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a b s t r a c t 

Network Traffic Classification is a fundamental component in network management, and the fast-paced 

advances in Machine Learning have motivated the application of learning techniques to identify network 

traffic. The intrinsic features of Internet networks lead to imbalanced class distributions when datasets 

are conformed, phenomena called Class Imbalance and that is attaching an increasing attention in many 

research fields. In spite of performance losses due to Class Imbalance, this issue has not been thoroughly 

studied in Network Traffic Classification and some previous works are limited to few solutions and/or 

assumed misleading methodological approaches. In this article, we deal with Class Imbalance in Network 

Traffic Classification, studying the presence of this phenomenon and analyzing a wide number of solu- 

tions in two different Internet environments: a lab network and a high-speed backbone. Namely, we ex- 

perimented with 21 data-level algorithms, six ensemble methods and one cost-level approach. Through- 

out the experiments performed, we have applied the most recent methodological aspects for imbalanced 

problems, such as: DOB-SCV validation approach or the performance metrics assumed. And last but not 

least, the strategies to tune parameters and our algorithm implementations to adapt binary methods to 

multiclass problems are presented and shared with the research community, including two ensemble 

techniques used for the first time in Machine Learning to the best of our knowledge. Our experimental 

results reveal that some techniques mitigated Class Imbalance with interesting benefit for traffic classifi- 

cation models. More specifically, some algorithms reached increases greater than 8% in overall accuracy 

and greater than 4% in AUC-ROC for the most challenging network scenario. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Internet network administrators often confront vast amounts of

traffic and fast events happening in different points of Internet

networks. Controlling and managing network resources can be an

arduous task considering the fast increase of interconnected de-

vices and the complexity of underlying network topologies. Due to

the former facts, the provision of automatic tools to facilitate the

network administrators’ work is crucial and urgent. Network Traf-

fic Classification (NTC) is a fundamental functionality of network

management systems, since many cyber-attacks and network flaws

can be easily detected via monitoring the network traffic. Thereby,

researchers have shown an increasing interest in NTC recently [1] . 

Machine Learning (ML) has opened up promising future

prospects for NTC and the number of published articles propos-

ing traffic classifiers based on ML is increasing continuously
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1–10] . The application of ML to NTC brings important advantages

ver previous approaches; however new challenges have risen up

nd they must be solved to accomplish feasible classifiers. Port-

ased classifiers [11] are the earliest and simplest techniques to

haracterize Internet traffic. This kind of classifiers relies on port

umbers into IP headers to associate protocols and applications

ith flow connections according to the well-known ports defined

y the IANA [12] . Unfortunately, emerging applications (predom-

nantly peer-to-peer) that dynamically use different ports and/or

eliberately mask their communications behind IANA ports im-

ose an unresolved obstacle for port-based classifiers. This hand-

cap motivated researchers to develop more sophisticated tech-

iques, gaining a relevant relevance an approach known as Deep

acket Inspection (DPI). DPI tools [13] inspect binary informa-

ion found in the application layer of network packets in order

o seek matches between inspected packets and prefixed signa-

ures. Although network hardware is fast evolving and, thus, the

erspective of DPI tools are improving in some network scenar-

os, these techniques have major drawbacks to be implemented in

https://doi.org/10.1016/j.neucom.2018.07.091
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2018.07.091&domain=pdf
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etwork devices with scarce memory and computation resources.

PI approaches are pretty computationally weighted complicating

heir scalability, and additionally signature databases are quite dif-

cult to maintain due to zero-day protocols and software updates.

ut the most limiting issue from the point of view of Internet

ervice Providers (ISPs) is users’ privacy violation. DPI tools un-

easingly extract information from the application layer access-

ng to personal information about network users. The above rea-

ons are being motivating the advanced research on ML-based NTC,

ince ML essentially provides accurate and fast classifiers respect-

ng users’ privacy [1–3] . 

ML provides a wide number of preprocessing techniques and

earning algorithms enabling highly accurate classifiers. Learning

lgorithms are able to process the knowledge contained in training

atasets and generate predictive models describing the structure

f data. The resulting models are afterwards used to reproduce the

esponse for incoming unknown samples. If training datasets in-

lude the response to predict, we are solving a supervised learning

ask; otherwise, it is an unsupervised problem. Regarding the type

f response, the modeling task is a classification problem if the re-

ponse is categorical; whereas the regression problems cover cases

n which the responses take continuous values. 

