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a b s t r a c t 

Similarity and metric learning provides a principled approach to construct a task-specific similarity from 

weakly supervised data. However, these methods are subject to the curse of dimensionality: as the num- 

ber of features grows large, poor generalization is to be expected and training becomes intractable due to 

high computational and memory costs. In this paper, we propose a similarity learning method that can 

efficiently deal with high-dimensional sparse data. This is achieved through a parameterization of simi- 

larity functions by convex combinations of sparse rank-one matrices, together with the use of a greedy 

approximate Frank-Wolfe algorithm which provides an efficient way to control the number of active fea- 

tures. We show that the convergence rate of the algorithm, as well as its time and memory complexity, 

are independent of the data dimension. We further provide a theoretical justification of our modeling 

choices through an analysis of the generalization error, which depends logarithmically on the sparsity of 

the solution rather than on the number of features. Our experiments on datasets with up to one million 

features demonstrate the ability of our approach to generalize well despite the high dimensionality as 

well as its superiority compared to several competing methods. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

High-dimensional and sparse data are commonly encountered

n many applications of machine learning, such as computer vi-

ion, bioinformatics, text mining and behavioral targeting. To clas-

ify, cluster or rank data points, it is important to be able to com-

ute semantically meaningful similarities between them. However,

efining an appropriate similarity measure for a given task is of-

en difficult as only a small and unknown subset of all features are

ctually relevant. For instance, in drug discovery studies, chemical

ompounds are typically represented by a large number of sparse

eatures describing their 2D and 3D properties, and only a few of

hem play in role in determining whether the compound will bind

o a particular target receptor [40] . In text classification and clus-

ering, a document is often represented as a sparse bag of words,

nd only a small subset of the dictionary is generally useful to

iscriminate between documents about different topics. Another

xample is targeted advertising, where ads are selected based on

ne-grained user history [16] . 
∗ Corresponding author. 
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Similarity and metric learning [7] offers principled approaches

o construct a task-specific similarity measure by learning it from

eakly supervised data, and has been used in many application

omains. The main theme in these methods is to learn the param-

ters of a similarity (or distance) function such that it agrees with

ask-specific similarity judgments (e.g., of the form “data point x

hould be more similar to y than to z ”). To account for correla-

ions between features, similarity and metric learning typically es-

imates a number of parameters which is quadratic in the data di-

ension d . When data are high-dimensional, these methods are

hus particularly affected by the so-called “curse of dimensional-

ty”, which manifests itself at both the algorithmic and general-

zation levels. On the one hand, training the similarity quickly be-

omes infeasible due to a quadratic or cubic complexity in d . In

act, the O ( d 2 ) parameters may not even fit in memory. On the

ther hand, putting aside the training phase, learning so many pa-

ameters would lead to severe overfitting and poor generalization

erformance (especially for sparse data where some features are

arely observed). Simple workarounds have been used to address

his limitation, such as projecting the data into a low-dimensional

pace before learning the similarity [see e.g., 20 , 29 , 58] . However,

uch heuristics do not provide satisfactory solutions: they often

urt the performance and make the resulting similarity function

ifficult to interpret. 

https://doi.org/10.1016/j.neucom.2018.12.060
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2018.12.060&domain=pdf
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In this paper, we propose a novel method to learn a bilinear

similarity function S M 

( x , x ′ ) = x T M x ′ directly in the original high-

dimensional space while escaping the curse of dimensionality. This

is achieved by combining three ingredients: the sparsity of the

data, the parameterization of M as a convex combination of rank-

one matrices with a special sparsity structure, and an approximate

Frank-Wolfe procedure [24,34] to learn the similarity parameters.

The resulting algorithm greedily incorporates one pair of features

at a time into the learned similarity, providing an efficient way to

filter out irrelevant features as well as to guard against overfitting

through early stopping. Remarkably, the convergence rate of the

algorithm as well as its time and memory complexity are all inde-

pendent of the dimension d . The resulting similarity functions are

extremely sparse, which makes them fast to compute and easier to

interpret. 

We provide strong theoretical and empirical evidence of the

usefulness of our approach. On the theory part, we perform a gen-

eralization analysis of the solution returned by our algorithm after

a given number of iterations. We derive excess risk bounds with

respect to the minimizer of the expected risk which confirm that

our modeling choices as well as our Frank-Wolfe algorithm and

early stopping policy provide effective ways to avoid overfitting in

high dimensions. A distinctive feature of the generalization bound

we obtain is the adaptivity of its model class complexity term to

the actual sparsity of the approximate solution found by our al-

gorithm, again removing the dependence on the dimension d . We

also evaluate the proposed approach on several synthetic and real

datasets with up to one million features, some of which have a

large proportion of irrelevant features. To the best of our knowl-

edge, it is the first time that a full similarity or distance metric

is learned directly on such high-dimensional datasets without first

reducing dimensionality. Our experiments show that our approach

is able to generalize well despite the high dimensionality, and even

to recover the ground truth similarity function when the training

similarity judgments are sufficiently informative. Furthermore, our

approach clearly outperforms both a diagonal similarity learned in

the original space and a full similarity learned in a reduced space

(after PCA or random projections). Finally, we show that our simi-

larity functions can be extremely sparse (in the order of 0.0 0 01% of

nonzero entries), thereby drastically reducing the dimension while

also providing an opportunity to analyze the importance of the

original features and their pairwise interactions for the problem at

hand. 

The present work extends a previously published conference

paper [43] by providing additional technical and experimental re-

sults. Firstly, we present a novel generalization analysis which fur-

ther backs up our approach from a statistical learning point of

view. Secondly, we conduct experiments on high-dimensional syn-

thetic data showing that our approach generalizes well as the di-

mensionality increases and can even accurately recover the ground

truth notion of similarity. Finally, we extend the discussion of

the related work and provide additional details on algorithms and

proofs. 

The paper is organized as follows. Section 2 introduces some

background and related work on similarity learning and Frank-

olfe algorithms. Section 3 describes our problem formulation, the

proposed algorithm and its analysis. Generalization bounds are es-

tablished in Section 4 . Finally, Section 5 describes our experimental

results, and we conclude in Section 6 . 

2. Background and related work 

In this section, we review some background and related work

in metric and similarity learning ( Section 2.1 ) and the Frank-Wolfe

algorithm ( Section 2.2 ). 
.1. Metric and similarity learning 

Metric and similarity learning has attracted a lot of interest

ver the past ten years. The great majority of work has focused on

earning either a Mahalanobis distance d M 

( x , x ′ ) = ( x − x ′ ) T M ( x −
 

′ ) where M is a symmetric positive semi-definite (PSD) matrix,

r a bilinear similarity S M 

( x , x ′ ) = x T M x ′ where M is often taken

o be an arbitrary d × d matrix. A comprehensive survey of exist-

ng approaches can be found in [6] . We focus below on the two

opics most relevant to our work: (i) efficient algorithms for the

igh-dimensional setting, and (ii) the derivation of generalization

uarantees for metric and similarity learning. 

etric learning in high dimensions. Both Mahalanobis distance

etric learning and bilinear similarity learning require estimating

 ( d 2 ) parameters, which is undesirable in the high-dimensional

etting for the reasons mentioned earlier. In practice, it is thus

ustomary to resort to dimensionality reduction (such as PCA,

VD or random projections) to preprocess the data when it has

ore than a few hundred dimensions [see e.g., [20,29,42,44,48,57–

9,61] ]. Although this strategy can be justified formally in some

ases [44,47] , the projection may intertwine useful features and ir-

elevant/noisy ones and thus hurt the performance of the resulting

imilarity function. It also makes it hard to interpret and use for

ata exploration, preventing the discovery of knowledge that can

e valuable to domain experts. 

There have been very few satisfactory solutions to this essen-

ial limitation. The most drastic strategy is to learn a diagonal ma-

rix M [26,50] , which is very restrictive as it amounts to a simple

eighting of the features. Instead, some approaches assume an ex-

licit low-rank decomposition M = L T L and learn L ∈ R 

r×d in order

o reduce the number of parameters [27,37,58] . This results in non-

onvex formulations with many local optima [38] , and requires to

une r carefully. Moreover, the training complexity still depends on

 and can thus remain quite large. Another direction is to learn

 as a combination of rank-one matrices. In particular, Shi et al.

54] generate a set of rank-one matrices from the training data

nd then learn a metric as a sparse combination. However, as the

imension increases, a larger dictionary is needed and can be ex-

ensive to generate. Some other work has studied sparse and/or

ow-rank regularization to reduce overfitting in high dimensions

46,49,60] but this does not in itself reduce the training complex-

ty of the algorithm. Zhang and Zhang [62] proposed a stochas-

ic gradient descent solver together with low-rank regularization in

n attempt to keep the intermediate solutions low-rank. The com-

lexity per iteration of their approach is linear in d but cubic in

he rank of the current solution, which quickly becomes intractable

nless the regularization is very strong. 

Finally, some greedy algorithms for metric learning have been

roposed in the literature to guarantee a tighter bound on the

ank of intermediate solutions. Atzmon et al. [2] use a block co-

rdinate descent algorithm to update the metric one feature at a

ime. Shen et al. [53] selects rank-one updates in a boosting man-

er, while DML-eig [61] and its extension DML- ρ [11] rely on a

reedy Frank-Wolfe algorithm to optimize over the set of PSD ma-

rices with unit trace. However, these greedy methods still suffer

rom a computational cost of O ( d 2 ) per iteration and are thus un-

uitable for the high-dimensional setting we consider in this work.

n contrast, we will propose an algorithm which is linear in the

umber of nonzero features and can thus be efficiently applied to

igh-dimensional sparse data. 

eneralization bounds for metric learning. The derivation of gener-

lization guarantees for metric and similarity learning has been in-

estigated in the supervised setting, where the metric or similar-

ty is learned from a labeled dataset of n points by (regularized)
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Algorithm 1: Standard Frank-Wolfe algorithm. 

