matrix, 5263
nonzeros)

Fig. 5. Sparsity structure of the matrix M learned by HDsL. Positive and negative entries are shown in blue and red, respectively. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)

Another attractive characteristic of HDsL is its ability to learn a
matrix that is sparse not only on the diagonal but also off-diagonal
(the proportion of nonzero entries is in the order of 0.0001% for
all datasets). In other words, the learned similarity only relies
on a few relevant pairwise interactions between features. Fig. 5
shows two examples, where we can see that HDsSL is able to
exploit the product of two features as either a positive or negative
contribution to the similarity score. This opens the door to an
analysis of the importance of pairs of features (for instance, word
co-occurrence) for the application at hand. Finally, the extreme
sparsity of the matrices allows very fast similarity computation.
Together with the superior accuracy brought by HDsL, it makes
our approach potentially useful in a variety of contexts (k-NN,
clustering, ranking, etc).

Finally, it is also worth noticing that HDSL uses significantly less
features than DIAG-¢; (see numbers in brackets in Table 3). We at-
tribute this to the extra modeling capability brought by the non-
diagonal similarity observed in Fig. 5.°

5 Note that HDsL uses roughly the same number of features as svM-linear-¢;
(Table 4), but it is difficult to draw any solid conclusion because the objective and
training data for each method are different, and SVM is a combination of binary
models.

Dimension reduction. We now investigate the potential of HDsSL for
dimensionality reduction. Recall that HDSL learns a sequence of
PSD matrices M), We can use the square root of M) to project
the data into a new space where the dot product is equivalent to
Sy in the original space. The dimension of the projection space
is equal to the rank of M), which is upper bounded by k + 1 (see
Section 3.1). A single run of HDSL can thus be seen as incrementally
building projection spaces of increasing dimensionality.

To assess the dimensionality reduction quality of HDSL (mea-
sured by k-NN classification error on the test set), we plot its per-
formance at various iterations during the runs that generated the
results of Table 3. We compare it to two standard dimensionality
reduction techniques: random projection and PCA. We also evalu-
ate RP+0ASIS and PCA+OASIS, i.e., learn a similarity with OASIS on
top of the RP and PCA features.5 Note that OASIS was tuned sep-
arately for each projection size, making the comparison a bit un-
fair to HDSL. The results are shown in Fig. 6. As observed earlier,
random projection-based approaches achieve poor performance.
When the features are not too noisy (as in rcvl_2 and rcvl_4),
PCA-based methods are better than HDSL at compressing the space

6 Again, we were not able to run OASIS beyond a certain dimension due to com-
putational complexity.
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Fig. 6. k-NN test error as a function of the dimensionality of the space (in log scale). Best seen in color.

into very few dimensions, but HDSL eventually catches up. On the
other hand, PCA suffers heavily from the presence of noise (dex-
ter and dorothea), while HDsL is able to quickly improve upon the
standard similarity in the original space. Finally, on all datasets,
we observe that HDSL converges to a stationary dimension with-
out overfitting, unlike pca+oAsis which exhibits signs of overfitting
on dexter and rcv1_4 especially.

6. Concluding remarks

In this work, we proposed an efficient approach to learn
similarity functions from high-dimensional sparse data. This is
achieved by forming the similarity as a combination of simple
sparse basis elements that operate on only two features and the
use of an (approximate) Frank-Wolfe algorithm. Our algorithm is
completed by a novel generalization analysis which validates the
design choices and highlights the robustness of our approach to
high dimensions. Experiments on synthetic and real datasets con-
firmed the good practical behavior of our method for classification
and dimensionality reduction. The learned similarity may be ap-
plied to other algorithms that rely on a similarity function (clus-
tering, ranking), or as a way to preprocess the data before applying
another learning algorithm. We also note that St.Amand and Huan
[55] have recently extended our HDSL algorithm to learn local met-
rics for different regions of the space in addition to the global met-
ric.

We leave several fundamental questions for future work. In
particular, our framework could be extended to optimize a loss
function related to a linear classification objective. We could then
attempt to adapt our analysis to obtain generalization bounds
directly for the classification error. Such bounds exist in the
literature [see 5,30] but exhibit a classic dependence on the data
dimension that could be avoided with our approach. Another
interesting, though challenging direction is to formally study the
conditions under which a sparse ground truth similarity can be
accurately recovered from similarity judgments. Inspiration could
be drawn from the related problem of sparse recovery in the
compressed sensing literature [22].
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Appendix A. Technical Lemmas

The following classic result, known as the first Hoeffding’s de-
composition, allows to represent a U-statistic as a sum of i.i.d.
blocks.