NTC is a multiclass classification problem, since traffic

lassifiers aim to categorize objects (Internet connection flows) in

ifferent classes or traffic categories (protocols or applications).

he most extended approach in ML-based NTC is flow-based level

n which all packets associated with a connection are aggregated

nd jointly processed to create classification objects. Both super-

ised and unsupervised approaches [14] have been proposed over

ecent years evidencing the potential of ML for NTC. Although un-

upervised learning techniques have interesting advantages, such

s the no necessity of a labeling process [1] , supervised algorithms

ave outperformed unsupervised techniques in terms of accuracy.

urthermore, semi-supervised techniques [5] have also been stud-

ed with promising results. In this work we approach flow-based

TC from a supervised perspective. 

Network environments impose important challenges when ML

s employed. One of the main challenges is Class Imbalance, phe-

omena that is being actively studied in numerous research fields

n which ML is applied [15] (such as: Banking Fraud [16] , Com-

uter Vision [17] and Medical Diagnosis [18] ). A classification prob-

em is categorized as imbalanced when one or various classes are

verrepresented comparing to the others. In almost all network

nvironments some services are more often consumed than oth-

rs, which turns out non-uniform class distributions when NTC

atasets are conformed [8 , 19–22] . Class Imbalance is a key topic

n recent ML research, since imbalanced class distributions nega-

ively affect learning algorithm performances awarding the most

opulated classes and punishing the underrepresented ones. 

In this work, we provide a thoroughly study on a wide

umber of solutions to Class Imbalance for data traffic ex-

racted from different network environments and dates, which

resent dissimilar levels of imbalance. The most challenging traces

as captured recently from an ISP backbone; meanwhile, the

est of datasets were extracted from a lab network in which

sers´activities were manually simulated. Between the algorithms

tudied here to confront Class Imbalance, we include: six ensem-

le algorithms that include resampling during their training be-

ng two of them original contributions of this work; 21 well-

nown resampling algorithms and one well-known cost-sensitive

pproach. Throughout our experiments, we have applied novel

ethodological aspects that are gaining a special relevance due to

heir goodness for imbalanced problems, and they have not been

mployed in ML-based NTC yet, such as: the validation approach

OB-SCV or the performance metrics assumed. As an extra contri-

ution of our research, we make publicly available our algorithm
mplementations in order to share them with other researchers.

ome authors have already studied some solutions to Class Im-

alance for NTC datasets [8 , 21–23] ; however, none of them em-

loyed a suitable cross-validation approach to minimize covariate

hift between samples in validation folds. Furthermore, many of

hem employed outdated data, did not assume an early NTC ap-

roach and/or only considered TCP flows and excluded UDP traffic.

o the best of our knowledge, the most of techniques considered in

ur experiments have not been explored for early ML-based NTC. 

This article is structured as follows. Section 2 introduces

lass Imbalance and reviews the most recent NTC literature.

he methodological aspects applied in our experiments are pre-

ented at Section 2 along with a discussion on Class Imbalance

or our datasets. During our experiments we have assessed both

lobal and per-class performance metrics, and a novel ML valida-

ion approach (DOB-SCV) have been used to validate our results.

ection 4 presents and discusses the results obtained from the

xperiments we have carried out. Firstly, we show and discuss

he effect of the imbalanced class distributions on a base esti-

ator, which is afterwards selected as baseline for the algorithm

omparison. Secondly, we have compared a wide number of tech-

iques for Class Imbalance evaluating their performances in terms

f global metrics and statistically validating the outcomes. Thirdly,

he most interesting algorithms are selected in order to thoroughly

nalyze their performances for each individual traffic class. Finally,

ection 5 states the conclusions of this work and presents future

ork lines. 

. Previous work 

As aforementioned, many research effort s have been focused

n addressing the problem of Class Imbalance for ML problems.

hrough this section, we firstly provide an introductory view of

lass Imbalance, and afterwards we briefly review the recent ad-

ances in ML-based NTC to state an illustrative background. 