Input: Initial point M 

(0) ∈ D
for k = 0 , 1 , 2 , . . . do 

S (k ) ← arg min S ∈D 〈 S , ∇ f ( M 

(k ) ) 〉 
γ (k ) ← 

2 
k +2 

(or determined by line search) 

M 

(k +1) ← (1 − γ (k ) ) M 

(k ) + γ (k ) S (k ) 

end for 
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mpirical risk minimization. For a given family of loss functions,

he results generally bound the maximal deviation between the ex-

ected risk (where the expectation is taken over the unknown data

istribution) and the empirical risk of the learned metric. 1 These

ounds are generally of order O (1 / 
√ 

n ) . 

Several technical tools have been used to address the chal-

enge of learning from dependent pairs/triplets, leading to differ-

nt trade-offs in terms of tightness, generality, and dependence on

he feature dimension d . The results of Jin et al. [36] apply only

nder Frobenius norm regularization of M and have a 
√ 

d factor in

he rate. Using an adaptation of algorithmic robustness, Bellet and

abrard [4] obtain bounds which hold also for sparsity-inducing

egularizers but with a covering number term that can be expo-

ential in the dimension. Bian and Tao [8] rely on assumptions on

he data distribution and do not show an explicit dependence on

he dimension. Cao et al. [10] derive bounds based on Rademacher

omplexity and maximal deviation results for U -statistics [19] . De-

ending on the regularization used, the dependence on the dimen-

ion d ranges from logarithmic to linear. [56] show that the 
√ 

d fac-

or of Jin et al. [36] is in fact unavoidable in the worst case without

ome form of regularization (or restriction of the hypothesis class).

hey derive bounds which do not depend on the dimension d but

n the Frobenius norm of the optimal parameter M . Note however

hat their analysis assumes that the metrics are learned from a set

f i.i.d. pairs or triplets, which is rarely seen in practice. 

In all the above work, generalization in metric learning is stud-

ed independently of the algorithm used to solve the empirical risk

inimization problem, and none of the bounds are adaptive to the

ctual sparsity of the solution. In contrast, we will show that one

an use early stopping in our algorithm to control the complexity

f the hypothesis class so as to make the bounds independent of

he dimension d , effectively balancing the empirical (optimization)

rror and the generalization error. 

.2. Frank-Wolfe algorithms 

The Frank-Wolfe (FW) algorithm was originally introduced by

rank and Wolfe [24] and further generalized by Clarkson [17] and

aggi [34] . FW aims at solving constrained optimization problems

f the following general form: 

in 

M ∈D 
f ( M ) , (1) 

here f is a convex and continuously differentiable function, and

he feasible domain D is a convex and compact subset of some

ilbert space equipped with inner product 〈 · , · 〉 . 
Starting from a feasible initial point M 

(0) ∈ D, the standard FW

lgorithm iterates over the following steps. First, it finds the fea-

ible point S (k ) ∈ D which minimizes the linearization of f at the

urrent point M 

( k ) : 

 

(k ) ∈ arg min 

S ∈D 
〈 S , ∇ f ( M 

(k ) ) 〉 . (2)

he next iterate M 

(k +1) is then constructed as a convex combina-

ion of M 

( k ) and S ( k ) , where the relative weight of each component

s given by a step size γ ( k ) . The step size can be decreasing with

he iteration number k or set by line search. The overall algorithm

s summarized in Algorithm 1 . FW is guaranteed to converge to an

ptimal solution of (1) at rate O (1/ k ), see for instance [34] for a

eneric and concise proof. 

Unlike projected gradient, FW is a projection-free algorithm:

ach iterate M 

( k ) is feasible by construction since it is a convex

ombination of elements of D. Instead of computing projections
1 This is in contrast to a different line of work, inspired by the problem of ordinal 

mbedding, which aims to learn a metric which correctly orders a fixed set of known 

oints [see for instance 35 ] 

 

L  

o  

e

nto the feasible domain D, FW solves the linear optimization sub-

roblem (2) . The linearity of the objective (2) implies that a solu-

ion S ( k ) always lies at an extremal point of D. This leads to the in-

erpretation of FW as a greedy algorithm which adds an extremal

oint to the current solution at each iteration [17] . In other words,

 

( k ) can be written as a sparse convex combination of extremal

oints: 

 

(k ) = 

∑ 

S (k ) ∈S (k ) 

α(k ) 

S (k ) S 
(k ) 

, where 
∑ 

S (k ) ∈S (k ) 

α(k ) 

S (k ) = 1 and α(k ) 

S (k ) ≥ 0 , 

(3) 

here S (k ) denotes the set of “active” extremal points that have

een added up to iteration k . When the extremal points of D have

pecific structure (such as sparsity, or low-rankness), this structure

an be leveraged to compute a solution of (2) much more effi-

iently than the projection operator, see Jaggi [33] , 34 ] for com-

elling examples. 

A drawback of the standard FW algorithm is that “removing”

n extremal point S ( k ) from the current iterate (or significantly re-

ucing its weight α(k ) 

S (k ) 
) can only be done indirectly by adding (in-

reasing the weight of) other extremal points. The variant of FW

ith away steps [28] addresses this issue by allowing the algorithm

o choose between adding a new extremal point (forward step) or

educing the weight of an existing one (away step), as shown in

lgorithm 2 . This can lead to sparser solutions [17,28,33] and faster

onvergence in some cases [28,39] . 

lgorithm 2: Frank-Wolfe algorithm with away steps. 

Input: Initial point M 

(0) ∈ D
for k = 0 , 1 , 2 , . . . do 

S (k ) 
F 

← arg min S ∈D 〈 S , ∇ f ( M 

(k ) ) 〉 , D 

(k ) 
F 

= S (k ) 
F 

− M 

(k ) 
// forward

direction 

S (k ) 
A 

← arg max S ∈S (k ) 〈 S , ∇ f ( M 

(k ) ) 〉 , D 

(k ) 
A 

= M 

(k ) − S (k ) 
A 

// away

direction 

if 〈 D 

(k ) 
F 

, ∇ f ( M 

(k ) ) 〉 ≤ 〈 D 

(k ) 
A 

, ∇ f ( M 

(k ) ) 〉 then 

D 

(k ) ← D 

(k ) 
F 

and γmax ← 1 // choose forward step

else 

D 

(k ) ← D 

(k ) 
A 

and γmax ← α(k ) 

S 
(k ) 
A 

/ (1 − α(k ) 

S 
(k ) 
A 

) // choose away step

end if 

γ (k ) ← 

2 
k +2 

(or determined by line search) 

M 

(k +1) ← M 

(k ) + γ (k ) D 

(k ) 

end for 

In the present work, we will introduce a FW algorithm with

way steps to efficiently perform similarity learning for high-

imensional sparse data. One of our key ingredients will be the

esign of a feasible domain with appropriate sparsity structure. 

. Proposed approach 

This section introduces hdsl (High-Dimensional Similarity

earning), the approach proposed in this paper. We first describe

ur problem formulation ( Section 3.1 ), then derive and analyze an

fficient FW algorithm to solve it in Section 3.2 . 
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3.1. Problem formulation 

In this work, our goal is to learn a similarity function for high-

dimensional sparse data. We assume the data points lie in some

space X ⊆ R 

d , where d is large ( d > 10 4 ) but points are s -sparse on

average ( s 
 d ). In other words, their number of nonzero entries is

typically much smaller than d . We focus on learning a similarity

function S M 

: X × X → R of the form 

S M 

( x , x ′ ) = x T M x ′ = 〈 x x ′� , M 〉 , 
where M ∈ R 

d×d and 〈 · , · 〉 denotes the Frobenius inner product.

Notice that for any M , S M 

can be computed in O ( s 2 ) time on aver-

age if data points are stored in a sparse format. 

Feasible domain. We will derive an algorithm to learn a very

sparse M with time and memory requirements that depend on s

but not on d . To this end, given a scale λ> 0 which will play the

role of a regularization parameter, we parameterize M as a convex

combination of rank-one, 4-sparse d × d bases: 

M ∈ D λ = conv (B λ) , with B λ = 

⋃ 

i j 

{
P (i j) 

λ
, N 

(i j) 
λ

}
, 

where for any pair of features i, j ∈ { 1 , . . . , d} , i � = j , 

P (i j) 
λ

= λ( e i + e j )( e i + e j ) 
T = 

⎛ 

⎜ ⎜ ⎝ 

· · · · ·
· λ · λ ·
· · · · ·
· λ · λ ·
· · · · ·

⎞ 

⎟ ⎟ ⎠ 

, 

N 

(i j) 
λ

= λ( e i − e j )( e i − e j ) 
T = 

⎛ 

⎜ ⎜ ⎝ 

· · · · ·
· λ · −λ ·
· · · · ·
· −λ · λ ·
· · · · ·

⎞ 

⎟ ⎟ ⎠ 

. 

The use of such sparse matrices was first suggested by Jaggi [33] .

Besides the fact that they are instrumental to the efficiency of our

algorithm (see Section 3.2 ), we give some additional motivation for

their use in the context of similarity learning. 

First, any M ∈ D λ is a convex combination of symmetric PSD

matrices and is thus also symmetric PSD. Unlike many metric

learning algorithms, we thus avoid the O ( d 3 ) cost of projecting

onto the PSD cone. Constraining M to be symmetric PSD provides

useful regularization to prevent overfitting [15] and ensures that

S M 

can be interpreted as a dot product after a linear transforma-

tion of the inputs: 

S M 

( x , x ′ ) = x T M x ′ = ( L x ) T ( L x ′ ) , 

where M = L L T with L ∈ R 

d×k . Because the bases in B λ are rank-

one, the dimensionality k of the transformed space is at most the

number of bases composing M . 

Second, each basis operates on two features only. In particular,

S 
P 

(i j) 
λ

( x , x ′ ) = λ(x i x 
′ 
i 
+ x j x 

′ 
j 
+ x i x 

′ 
j 
+ x j x 

′ 
i 
) assigns a higher similarity

score when feature i appears jointly in x and x ′ (likewise for j ),

as well as when feature i in x and feature j in y co-occur (and vice

versa). Conversely, S 
N 

(i j) 
λ

penalizes the cross-occurrences of features

i and j . In the context of text data represented as bags-of-words

(or other count data), the semantic behind the bases in B λ is quite

natural: they can be intuitively thought of as encoding the fact that

a term i or j present in both documents makes them more similar,

and that two terms i and j are associated with the same/different

class or topic. 