Lemma 2 (32). Let q : Zx Zx Z— R be a real-valued function.
Given the i.i.d. random variables z,,z;, ...,z, € Z, we have

) Z q(zlﬂz_bzk)

1
nn-1)(n-— o)

[n/3]
1
= Z (/3] Z A(Zx(iys Zr i+ Lns3))» Zxir2x [n/3)))-

Un (q) =

Proof. Observe that Vi#j#k, q(z;, z;, z;) appears once on the left
hand side and Uy(q) has m of its value, while on the right
hand side it appears (n—3)! x [n/3] times, because for each of
the |n/3]| positions there are (n —3)! possible permutations. Thus
the right hand side also has of its function value. We

thus have the equality. O

1
n(n—-1)(n-2)

The next technical lemma is based on the above representation.
Lemma 3. Let Q be a set of functions from 23 to
Z are i.i.d., then we have

E[sup ) > a(zi.z. 2]

1
geq N(n—=1)(n - o)

[n/3]
]E[SUP Ln/BJ Z q(zl’zz+Ln/3J Zz+2an/3J)]

R.Ifz1,25,....2n €

Proof. From Lemma 2, we observe that
1

E[sup ————— q(z.7,2")]
geo N(n—=1)(n-2) Z#ZQZ”
1 [n/3]

=E[31€JP i Z (/3] Z q(Zs (i) Z i+ [n/3))» Z (2% [ny3))) ]
L"/3J

E[Z P P /3] Z q(Z (i) Zr i+ [n/3))» 2 (2% [n/3))) )

|."/3J
P /3] Z q(Zs (i) Z i+ [n/3))» Z (2% [n/3))) ]

n.Zl

[n/3]
IE[sup I_n/3J Z q(zlszt+[n/3j:zl+2an/3J)]
which proves the result. O
Finally, we recall McDiarmid’s inequality.

Lemma 4 (45). Let Z be some set and let f : Z" — R be a function

of n variables such that for some ¢>0, for all i e {1,...,n} and for
all z1,...,zn,zlf e Z, we have

|f(z1,....2i21, 2, Zis1, - 2Zn) — f(21, .. 21, 20, Ziga, - Z0)| <
Let Z1,...,Zy be n independent random variables taking values in Z.

Then, with probability at least 1 — 5, we have

If(Zi.....Zn) —BIf (Zh. ... Zo)]| sc\/@.

Appendix B. Proof of Lemma 1

Proof. Given a training sample S={z;=(x;,y;):ie1,...,n}~
u", we denote the set of admissible triplets involved in the
Rademacher complexity by

As ={i:yi=Yiina) # Yisaxina)- i=1..... [n/3]},
and let m = |Ag| < [n/3]. We have:
R ]:(k) =Egs-yn SU
n( ) 7S MGDI?M |_”/3J
x> il (X (Xiy 3] _Xi+2><\_n/3J)TaM>)

ieAs

< Eg s~y SUP |_11/3J ZOI (x; (Xit 3 —XH—Zan/BJ) M)

D(k)
(B.1)
m g ! sup Y o (%;(x; X; )L M)
= T3 eSSt [n/3] =~ Xi+2x[n/3]
|_n/3J TS~ mMED(k)IEA i\ N |n i+2x|n
v/ 2logk
< an maXIIu UIIzT (B.2)
= 2logk
Ln/3J max||u it|,+/2logk
< 78}\825\/5 2logk (B3)
[n/3]
2logk
=848 T3
where the set U={uy e R™: 7 =1,..., k, (Ur);= (%, i) Ry (i)4 [n/3]—

xy(i)+2><|_n/3J)TsBT>v y :{1,...,m} - As is bijective, B; € B;}, and
U= %Zléﬂ u;. The inequality (B.1) follows from the contraction
property [see 52, Lemma 26.9]. The inequality (B.2) follows from
the fact M is a convex combination of set of k bases combined
with the properties in Shalev-Shwartz and Ben-David [52, Lemma
26.7, 26.8]. Finally, inequality (B.3) follows from the sparsity struc-
ture of the bases and the fact that x;(x; — x,)T has no entries with
absolute value greater than By. O