Optimizing over the convex hull D λ of B λ will allow us to eas-

ily control the number of active features, thereby learning a very

compact representation with efficient similarity computations. 
ptimization problem. We now describe the optimization problem

o learn the similarity parameters. Following previous work (see

or instance [15,50,58] ), our training data consists of weak super-

ision in the form of triplet constraints: 

 = { x t should be more similar to y t than to z t } T t=1 . 

uch constraints can be built from a labeled training sample (see

ection 4 ), provided directly by domain experts or crowdsourc-

ng campaign, or obtained through implicit feedback such as clicks

n search engine results. For notational convenience, we denote

 

t = x t ( y t − z t ) 
T ∈ R 

d×d for each constraint t = 1 , . . . , T so that we

an concisely write S M 

( x t , y t ) − S M 

( x t , z t ) = 〈 A 

t 
, M 〉 . We measure

he degree of violation of each constraint t with the smoothed

inge loss � : R → R 

+ defined as 

 (〈 A 

t 
, M 〉 ) = 

⎧ ⎨ 

⎩ 

0 if 〈 A 

t 
, M 〉 ≥ 1 

1 
2 

− 〈 A 

t 
, M 〉 if 〈 A 

t 
, M 〉 ≤ 0 

1 
2 
(1 − 〈 A 

t 
, M 〉 ) 2 otherwise 

. 

his convex loss is a continuously differentiable version of the

tandard hinge loss which tries to enforce a margin constraint of

he form S M 

( x t , y t ) ≥ S M 

( x t , z t ) + 1 . When this constraint is satis-

ed, the value of the loss is zero. On the other hand, when the

argin is negative, i.e., S M 

( x t , y t ) ≤ S M 

( x t , z t ), the penalty is linear

n the margin violation. A quadratic interpolation is used to bridge

etween these two cases to ensure that the loss is differentiable

verywhere. 

emark 1 (Choice of loss) . One may use any other convex and

ontinuously differentiable loss function in our framework, such as

he squared hinge loss, the logistic loss or the exponential loss. 

Given λ> 0, our similarity learning formulation aims at finding

he matrix M ∈ D λ that minimizes the average margin penalty (as

easured by � ) over the triplet constraints in T : 

min 

 ∈ R d×d 
f ( M ) = 

1 

T 

T ∑ 

t=1 

� 
(〈 A 

t 
, M 〉 ) s.t. M ∈ D λ. (4)

Due to the convexity of the smoothed hinge loss, (4) involves

inimizing a convex function over the convex domain D λ. Note

hat the gradient of the objective is given by 

∇ f ( M ) = 

1 

T 

T ∑ 

t=1 

G 

t ( M ) , 

ith G 

t ( M ) = 

⎧ ⎨ 

⎩ 

0 if 〈 A 

t 
, M 〉 ≥ 1 

−A 

t if 〈 A 

t 
, M 〉 ≤ 0 (〈 A 

t 
, M 〉 − 1 

)
A 

t otherwise 

. 

(5)

In the next section, we propose a greedy algorithm to efficiently

nd sparse approximate solutions to this problem. 

.2. Algorithm 

.2.1. Exact Frank-Wolfe algorithm 

We propose to use a Frank-Wolfe algorithm with away steps

see Section 2.2 ) to learn the similarity. We will exploit the fact

hat in our formulation (4) , the extremal points (vertices) of the

easible domain D λ are the elements of B λ and have special struc-

ure. Our algorithm is shown in Algorithm 3 . During the course of

he algorithm, we explicitly maintain a representation of each iter-

te M 

( k ) as a convex combination of basis elements as previously

iscussed in Section 2.2 : 

 

(k ) = 

∑ 

B ∈B λ
α(k ) 

B 
B , where 

∑ 

B ∈B λ
α(k ) 

B 
= 1 and α(k ) 

B 
≥ 0 . 

e denote the set of active basis elements in M 

( k ) as S (k ) = { B ∈
 λ : α(k ) 

B 
> 0 } . The algorithm goes as follows. We initialize M 

(0) 
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Algorithm 3: Frank Wolfe algorithm for problem (4) . 

1: initialize M 

(0) to an arbitrary B ∈ B λ

2: for k = 0 , 1 , 2 , . . . do 

3: B 

(k ) 
F 

← arg min B ∈B λ〈 B , ∇ f ( M 

(k ) ) 〉 , D 

(k ) 
F 

← B 

(k ) 
F 

− M 

(k ) 
// 

forward dir. 

4: B 

(k ) 
A 

← arg max B ∈S (k ) 〈 B , ∇ f ( M 

(k ) ) 〉 , D 

(k ) 
A 

← M 

(k ) − B 

(k ) 
A 

// away 

dir. 

5: if 〈 D 

(k ) 
F 

, ∇ f ( M 

(k ) ) 〉 ≤ 〈 D 

(k ) 
A 

, ∇ f ( M 

(k ) ) 〉 then 

6: D 

(k ) ← D 

(k ) 
F 

and γmax ← 1 // choose forward step 

7: else 

8: D 

(k ) ← D 

(k ) 
A 

and γmax ← α(k ) 

B 
(k ) 
A 

/ (1 − α(k ) 

B 
(k ) 
A 

) // choose away step 

9: end if 

10: γ (k ) ← arg min γ ∈ [0 ,γmax ] f ( M 

(k ) + γ D 

(k ) ) // perform line search 

11: M 

(k +1) ← M 

(k ) + γ (k ) D 

(k ) 
// update iterate towards direction 

12: end for 

t  

i  

w  

T  

A  

i  

b  

M  

a  

m  

w  
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e  
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M  

i  

m

P  

r

‖  

f

‖

L
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s

Table 1 

Complexity of iteration k (ignoring logarithmic factors) for different 

variants of the algorithm. 

Variant Time complexity Memory complexity 

Exact ( Algorithm 3 ) ˜ O (T s 2 + T k ) ˜ O (T s 2 + k ) 

Mini-batch ˜ O (Ms 2 + T k ) ˜ O (T + Ms 2 + k ) 

Mini-batch + heuristic ˜ O (Ms + T k ) ˜ O (T + Ms + k ) 
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o a random basis element. Then, at each iteration, we greed-

ly choose between moving towards a (possibly) new basis (for-

ard step) or reducing the weight of an active one (away step).

he extent of the step is determined by line search. As a result,

lgorithm 3 adds only one basis (at most 2 new features) at each

teration, which provides a convenient way to control the num-

er of active features and maintains a compact representation of

 

( k ) for a memory cost of O ( k ). Furthermore, away steps provide

 way to reduce the importance of a potentially “bad” basis ele-

ent added at an earlier iteration (or even remove it completely

hen γ (k ) = γmax ). Recall that throughout the execution of the FW

lgorithm, all iterates M 

( k ) remain convex combinations of basis

lements and are thus feasible. The following proposition shows

hat the iterates of Algorithm 3 converge to an optimal solution of

4) with a rate of O (1/ k ). 

roposition 1. Let λ> 0, M 

∗ be an optimal solution to (4) and

 = 

1 
T 

∑ T 
t=1 ‖ A 

t ‖ 2 
F 

. At any iteration k ≥ 1 of Algorithm 3 , the iterate

 

(k ) ∈ D λ satisfies f ( M 

(k ) ) − f ( M 

∗) ≤ 16 Lλ2 / (k + 2) . Furthermore,

t has at most rank k + 1 with 4(k + 1) nonzero entries, and uses at

ost 2(k + 1) distinct features. 

roof. We first show that ∇f is L -Lipschitz continuous on D λ with

espect to the Frobenius norm, i.e., for any M 1 , M 2 ∈ D λ, 

∇ f ( M 1 ) − ∇ f ( M 2 ) ‖ F ≤ L ‖ M 1 − M 2 ‖ F (6)

or some L ≥ 0. Note that 

∇ f ( M 1 ) − ∇ f ( M 2 ) ‖ F = 

∥∥∥∥∥1 

T 

T ∑ 

t=1 

G 

t ( M 1 ) − 1 

T 

T ∑ 

t=1 

G 

t ( M 2 ) 

∥∥∥∥∥
F 

≤ 1 

T 

T ∑ 

t=1 

∥∥G 

t ( M 1 ) − G 

t ( M 2 ) 
∥∥

F 
. 

et t ∈ { 1 , . . . , T } . We will now bound �t = 

∥∥G 

t ( M 1 ) − G 

t ( M 2 ) 
∥∥

F 
or any M 1 , M 2 ∈ D λ. The form of the gradient (5) requires to con-

ider several cases: 

(i) If 〈 A 

t , M 1 〉 ≥ 1 and 〈 A 

t , M 2 〉 ≥ 1, we have �t = 0 . 

(ii) If 〈 A 

t , M 1 〉 ≤ 0 and 〈 A 

t , M 2 〉 ≤ 0, we have �t = 0 . 

(iii) If 0 < 〈 A 

t , M 1 〉 < 1 and 0 < 〈 A 

t , M 2 〉 < 1, we have: 

�t = ‖〈 A 

t 
, M 1 − M 2 〉 A 

t ‖ F = ‖ A 

t ‖ F |〈 A 

t 
, M 1 − M 2 〉| 

≤ ‖ A 

t ‖ 

2 
F ‖ M 1 − M 2 ‖ F . 

(iv) If 〈 A 

t , M 1 〉 ≥ 1 and 〈 A 

t , M 2 〉 ≤ 0, we have 

t t t t 2 
�t = ‖ A ‖ F ≤ ‖ A ‖ F |〈 A , M 1 − M 2 〉| ≤ ‖ A ‖ F ‖ M 1 − M 2 ‖ F . a  
(v) If 〈 A 

t , M 1 〉 ≥ 1 and 0 < 〈 A 

t , M 2 〉 < 1, we have: 

�t = ‖ (〈 A 

t 
, M 2 〉 − 1) A 

t ‖ F = ‖ A 

t ‖ F (1 − 〈 A 

t 
, M 2 〉 ) 

≤ ‖ A 

t ‖ F (1 − 〈 A 

t 
, M 2 〉 ) + ‖ A 

t ‖ F (〈 A 

t 
, M 1 〉 − 1) 

= ‖ A 

t ‖ F 〈 A 

t 
, M 1 − M 2 〉 ≤ ‖ A 

t ‖ 

2 
F ‖ M 1 − M 2 ‖ F . 

(vi) If 〈 A 

t , M 1 〉 ≤ 0 and 0 < 〈 A 

t , M 2 〉 < 1, we have: 

�t = ‖ − A 

t − (〈 A 

t 
, M 2 〉 − 1) A 

t ‖ F = ‖ A 

t 〈 A 

t 
, M 2 〉‖ F 

= ‖ A 

t ‖ F 〈 A 

t 
, M 2 〉 

≤ ‖ A 

t ‖ F 〈 A 

t 
, M 2 〉 − ‖ A 

t ‖ F 〈 A 

t 
, M 1 〉 

= ‖ A 

t ‖ F 〈 A 

t 
, M 2 − M 1 〉 ≤ ‖ A 

t ‖ 

2 
F ‖ M 1 − M 2 ‖ F . 

The remaining cases are also bounded by ‖ A 

t ‖ 2 
F 
‖ M 1 − M 2 ‖ F by

ymmetry to cases (iv)-(v)-(vi). Hence ∇f is L -Lipschitz continuous

ith L = ‖ A 

t ‖ 2 F . 

It is easy to see that diam ‖·‖ F (D λ) = 

√ 

8 λ. The convergence rate

hen follows from the general analysis of the FW algorithm [34] . 

The second part of the proposition follows directly from the

tructure of the bases and the greedy nature of the algorithm. �

Note that the optimality gap in Proposition 1 is independent

f d . Indeed, A 

t has O ( s 2 ) nonzero entries on average, hence the

erm ‖ A 

t ‖ 2 
F 

in the Lipschitz constant L can be bounded by s 2 ‖ A 

t ‖ ∞ 

,

here ‖ A ‖ ∞ 

= max d 
i, j=1 

| A i, j | . This means that Algorithm 3 is able

o find a good approximate solution based on a small number of

eatures in only a few iterations, which is very appealing in the

igh-dimensional setting we consider. 

.2.2. Complexity analysis 

We now analyze the time and memory complexity of

lgorithm 3 . The form of the gradient (5) along with the structure

f the algorithm’s updates are crucial to its efficiency. Since M 

(k +1) 

s a convex combination of M 

( k ) and a 4-sparse matrix B 

( k ) , we can

fficiently compute most of the quantities of interest through care-

ul book-keeping. 

In particular, storing M 

( k ) at iteration k requires O ( k ) memory.

e can also recursively compute 〈 A 

t 
, M 

(k +1) 〉 for all constraints in

nly O ( T ) time and O ( T ) memory based on 〈 A 

t , M 

( k ) 〉 and 〈 A 

t , B 

( k ) 〉 .
his allows us, for instance, to efficiently compute the objective

alue as well as to identify the set of satisfied constraints (those

ith 〈 A 

t , M 

( k ) 〉 ≥ 1) which are ignored in the computation of the

radient. Finding the away direction at iteration k can be done in

 ( Tk ) time. For the line search, we use a bisection algorithm to find

 root of the gradient of the 1-dimensional function of γ , which

nly depends on 〈 A 

t , M 

( k ) 〉 and 〈 A 

t , B 

( k ) 〉 , both of which are readily

vailable. Its time complexity is O (T log 1 ε ) where ε is the precision

f the line-search, with a memory cost of O (1). 

The bottleneck is to find the forward direction. Indeed, se-

uentially considering each basis element is intractable as it takes

 ( Td 2 ) time. A more efficient strategy is to sequentially consider

ach constraint, which requires O ( Ts 2 ) time and O ( Ts 2 ) memory.

he overall iteration complexity of Algorithm 3 is given in Table 1 .

.2.3. Approximate forward step 

Finding the forward direction can be expensive when T and s

re both large. We propose two strategies to alleviate this cost by
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finding an approximately optimal basis (see Table 1 for iteration

complexity). 

Mini-batch approximation. Instead of finding the forward and away

directions based on the full gradient at each iteration, we can es-

timate it on a mini-batch of M 
 T constraints drawn uniformly at

random (without replacement). The complexity of finding the for-

ward direction is thus reduced to O ( Ms 2 ) time and O ( Ms 2 ) mem-

ory. Consider the deviation between the “value” of any basis el-

ement B ∈ B λ on the full set of constraints and its estimation on

the mini-batch, namely ∣∣∣ 1 

M 

∑ 

t∈M 

〈 B , G t 〉 − 1 

T 

T ∑ 

t=1 

〈 B , G t 〉 
∣∣∣, (7)

where M is the set of M constraint indices drawn uniformly and

without replacement from the set { 1 , . . . , T } . Under mild assump-

tions, concentration bounds such as Hoeffding’s inequality for sam-

pling without replacement [3,51] can be used to show that the

probability of (7) being larger than some constant decreases ex-

ponentially fast with M . The FW algorithm is known to be ro-

bust to inexact gradients, and convergence guarantees similar to

Proposition 1 can be obtained directly from [25,34] . 

Fast heuristic. To avoid the quadratic dependence on s , we propose

to use the following heuristic to find a good forward basis. We

first pick a feature i ∈ [ d ] uniformly at random, and solve the lin-

ear problem over the restricted set 
⋃ 

j { P (i j) 
λ

, N 

(i j) 
λ

} . We then solve

it again over the set 
⋃ 

k { P (k j) 
λ

, N 

(k j) 
λ

} and use the resulting basis

for the forward direction. This can be done in only O ( Ms ) time and

O ( Ms ) memory and gives good performance in practice, as we shall

see in Section 5 . 

4. Generalization analysis 

In this section, we derive generalization bounds for the pro-

posed method. Our main goal is to give a theoretical justification

of our approach, in particular by (i) showing that our choice of

feasible domain D λ helps to reduce overfitting in high dimensions,

and (ii) showing that the proposed greedy Frank-Wolfe algorithm

provides a simple way to balance between optimization and gen-

eralization errors through early stopping. 

4.1. Setup and notations 

As in previous work on generalization bounds for metric learn-

ing, we consider the supervised learning setting where the training

sample is a set of labeled points S = { z i = ( x i , y i ) } n i =1 
drawn i.i.d.

from a probability distribution μ over the space Z = X × Y, where

X ⊆ R 

d and Y = { 1 , . . . , C} is the label set. We assume that B X =
sup x , x ′ , x ′′ ∈X ‖ x ( x ′ − x ′′ ) T ‖ is bounded for some convenient matrix

norm ‖ · ‖ . 
For simplicity, we assume that the univariate loss function � :

R → R 

+ is 1-Lipschitz, which is the case for the smoothed hinge

loss used in our algorithm. Given a triplet ( z , z ′ , z ′′ ) ∈ Z 

3 , we say

that it is admissible if y = y ′ � = y ′′ . Since we only want to con-

sider admissible triplets, we will use the triplet-wise loss func-

tion L M 

( z , z ′ , z ′′ ) = I [ y = y ′ � = y ′′ ] · � (〈 x ( x ′ − x ′′ ) T , M 〉 ) indexed by

M ∈ D λ, which is equal to zero for non-admissible triplets. 

Given a matrix M ∈ D λ, we define its empirical risk associated

on the training set S as follows: 

L S ( M ) = 

1 

n (n − 1)(n − 2) 

∑ 

i � = j � = k 
L M 

( z i , z j , z k ) . (8)

Similarly, its expected risk is defined as 

L ( M ) = E z , z ′ , z ′′ ∼μ

[
L M 

( z , z ′ , z ′′ ) 
]
. (9)
n contrast to the standard supervised classification setting, note

hat the empirical risk (8) takes the form of an average of depen-

ent terms known as a U -statistic [41] . 

From our feasible domain D λ = conv (B λ) , we can define a se-

uence of nested sets as follows: 

 

(k ) 
λ

= 

{ 

k ∑ 

i =1 

αi B i : B i ∈ B λ, αi ≥ 0 , 

k ∑ 

i =1 

αi = 1 

} 

, 

k = 1 , . . . , 2 d(d − 1) . (10)

In other words, D 

(k ) 
λ

consists of all d × d matrices which can be

ecomposed as a convex combination of at most k elements of the

asis set B λ. Clearly, we have D 

(1) 
λ

⊂ D 

(2) 
λ

⊂ · · · ⊂ D 

(2 d(d−1)) 
λ

= D λ.

ote also that since � is 1-Lipschitz, by Holder’s inequality we have

 k : 

sup 

 , z ′ , z ′′ ∈Z, M ∈D (k ) 
λ

| L M 

( z , z ′ , z ′′ ) | ≤ sup 

x , x ′ , x ′′ ∈X , M ∈D (k ) 
λ

| � (〈 x ( x ′ − x ′′ ) T , M 〉 ) | 

≤ B X sup 

M ∈D (k ) 
λ

‖ M ‖ ∗, (11)

here ‖ · ‖ ∗ is the dual norm of ‖ · ‖ . 
In the following, we derive theoretical results that take advan-

age of the structural properties of our algorithm, namely that the

atrix M 

( k ) returned after k ≥ 1 iterations of Algorithm 3 belongs

o D 

(k ) 
λ

. We first bound the Rademacher complexity of D 

(k ) 
λ

and de-

ive bounds on the maximal deviation between L ( M ) and L S ( M )

or any M ∈ D 

(k ) 
λ

. We then use these results to derive bounds on

he excess risk L ( M 

(k ) ) − L ( M 

∗) , where M 

∗ ∈ arg min M ∈D λ L ( M ) is

he expected risk minimizer. All proofs can be found in the ap-

endix. 