Appendix C. Proof of Theorem 1

Proof. Let us consider the function

®(S) = sup [L(M) — Ls(M)].
MeDf\k)

Let S={z.....24.1.2q.2g1..... 20} and S ={z;,....2z4_1.
z(’],zqﬂ, ..., 2y} be two samples differing by exactly one point. We
have:

O(S") — @(S) < sup [Ls(M) — Ly (M)]

(k)
MeD;
1

S s Da = S 2 (2.2

MeD}® i juk
- Lm(z, 2. 2))|

1
< mG(n -1(n- Z)BXBD;Lk)
6
= EBXBDik) .

The first inequality comes from the fact that the difference of
suprema does not exceed the supremum of the difference. The
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last inequality makes use of (11). Similarly, we can obtain ®(S) —
qJ(S/) < 6ByB (k)/n thus we have |d>(5) — (D(S/)| < 6ByB (,()/n

We can therefore apply McDiarmid’s inequality (see Lemma 4 in
Appendix A) to ®(S): for any § >0, with probability at least 1 —§
we have:

sup [L(M) — Ls(M)]
MeD;k)

2In(2/8
< Bs sup [L(M) — Ls(M)] + 3ByByyu| S 2/0)
Mep® » n

We thus need to bound ESSUPMeDS‘)[ﬁ(M)_’CS(M)]‘ Ap-

(C1)

plying Lemma 3 (see Appendix A) with qy(z.2/,2") = L(M) —
Ly (z,2',2") gives

Es sup [£(M) — Ls(M)] < Es sup [£(M) — Ls(M)],

MED( ) MEDA k)
where Ls(M) = 7 S L 20 2is (31 Zisze ng3)- Let
S={z.....2zy} be an i.i.d. sample independent of S. Then
Es sup [L(M) — Ls(M)] = Es sup [EsLs(M) — Ls(M)]
MeD;f‘) MeD(k)
< Ess sup [Es(M) Ls(M)].
MeD(k

Let Op,..0, 0|0 € {-1,1} be a collection of i.i.d. Rademacher
variables. By standard symmetrization techniques, we have that

Egs sup [L5(M) — Ls(M)]

MeD)(Lk)
[n/3]
=E ¢ su oi|Lm(Z;, Z Ziox
6,55 |_Tl/3J Mepl?") 121: 1[ m(Zi i+Ln/3)s Zig2x [n/3))

— L (Zi. Zis (nj3)- Zivax(ns3)) ]
1 [n/3]
< i
= /3] [E, SIVISEUDI(J"’ 121: Oilm(Zi, Zii 3] Zisax|ns3))
[n/3]
+Eos SUP Y Oilm(Zi, Ziy 03] Zisaxinyz))]
Mep® i
[n/3]

1
=2E su O’L Z,Z z _2R ]:(k) )
> n/3] MeDI(Jk> ; ilwa (20, Zis 1n/3)> Zicaxng3) n(F)
We have thus shown:

Es sup [L(M) — Ls(M)] < 2R, (F*).
MeD)(\">

(C2)

Plugging (C.2) into (C.1) and using Lemma 1, we get the desired
result. O

Appendix D. Proof of Corollary 1

Proof. The excess risk of M) with respect to M* can be decom-
posed as follows:

LM®Y) —£(M") = £(MY) — LsMY) + Ls(MY) — L5(Ms)
+ Ls(Ms) — Ls(M*) + Ls(M*) — L(M*)
< £M®) — LsM®) 1+ £s(MP) — £g(Ms) +Ls(M*) — L(M"),

generalization error optimization error

(D.1)

where Mg € arg Minyep, Ls(M) is an empirical risk minimizer.

The generalization error term in (D.1) can be bounded using
Theorem 1 (recalling that M® € D by construction), while the
optimization error term is bounded by the convergence rate of our
Frank-Wolfe algorithm (Proposition 1). In the last term, M* does
not depend on S, hence we can use Hoeffding’s inequality together
with (11) and (14) to obtain that for any § > 0, with probability at
least 1 —§/2:

,Cs(M*) — ﬁ(M*) < BxBD)(\kH/ %

We get the corollary by combining the above results using the
union bound. O
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