.2. Main results 

We first characterize the Rademacher complexity of the loss

unctions indexed by elements of D 

(k ) 
λ

. Given k ∈ { 1 , . . . , 2 d(d −
) } , consider the family F 

(k ) = { L M 

: M ∈ D 

(k ) 
λ

} of functions map-

ing from Z 

3 to R 

+ . We will consider the following definition of

he Rademacher complexity of F 

(k ) with respect to distribution μ
nd sample size n ≥ 3, adapted from [10,19] : 

 n 

(
F 

(k ) 
)
= E σ,S∼μn 

[ 
sup 

M ∈D (k ) 
λ

1 

� n/ 3 � 
� n/ 3 � ∑ 

i =1 

σi L M 

( z i , z i + � n/ 3 � , z i +2 ×� n/ 3 � ) 
] 
, 

(12)

here σ = (σ1 , . . . , σ� n/ 3 � ) are independent uniform random vari-

bles taking values in {−1 , 1 } . The following lemma gives a bound

n the above Rademacher complexity. 

emma 1 (Bounded Rademacher complexity) . Let n ≥ 3, λ> 0 and

 ≤ k ≤ 2 d(d − 1) . We have 

 n (F 

(k ) ) ≤ 8 λB X 

√ 

2 log k 

� n/ 3 � . 
roof. See Appendix B . �

There are two important consequences to Lemma 1 . First, re-

tricting the set of feasible matrices M to D λ = D 

(2 d(d−1)) 
λ

in-

tead of R 

d×d leads to a Rademacher complexity with a very mild

 ( 
√ 

log d ) dependence in the dimension. This validates our design

hoice for the feasible domain in the high-dimensional setting we

onsider. Second, the Rademacher complexity can actually be made

ndependent of d by further restricting the number of bases k . 

Using this result, we derive a bound for the deviation between

he expected risk L ( M ) and the empirical risk L S ( M ) of any M ∈
 

(k ) 
λ

. 
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heorem 1 (Maximal deviations) . Let S be a set of of n points drawn

.i.d. from μ, λ> 0 and 1 ≤ k ≤ 2 d(d − 1) . For any δ > 0, with proba-

ility 1 − δ we have 

sup 

 ∈D (k ) 
λ

[ L ( M ) − L S ( M )] ≤ 16 λB X 

√ 

2 log k 

� n/ 3 � + 3 B X B D (k ) 
λ

√ 

2 ln (2 /δ) 

n 

, 

(13) 

here B D (k ) 
λ

= sup 

M ∈D (k ) 
λ

‖ M ‖ ∗. 

roof. See Appendix C . �

The generalization bounds given by Theorem 1 exhibit a stan-

ard O (1 
√ 

n ) rate. They also confirm that restricting the number

 of bases is a good strategy to guard against overfitting when the

eature dimension d is high. Interestingly, note that due to the con-

ex hull structure of our basis set, B D (k ) 
λ

= sup 

M ∈D (k ) 
λ

‖ M ‖ ∗ can be

asily bounded by a quantity independent of d for any k ≥ 1 and

ny dual norm ‖ · ‖ ∗ . We thus have complete freedom to choose

he primal norm ‖ · ‖ so as to make B X = sup x , x ′ , x ′′ ∈X ‖ x ( x ′ − x ′′ ) T ‖
s small as possible. A good choice of primal norm is the infin-

ty norm ‖ A ‖ ∞ 

= max d 
i, j=1 

| A i, j | , which is independent of d . For in-

tance, if X = [0 , 1] d we have B X = 1 . The dual norm of the infinity

orm being the L 1 norm, we then have for any k ≥ 1: 

 D (k ) 
λ

= sup 

M ∈D (k ) 
λ

‖ M ‖ 1 = sup 

M ∈D (k ) 
λ

d ∑ 

i, j=1 

| M i, j | ≤ 4 λ. (14)

Theorem 1 is directly comparable to the results of Cao et al.

10] , who derived generalization bounds for similarity learning un-

er various norm regularizers. Their bounds have a similar form,

ut exhibit a dependence on the feature dimension d which is at

east logarithmic (sometimes even linear, depending on the norm

sed to regularize the empirical risk). In contrast, our bounds de-

end logarithmically on k 
 d . This offers more flexibility in the

igh-dimensional setting because k can be directly controlled by

topping our algorithm after k 
 d iterations to guarantee that the

utput is in D 

(k ) 
λ

. This is highlighted by the following corollary,

hich combines the generalization bounds of Theorem 1 with the

 (1/ k ) convergence rate of our Frank-Wolfe optimization algorithm

 Proposition 1 ). 

orollary 1 (Excess risk bound) . Let S be a set of n points drawn

.i.d. from μ, λ> 0 . Given k ∈ { 1 , . . . , 2 d(d − 1) } , let M 

( k ) be the solu-

ion returned after k iterations of Algorithm 3 applied to the problem

in M ∈D λ L S ( M ) , and let M 

∗ ∈ arg min M ∈D λ L ( M ) be the expected

isk minimizer over D λ. For any δ > 0, with probability 1 − δ we

ave 

 ( M 

(k ) ) −L ( M 

∗) ≤ 16 Lλ2 

k + 2 

+ 16 λB X 

√ 

2 log k 

� n/ 3 � + 5 B X B D (k ) 
λ

√ 

ln (4 /δ) 

n 

. 

roof. See Appendix D . �

Corollary 1 shows that the excess risk with respect to the ex-

ected risk minimizer M 

∗ depends on a trade-off between opti-

ization error and complexity of the hypothesis class. Remarkably,

his trade-off is ruled by the number k of iterations of the algo-

ithm: as k increases, the optimization error term decreases but

he Rademacher complexity terms gets larger. We thus obtain an

xcess risk bound which adapts to the actual sparsity of the solu-

ion output by our algorithm. This is in accordance with our over-

ll goal of reducing overfitting by allowing a strict control on the

omplexity of the learned similarity, and justifies an early-stopping

trategy to achieve a good reduction in empirical risk by select-

ng the most useful bases while keeping the solution complexity

mall enough. Again, the excess risk is independent of the feature
imension d , suggesting that in the high-dimensional setting it is

ossible to find sparse solutions with small excess risk. To the best

f our knowledge, this is the first result of this nature for metric

r similarity learning. 

emark 2 (Approximation of empirical risk by subsampling) . The

mpirical risk (8) is a sum of O ( n 3 ) term, which can be costly

o minimize in the large-scale setting. To reduce the computa-

ional cost, an alternative to the mini-batch strategy described in

ection 3.2.3 is to randomly subsample M terms of the sum (e.g.,

niformly without replacement) and to solve the resulting approx-

mate empirical risk minimization problem. For general problems

nvolving U -statistics, Clémençon et al. [18] showed that sampling

nly M = O (n ) terms is sufficient to maintain the O (1 / 
√ 

n ) rate.

hese arguments can be adapted to our setting to obtain results

imilar to Theorem 1 and Corollary 1 for this subsampled empiri-

al risk. 

. Experiments 

In this section, we present experiments to evaluate the perfor-

ance and robustness of hdsl . In Section 5.1 , we use synthetic

ata to study the performance of our approach in terms of similar-

ty recovery and generalization in high dimensions in a controlled

nvironment. Section 5.2 evaluates our algorithm against compet-

ng approaches on classification and dimensionality reduction us-

ng real-world datasets. 

.1. Experiments on synthetic data 

We first conduct experiments on synthetic datasets in order to

ddress two questions: 

1. Is the algorithm able to recover the ground truth sparse simi-

larity function from (potentially weak) similarity judgments? 

2. How well does the algorithm generalize as the dimensionality

increases? 

.1.1. Similarity recovery 

To investigate the algorithm’s ability to recover the underly-

ng similarity, we generate a ground truth similarity metric M ∈
 

d×d where d = 20 0 0 . M is constructed as a convex combination

f 100 randomly selected rank-one 4-sparse bases as specified in

ection 3.1 . The combination coefficients are drawn from a Dirich-

et distribution with shape parameter 9 and scale parameter 0.5.

ithout loss of generality, we choose the metric to be block struc-

ured by restricting the basis selection from two blocks. This makes

he resulting matrix easier to visualize, as show in Fig. 2 (a). 

We then generate 50 0 0 training samples from the uniform dis-

ribution on [0,1] with 2% sparsity. From this sample, we create

0,0 0 0 training triplets {( x 1 , x 2 , x 3 )} where x 1 is randomly picked

nd x 2 (or x 3 ) is sampled among x 1 ’s top α% similar (or dissimilar)

amples as measured by the ground truth metric M . The param-

ter α controls the “quality” of the triplet constraints: a larger α
eads to less similar (or dissimilar) samples in the triplets, thereby

roviding a weaker signal about the underlying similarity. We ex-

eriment with various α (10%, 20%, 25%, 30%) to investigate the

obustness of hdsl to the quality of the supervision. In all our ex-

eriments, we use λ = 100 . 

esults. We aim to measure how accurately we recover the entries

i.e., pairs of features) that are active in the ground truth similarity

s training proceeds. To do so, at each iteration k of hdsl , we rank

ach pair of features by descending order of the absolute value of

he corresponding entry in the current matrix M 

( k ) . We then com-

ute the Area under the ROC Curve (AUC) of the ranking induced

y the similarity with respect to the list of active entries in the
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Fig. 1. Similarity recovery experiment on synthetic data. (a) and (b) show the AUC scores (for feature recovery and entry recovery respectively) along the iterations of the 

algorithm for different values of α. 

Fig. 2. Similarity recovery experiment on synthetic data. (a) shows the underlying ground truth similarity, where blue dots represent positive entries and red dots represent 

negative entries (combination coefficients are not displayed). (b) shows the similarity learned by hdsl ( α = 20%), which is visually very close to the ground truth. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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ground truth similarity. The AUC is well-suited to the imbalanced

setting (as active entries in the ground truth are a small subset of

all entries). It can be interpreted as the probability that a random

entry that is active in the ground truth is ranked higher than a

random inactive one. Following a similar process, we also compute

an AUC score for individual features: this is done by ranking each

feature by the L 1 norm of its associated row in the matrix. 

The AUC scores for feature and entry recovery along the iter-

ations are reported in Fig. 1 for different values of α. When the

quality of the triplet constraints is high ( α = 10%, 20%), the AUC

increases quickly to converge very close to 1.0, indicating an al-

most perfect recovery of relevant features/entries. This confirms

that hdsl is able to accurately identify the small number of correct

features and pairs of features. As α increases (i.e., the similarity

constraints become noisy and less informative), the AUC increases

at a slower pace and the final value decreases. This is expected as

the quality of the information carried by the similarity judgments

is key to recover the ground truth similarity. Yet, even for α = 30%,

the final AUC score is still very high (above 0.85 for both feature

and entry recovery). This good recovery behavior is confirmed by

the visual representations of the ground truth and learned similar-

ity matrices shown in Fig. 2 . We observe that the learned similar-

ity (when α = 20 %) clearly recovers the block structure of the true
 o  
imilarity, and is able to correctly identify most individual entries

ith very few false positives. 

.1.2. Link prediction 

We now investigate the ability of our algorithm to generalize

ell as the feature dimensionality increases by conducting a signed

ink prediction experiment, which is the task of distinguishing pos-

tive and negative interactions in a network [see e.g., 1 ]. 

We generate 500 samples with different number of features d

anging from 50 0 0 to 1,0 0 0,0 0 0. As the dimension d increases, we

ecrease the average sparsity of data (from 0.02 to 0.002) to limit

unning time. In real high-dimensional datasets, features typically

o not appear in a uniform frequency: instead, a small portion of

eatures tends to dominate the others. Following this observation,

e generate features whose frequency follow a power law style

istribution, as shown in Fig. 3 (a). The ground truth similarity is

hen a convex combination of randomly selected bases as in the

revious experiment, except that we restrict the selected bases to

hose involving features that are frequent enough (a frequency of

t least 0.1 was chosen for this experiment). This is needed to en-

ure that the features involved in the ground truth similarity will

ccur at least a few times in our small dataset, but we emphasize
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Fig. 3. Link prediction experiment on synthetic data. (a) shows the feature frequency distribution, which follows a power law as in many real high-dimensional datasets. (b) 

shows AUC scores on the test set for different number of features (in log scale) and number of training constraints per link. 
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2 http://www.csie.ntu.edu.tw/ ∼cjlin/libsvmtools/datasets/ 
hat the algorithm is exposed to the entire feature set and does

ot know which features are relevant. 

Based on the samples and the ground truth similarity, we

enerate signed link observations of the form { x i 
1 
, x i 

2 
, y i } N 

i 
( y i ∈

−1 , 1 } ). We associate the label y i = 1 (positive link) to pairs for

hich the similarity between x 1 and x 2 ranks in the top 5% of x 1 ’s

or x 2 ’s) neighbors according to the ground truth similarity mea-

ure. On the other hand, y i = −1 (negative link) indicates that the

imilarity ranks in the bottom 5% of x 1 ’s (or x 2 ’s) neighbors. We

plit these link observations into training, validation and test sets

f 1,0 0 0 observations each. Triplets constraints are generated from

raining links — given a pair x 1 , x 2 , y , we randomly sample x 3 as a

imilar (if y = −1 ) or dissimilar (if y = 1 ) node. The validation set

s used to tune the hyperparameter λ and for early stopping. 

esults. We measure the generalization ability of hdsl by the AUC

core of link prediction on the test set. Fig. 3 (b) reports these AUC

cores across different dimensions. We also show results for differ-

nt numbers of constraints per training link. The results are aver-

ged over 5 random runs. As one would expect, the task becomes

ncreasingly difficult as the dimension becomes larger, since the

ize of the training set is fixed (10 0 0 training links generated from

00 nodes). However, the performance decreases slowly (roughly

ogarithmically) with the dimension, and we achieve very high AUC

cores (larger than 0.9) even for one million features. We also see

hat training from more constraints tends to improve the predic-

ion performance. 

.2. Experiments on real datasets 

We now present comparative experiments on several high-

imensional real datasets, evaluating our approach against several

aselines and competing methods. 

.2.1. Setup 

atasets. We report experimental results on several real-world

lassification datasets with up to 10 0,0 0 0 features. Dorothea and

exter come from the NIPS 2003 feature selection challenge

31] and are respectively pharmaceutical and text data with pre-

efined splitting into training, validation and test sets. They both

ontain a large proportion of noisy/irrelevant features. Reuters CV1

s a popular text classification dataset with bag-of-words represen-

ation. We use the binary classification version from the LIBSVM
ataset collection 

2 (with 60%/20%/20% random splits) and the 4-

lasses version (with 40%/30%/30% random splits) introduced by

ai and He [9] . Detailed information on the datasets and splits is

iven in Table 2 . All datasets are normalized such that each feature

akes values in [0,1]. 

ompeting methods. We compare the proposed approach ( hdsl ) to

everal methods: 

• dot : The standard dot product, which is equivalent to setting

M = I . 

• diag : Diagonal similarity learning (i.e., a weighting of the fea-

tures), as done in [26] . We obtain it by minimizing the same

loss as in hdsl with � 2 and � 1 regularization, i.e., 

min 

w ∈ R d 
f ( w ) = 

1 

T 

T ∑ 

t=1 

� 
(〈 A 

t 
, diag ( w ) 〉 )+ λ�( w ) , 

where �( w ) ∈ {‖ w ‖ 2 
2 
, ‖ w ‖ 1 } and λ is the regularization pa-

rameter. Optimization was done using (proximal) gradient de-

scent. 

• rp+oasis : Similarity learning in random projected space. Given

r 
 d , let R ∈ R 

d×r be a matrix where each entry r ij is randomly

drawn from N (0 , 1) . For each data instance x ∈ R 

d , we generate

˜ x = 

1 √ 

r 
R 

T x ∈ R 

r and use this reduced data in OASIS [15] , a fast

online method to learn a bilinear similarity from triplet con-

straints. 

• pca+oasis : Similarity learning in PCA space. Same as rp+oasis ,

except that PCA is used instead of random projections to

project the data into R 

r . 

• svm : Support Vector Machines. We use linear SVM, which is

known to perform well for sparse high-dimensional data [12] ,

with � 2 and � 1 regularization. We also use nonlinear SVM with

the polynomial kernel (2nd and 3rd degree) popular in text

classification [14] . The SVM models are trained using liblinear

[21] and libsvm [13] with 1vs1 paradigm for multiclass. 

We have also tried to compare our method with Comet [2] ,

hich also learns a bilinear similarity in a greedy fashion with

ank-1 updates. However, as mentioned in Section 2.1 their coor-

inate descent algorithm has a time complexity of O ( d 2 ) per iter-

tion, as well as overall memory complexity of O ( d 2 ). We run the

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Table 2 

Datasets used in the experiments. 

Datasets Dimension Sparsity Training size Validation size Test size 

dexter 20,0 0 0 0.48% 300 300 20 0 0 

dorothea 10 0,0 0 0 0.91% 800 350 800 

rcv1_2 47,236 0.16% 12,145 4048 4049 

rcv1_4 29,992 0.26% 3850 2888 2887 

Table 3 

k -NN test error (%) of the similarities learned with each method. The number of features 

used by each similarity (when smaller than d ) is given in brackets. Best accuracy on each 

dataset is shown in bold. 

Dataset dot rp + oasis pca + oasis diag - � 2 diag - � 1 hdsl 

dexter 20.1 24.0 [10 0 0] 9.3 [50] 8.4 8.4 [773] 6.5 [183] 

dorothea 9.3 11.4 [150] 9.9 [800] 6.8 6.6 [860] 6.5 [731] 

rcv1_2 6.9 7.0 [20 0 0] 4.5 [1500] 3.5 3.7 [5289] 3.4 [2126] 

rcv1_4 11.2 10.6 [10 0 0] 6.1 [800] 6.2 7.2 [3878] 5.7 [1888] 

Table 4 

Test error (%) of several SVM variants compared to hdsl . As in Table 3 , the number of 

features is given in brackets and best accuracies are shown in bold. 

Dataset svm -poly-2 svm -poly-3 svm -linear- � 2 svm -linear- � 1 hdsl 

dexter 9.4 9.2 8.9 8.9 [281] 6.5 [183] 

dorothea 7 6.6 8.1 6.6 [366] 6.5 [731] 

rcv1_2 3.4 3.3 3.5 4.0 [1915] 3.4 [2126] 

rcv1_4 5.7 5.7 5.1 5.7 [2770] 5.7 [1888] 
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sparse version of code provided by the authors 3 on a machine with

a 2.3GHz Intel Core i7 and 16GB memory. On the dexter dataset

(which has the smallest dimensionality in our benchmark), a single

pass over the features took more than 4 hours, while the authors

reported that about 10 passes are generally needed for Comet to

converge [2] . On the dorothea dataset, Comet returned a mem-

ory error. As a result, we did not include Comet to our empiri-

cal comparison. In contrast, on the same hardware, our approach

hdsl takes less than 1 minute on dexter and less than 1 hour on

dorothea. 

Training procedure. For all similarity learning algorithms, we gen-

erate 15 training constraints for each instance by identifying its 3

target neighbors (nearest neighbors with same label) and 5 im-

postors (nearest neighbors with different label), following [58] .

Due to the very small number of training instances in dexter,

we found that better performance is achieved across all methods

when using 20 training constraints per instance, drawn at ran-

dom based on its label. All parameters are tuned using the ac-

curacy on the validation set. For hdsl , we use the fast heuris-

tic described in Section 3.2.3 and tune the scale parameter λ ∈
{ 1 , 10 , . . . , 10 9 } . The regularization parameters of diag and svm are

tuned in { 10 −9 , . . . , 10 8 } and the “aggressiveness” parameter of OA-

SIS is tuned in { 10 −9 , . . . , 10 2 } . 

5.2.2. Results 

Classification performance. We first investigate the performance of

each similarity learning approach in k -NN classification ( k was set

to 3 for all experiments). For rp+oasis and pca+oasis , we choose

the dimension r of the reduced space based on the accuracy of

the learned similarity on the validation set, limiting our search to

r ≤ 20 0 0 because OASIS is extremely slow beyond this point. 4 Sim-

ilarly, we use the performance on validation data to do early stop-
3 https://github.com/yuvalatzmon/COMET 
4 Note that the number of PCA dimensions is at most the number of training 

examples. Therefore, for dexter and dorothea, r is at most 300 and 800 respectively. 

h  

c  

h  

n  

a

ing in hdsl , which also has the effect of restricting the number

f features used by the learned similarity. 

Table 3 shows the k -NN classification performance. We can first

bserve that rp+oasis often performs worse than dot , which is

onsistent with previous observations showing that a large number

f random projections may be needed to obtain good performance

23] . pca+oasis gives much better results, but is generally outper-

ormed by a simple diagonal similarity learned directly in the orig-

nal high-dimensional space. hdsl , however, outperforms all other

lgorithms on these datasets, including diag . This shows the good

eneralization performance of the proposed approach, even though

he number of training samples is sometimes very small compared

o the number of features, as in dexter and dorothea. It also shows

he relevance of encoding “second order” information (pairwise in-

eractions between the original features) in the similarity instead

f considering a simple weighting of features as in diag . 

Table 4 shows the comparison with SVMs. Interestingly, hdsl

utperforms all SVM variants on dexter and dorothea, both of

hich have a large proportion of irrelevant features. This shows

hat its greedy strategy and early stopping mechanism achieves

etter feature selection and generalization than the � 1 version of

inear SVM. On the other two datasets, hdsl is competitive with

VM, although it is outperformed slightly by one variant ( svm -

oly-3 on rcv1_2 and svm -linear- � 2 on rcv1_4), both of which rely

n all features. 

eature selection and sparsity. We now focus on the ability of hdsl

o perform feature selection and more generally to learn sparse

imilarity functions. To better understand the behavior of hdsl , we

how in Fig. 4 the number of selected features as a function of the

teration number for two of the datasets. Remember that at most

wo new features can be added at each iteration. Fig. 4 shows that

dsl incorporates many features early on but tends to eventually

onverge to a modest fraction of features (the same observation

olds for the other two datasets). This may explain why hdsl does

ot suffer much from overfitting even when training data is scarce

s in dexter. 
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Fig. 4. Number of active features learned by hdsl as a function of the iteration number. 

(a) dexter (20↪ 000 × 20↪ 000 matrix, 712
nonzeros)

(b) rcv1 4 (29↪ 992×29↪ 992 matrix, 5263
nonzeros)

Fig. 5. Sparsity structure of the matrix M learned by hdsl . Positive and negative entries are shown in blue and red, respectively. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 
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Another attractive characteristic of hdsl is its ability to learn a

atrix that is sparse not only on the diagonal but also off-diagonal

the proportion of nonzero entries is in the order of 0.0 0 01% for

ll datasets). In other words, the learned similarity only relies

n a few relevant pairwise interactions between features. Fig. 5

hows two examples, where we can see that hdsl is able to

xploit the product of two features as either a positive or negative

ontribution to the similarity score. This opens the door to an

nalysis of the importance of pairs of features (for instance, word

o-occurrence) for the application at hand. Finally, the extreme

parsity of the matrices allows very fast similarity computation.

ogether with the superior accuracy brought by hdsl , it makes

ur approach potentially useful in a variety of contexts ( k -NN,

lustering, ranking, etc). 

Finally, it is also worth noticing that hdsl uses significantly less

eatures than diag - � 1 (see numbers in brackets in Table 3 ). We at-

ribute this to the extra modeling capability brought by the non-

iagonal similarity observed in Fig. 5 . 5 
5 Note that hdsl uses roughly the same number of features as svm -linear- � 1 
 Table 4 ), but it is difficult to draw any solid conclusion because the objective and 

raining data for each method are different, and SVM is a combination of binary 

odels. 

W  

P  

p

imension reduction. We now investigate the potential of hdsl for

imensionality reduction. Recall that hdsl learns a sequence of

SD matrices M 

( k ) . We can use the square root of M 

( k ) to project

he data into a new space where the dot product is equivalent to

 

M 

(k ) in the original space. The dimension of the projection space

s equal to the rank of M 

( k ) , which is upper bounded by k + 1 (see

ection 3.1 ). A single run of hdsl can thus be seen as incrementally

uilding projection spaces of increasing dimensionality. 

To assess the dimensionality reduction quality of hdsl (mea-

ured by k -NN classification error on the test set), we plot its per-

ormance at various iterations during the runs that generated the

esults of Table 3 . We compare it to two standard dimensionality

eduction techniques: random projection and PCA. We also evalu-

te rp+oasis and pca+oasis , i.e., learn a similarity with OASIS on

op of the RP and PCA features. 6 Note that OASIS was tuned sep-

rately for each projection size, making the comparison a bit un-

air to hdsl . The results are shown in Fig. 6 . As observed earlier,

andom projection-based approaches achieve poor performance.

hen the features are not too noisy (as in rcv1_2 and rcv1_4),

CA-based methods are better than hdsl at compressing the space
6 Again, we were not able to run OASIS beyond a certain dimension due to com- 

utational complexity. 
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Fig. 6. k -NN test error as a function of the dimensionality of the space (in log scale). Best seen in color. 
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into very few dimensions, but hdsl eventually catches up. On the

other hand, PCA suffers heavily from the presence of noise (dex-

ter and dorothea), while hdsl is able to quickly improve upon the

standard similarity in the original space. Finally, on all datasets,

we observe that hdsl converges to a stationary dimension with-

out overfitting, unlike pca+oasis which exhibits signs of overfitting

on dexter and rcv1_4 especially. 

6. Concluding remarks 

In this work, we proposed an efficient approach to learn

similarity functions from high-dimensional sparse data. This is

achieved by forming the similarity as a combination of simple

sparse basis elements that operate on only two features and the

use of an (approximate) Frank-Wolfe algorithm. Our algorithm is

completed by a novel generalization analysis which validates the

design choices and highlights the robustness of our approach to

high dimensions. Experiments on synthetic and real datasets con-

firmed the good practical behavior of our method for classification

and dimensionality reduction. The learned similarity may be ap-

plied to other algorithms that rely on a similarity function (clus-

tering, ranking), or as a way to preprocess the data before applying

another learning algorithm. We also note that St.Amand and Huan

[55] have recently extended our hdsl algorithm to learn local met-

rics for different regions of the space in addition to the global met-

ric. 
We leave several fundamental questions for future work. In

articular, our framework could be extended to optimize a loss

unction related to a linear classification objective. We could then

ttempt to adapt our analysis to obtain generalization bounds

irectly for the classification error. Such bounds exist in the

iterature [see 5,30 ] but exhibit a classic dependence on the data

imension that could be avoided with our approach. Another

nteresting, though challenging direction is to formally study the

onditions under which a sparse ground truth similarity can be

ccurately recovered from similarity judgments. Inspiration could

e drawn from the related problem of sparse recovery in the

ompressed sensing literature [22] . 
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ppendix A. Technical Lemmas 

The following classic result, known as the first Hoeffding’s de-

omposition, allows to represent a U -statistic as a sum of i.i.d.

locks. 

emma 2 ( 32 ) . Let q : Z × Z × Z → R be a real-valued function.

iven the i.i.d. random variables z 1 , z 2 , . . . , z n ∈ Z, we have 

 n (q ) = 

1 

n (n − 1)(n − 2) 

∑ 

i � = j � = k 
q ( z i , z j , z k ) 

= 

1 

n ! 

∑ 

π

1 

� n/ 3 � 
� n/ 3 � ∑ 

i =1 

q ( z π(i ) , z π(i + � n/ 3 � ) , z π(i +2 ×� n/ 3 � ) ) . 

roof. Observe that ∀ i � = j � = k, q ( z i , z j , z k ) appears once on the left

and side and U n ( q ) has 1 
n (n −1)(n −2) 

of its value, while on the right

and side it appears (n − 3)! × � n/ 3 � times, because for each of

he � n /3 � positions there are (n − 3)! possible permutations. Thus

he right hand side also has 1 
n (n −1)(n −2) 

of its function value. We

hus have the equality. �

The next technical lemma is based on the above representation.

emma 3. Let Q be a set of functions from Z 

3 to R . If z 1 , z 2 , . . . , z n ∈
are i.i.d., then we have 

 [ sup 

q ∈ Q 

1 

n (n − 1)(n − 2) 

∑ 

i � = j � = k 
q ( z i , z j , z k )] 

≤ E [ sup 

q ∈ Q 

1 

� n/ 3 � 
� n/ 3 � ∑ 

i =1 

q ( z i , z i + � n/ 3 � , z i +2 ×� n/ 3 � )] . 

roof. From Lemma 2 , we observe that 

E [ sup 

q ∈ Q 

1 

n (n − 1)(n − 2) 

∑ 

z � = z ′ � = z ′′ 
q ( z , z ′ , z ′′ )] 

= E [ sup 

q ∈ Q 

1 

n ! 

∑ 

π

1 

� n/ 3 � 
� n/ 3 � ∑ 

i =1 

q ( z π(i ) , z π(i + � n/ 3 � ) , z π(i +2 ×� n/ 3 � ) )] 

≤ 1 

n ! 
E [ 

∑ 

π

sup 

q ∈ Q 

1 

� n/ 3 � 
� n/ 3 � ∑ 

i =1 

q ( z π(i ) , z π(i + � n/ 3 � ) , z π(i +2 ×� n/ 3 � ) )] 

= 

1 

n ! 

∑ 

π

E [ sup 

q ∈ Q 

1 

� n/ 3 � 
� n/ 3 � ∑ 

i =1 

q ( z π(i ) , z π(i + � n/ 3 � ) , z π(i +2 ×� n/ 3 � ) )] 

= E [ sup 

q ∈ Q 

1 

� n/ 3 � 
� n/ 3 � ∑ 

i =1 

q ( z i , z i + � n/ 3 � , z i +2 ×� n/ 3 � )] , 

hich proves the result. �

Finally, we recall McDiarmid’s inequality. 

emma 4 ( 45 ) . Let Z be some set and let f : Z 

n → R be a function

f n variables such that for some c > 0, for all i ∈ { 1 , . . . , n } and for

ll z 1 , . . . , z n , z 
′ 
i 
∈ Z, we have 

 f (z 1 , . . . , z i −1 , z i , z i +1 , . . . , z n ) − f (z 1 , . . . , z i −1 , z 
′ 
i , z i +1 , . . . , z n ) | ≤ c

et Z 1 , . . . , Z n be n independent random variables taking values in Z .

hen, with probability at least 1 − δ, we have 

 f (Z 1 , . . . , Z n ) − E [ f (Z 1 , . . . , Z n )] | ≤ c 

√ 

n log (2 /δ) 
. 
2 

s  
ppendix B. Proof of Lemma 1 

roof. Given a training sample S = { z i = ( x i , y i ) : i ∈ 1 , . . . , n } ∼
n , we denote the set of admissible triplets involved in the

ademacher complexity by 

 S = 

{
i : y i = y i + � n/ 3 � � = y i +2 ×� n/ 3 � , i = 1 , . . . , � n/ 3 � }, 

nd let m = | A S | ≤ � n/ 3 � . We have: 

 n (F 

(k ) ) = E σ,S∼μn sup 

M ∈D (k ) 
λ

1 

� n/ 3 � 
×

∑ 

i ∈ A S 
σi � (〈 x i ( x i + � n/ 3 � − x i +2 ×� n/ 3 � ) T , M 〉 ) 

≤ E σ,S∼μn sup 

M ∈D (k ) 
λ

1 

� n/ 3 � 
∑ 

i ∈ A S 
σi 〈 x i ( x i + � n/ 3 � −x i +2 ×� n/ 3 � ) T , M 〉

(B.1) 

= 

m 

� n/ 3 � E σ,S∼μn 

1 

m 

sup 

M ∈D (k ) 
λ

∑ 

i ∈ A S 
σi 〈 x i ( x i + � n/ 3 � − x i +2 ×� n/ 3 � ) T , M 〉 

≤ m 

� n/ 3 � max 
u ∈ U 

‖ u − ū ‖ 2 

√ 

2 log k 

m 

(B.2) 

= 

1 

� n/ 3 � max 
u ∈ U 

‖ u − ū ‖ 2 

√ 

2 log k 

≤ 1 

� n/ 3 � 8 λB X 
√ 

m 

√ 

2 log k (B.3) 

≤ 8 λB X 

√ 

2 log k 

� n/ 3 � , 
here the set U = { u τ ∈ R 

m : τ = 1 , . . . , k, ( u τ ) i = 〈 x γ (i ) ( x γ (i ) + � n/ 3 � −
 γ (i ) +2 ×� n/ 3 � ) T , B τ 〉 , γ : { 1 , . . . , m } → A S is bijective , B τ ∈ B λ} , and

¯
 = 

1 
k 

∑ k 
τ=1 u τ . The inequality (B.1) follows from the contraction

roperty [see 52 , Lemma 26.9]. The inequality (B.2) follows from

he fact M is a convex combination of set of k bases combined

ith the properties in Shalev-Shwartz and Ben-David [52 , Lemma

6.7, 26.8]. Finally, inequality (B.3) follows from the sparsity struc-

ure of the bases and the fact that x i ( x j − x k ) 
T has no entries with

bsolute value greater than B X . �

ppendix C. Proof of Theorem 1 

roof. Let us consider the function 

(S) = sup 

M ∈D (k ) 
λ

[ L ( M ) − L S ( M )] . 

Let S = { z 1 , . . . , z q −1 , z q , z q +1 , . . . , z n } and S ′ = { z 1 , . . . , z q −1 ,

 

′ 
q , z q +1 , . . . , z n } be two samples differing by exactly one point. We

ave: 

(S ′ ) − �(S) ≤ sup 

M ∈D (k ) 
λ

[ L S ( M ) − L S ′ ( M )] 

≤ 1 

n (n − 1)(n − 2) 
sup 

M ∈D (k ) 
λ

∑ 

i � = j � = k 
| L M 

( z i , z j , z k ) 

− L M 

( z ′ i , z ′ j , z ′ k ) | 
≤ 1 

n (n − 1)(n − 2) 
6(n − 1)(n − 2) B X B D (k ) 

λ

= 

6 

n 

B X B D (k ) 
λ

. 

he first inequality comes from the fact that the difference of

uprema does not exceed the supremum of the difference. The
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last inequality makes use of (11) . Similarly, we can obtain �(S) −
�(S ′ ) ≤ 6 B X B D (k ) 

λ

/n, thus we have | �(S) − �(S ′ ) | ≤ 6 B X B D (k ) 
λ

/n .

We can therefore apply McDiarmid’s inequality (see Lemma 4 in

Appendix A ) to �( S ): for any δ > 0, with probability at least 1 − δ
we have: 

sup 

M ∈D (k ) 
λ

[ L ( M ) − L S ( M )] 

≤ E S sup 

M ∈D (k ) 
λ

[ L ( M ) − L S ( M )] + 3 B X B D (k ) 
λ

√ 

2 ln (2 /δ) 

n 

. (C.1)

We thus need to bound E S sup 

M ∈D (k ) 
λ

[ L ( M ) − L S ( M )] . Ap-

plying Lemma 3 (see Appendix A ) with q M 

( z , z ′ , z ′′ ) = L ( M ) −
L M 

( z , z ′ , z ′′ ) gives 

E S sup 

M ∈D (k ) 
λ

[ L ( M ) − L S ( M )] ≤ E S sup 

M ∈D (k ) 
λ

[ L ( M ) − L̄ S ( M )] , 

where L̄ S ( M ) = 

1 
� n/ 3 � 

∑ � n/ 3 � 
i =1 

L M 

( z i , z i + � n/ 3 � , z i +2 ×� n/ 3 � ) . Let

S̄ = { ̄z 1 , . . . , ̄z n } be an i.i.d. sample independent of S . Then 

E S sup 

M ∈D (k ) 
λ

[ L ( M ) − L̄ S ( M )] = E S sup 

M ∈D (k ) 
λ

[ E S̄ L̄ S̄ ( M ) − L̄ S ( M )] 

≤ E S, ̄S sup 

M ∈D (k ) 
λ

[ ̄L S̄ ( M ) − L̄ S ( M )] . 

Let σ1 , . . . , σ� n 
3 
� ∈ {−1 , 1 } be a collection of i.i.d. Rademacher

variables. By standard symmetrization techniques, we have that 

E S, ̄S sup 

M ∈D (k ) 
λ

[ ̄L S̄ ( M ) − L̄ S ( M )] 

= E σ,S, ̄S 

1 

� n/ 3 � sup 

M ∈D (k ) 
λ

� n/ 3 � ∑ 

i =1 

σi 

[
L M 

( ̄z i , ̄z i + � n/ 3 � , ̄z i +2 ×� n/ 3 � ) 

− L M 

( z i , z i + � n/ 3 � , z i +2 ×� n/ 3 � ) 
]

≤ 1 

� n/ 3 � [ E σ, ̄S sup 

M ∈D (k ) 
λ

� n/ 3 � ∑ 

i =1 

σi L M 

( ̄z i , ̄z i + � n/ 3 � , ̄z i +2 ×� n/ 3 � ) 

+ E σ,S sup 

M ∈D (k ) 
λ

� n/ 3 � ∑ 

i =1 

σi L M 

( z i , z i + � n/ 3 � , z i +2 ×� n/ 3 � )] 

= 2 E σ,S 
1 

� n/ 3 � sup 

M ∈D (k ) 
λ

� n/ 3 � ∑ 

i =1 

σi L M 

( z i , z i + � n/ 3 � , z i +2 ×� n/ 3 � ) = 2 R n (F 

(k ) ) .

We have thus shown: 

E S sup 

M ∈D (k ) 
λ

[ L ( M ) − L S ( M )] ≤ 2 R n (F 

(k ) ) . (C.2)

Plugging (C.2) into (C.1) and using Lemma 1 , we get the desired

result. �

Appendix D. Proof of Corollary 1 

Proof. The excess risk of M 

( k ) with respect to M 

∗ can be decom-

posed as follows: 

L ( M 

(k ) ) − L ( M 

∗) = L ( M 

(k ) ) − L S ( M 

(k ) ) + L S ( M 

(k ) ) − L S ( M S ) 

+ L S ( M S ) − L S ( M 

∗) + L S ( M 

∗) − L ( M 

∗) 

≤ L ( M 

(k ) ) − L S ( M 

(k ) ) ︸ ︷︷ ︸ 
generalization error 

+ L S ( M 

(k ) ) − L S ( M S ) ︸ ︷︷ ︸ 
optimization error 

+ L S ( M 

∗) − L ( M 

∗) , 

(D.1

where M S ∈ arg min M ∈D L S ( M ) is an empirical risk minimizer. 

λ

The generalization error term in (D.1) can be bounded using

heorem 1 (recalling that M 

(k ) ∈ D 

(k ) 
λ

by construction), while the

ptimization error term is bounded by the convergence rate of our

rank-Wolfe algorithm ( Proposition 1 ). In the last term, M 

∗ does

ot depend on S , hence we can use Hoeffding’s inequality together

ith (11) and (14) to obtain that for any δ > 0, with probability at

east 1 − δ/ 2 : 

 S ( M 

∗) − L ( M 

∗) ≤ B X B D (k ) 
λ

√ 

log (4 /δ) 

2 n 

. 

e get the corollary by combining the above results using the

nion bound. �
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