.1. Confronting class imbalance 

A wide number of real-world problems addressed with super-

ised learning fulfill the condition to be categorized as imbalanced

roblems, which has motivated the research on solutions to evade

lass Imbalance [15–18 , 23] . A two-class dataset is denoted as im-

alanced when a class (majority class) has more instances than the

ther (minority class). Standard learning algorithms were designed

nder the assumption that labels are equally distributed in train-

ng datasets biasing the classifier performances towards the major-

ty class. Different solutions have been proposed in order to correct

he negative effects of Class Imbalance, a thorough study on many

f them is provided in [24] . López et al. examined Class Imbal-

nce focusing on useful performance metrics and the reasons that

ead to performance losses in imbalanced scenarios (overlapping

egions, small disjuncts, noisy data, …). Additionally, the authors

arried out several experiments to assess the existing solutions on

ifferent binary datasets. A s Fig. 1 shows, the existing techniques

o confront Class Imbalance are categorized in three main levels

ccording to how they address the problem: 

Data level: Data-Level methods address Class Imbalance via

modifying class distributions before training, they are

also known as resampling algorithms. In order to offset

the class populations they create new minority samples

and/or remove the existing majority ones from the original

dataset. In the first case we refer to oversampling methods

[25–27] , meanwhile the techniques that reduce the number

of majority samples are known as undersampling algorithms

[28–34] . Also hybrid algorithms, which combine oversam-

pling and undersampling, have been proposed [35 , 36] . 
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Fig. 1. Categorization of solutions to Class Imbalance. 
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Algorithm level: This approach includes learning algorithms that

are able to award the minority class and punish the majority

while training. In this instance, modified versions of learning

algorithms have been proposed to tackle imbalanced distri-

butions. Some algorithm-level approaches gaining in promi-

nence are the ensemble techniques that incorporate a re-

sampling phase while creating ensembles [37–39] . 

Cost-sensitive level: In this approach the algorithms learn taking

into account for costs associated with the different classes

[40] . Thereby, a high misclassification cost is assigned to

the minority class strengthening its importance in the learn-

ing process; on the contrary, the majority class is weak-

ened. The human perception of the problem is essential for

assigning classification costs in this approach, which could

lead to human errors in some cases. There mainly exist

two approaches to cost-sensitive learning: (1) Direct Meth-

ods use costs directly associated with each class; meanwhile,

(2) Meta-learning employs pre-processing (usually data-level

techniques) and/or post-processing steps during algorithm

training. 

Some authors have compared some of the former solutions

in their respective areas. For example, Loyola-González et

al. [23] recently studied how resampling methods affect

pattern-based classifier performances. The authors adver-

tised about misleading results when global accuracy is em-

ployed as performance metric, and also they proved the ad-

vantages of resampling algorithms. 

An emerging discussion in Class Imbalance is how to adapt

the proposed solutions, which have been primarily designed for

binary problems, to multiclass problems [30 , 41 , 42] . The difficulty

of dealing with multiclass imbalanced problems is quite superior

to learning from imbalanced binary datasets as it is shown in

[43] . Decomposition techniques have attached a relevant
rominence in order to adapt two-class algorithms to multi-

lass problems. These data preprocessing techniques transform the

ulticlass problem in several binary sub-problems and once the

roblem has been simplified, algorithms are employed in all of the

ub-problems to offset Multiclass Imbalance. The most popular ap-

roaches to decompose a multiclass problem are One-versus-One

OvO) [44] and One-versus-All (OvA) [45] . 

Both decomposition methods have been studied by several

uthors. An extended analysis of imbalanced multiclass problems

s provided in [41] . The authors studied the multi-minority and

ulti-majority effects over different performance metrics using ar-

ificial datasets and Decision Tree as base learner. Additionally,

ang et al. compared some data-level and algorithm-level tech-

iques for 12 real-world datasets. A comparison between well-

nown oversampling and undersampling algorithms along with a

ost-sensitive approach was carried out in [42] . The authors eval-

ated three state-of-art ML classifiers (Support Vector Machines,

ecision Trees and K-Nearest Neighbors) in terms of average per-

lass accuracies and applying both OvO and OvA decomposition

ethods over 20 real-world problems. The obtained results reveal

hat oversampling techniques often provide better results than un-

ersampling, and confirmed the advantages of applying decom-

osition techniques to Multiclass Imbalance. Charte et al. studied

everal resampling methods over different multiclass datasets in

30] . They combined simple random undersampling and oversam-

ling along with a complex minority and majority search schemes.

urthermore, they presented measures to quantify Class Imbalance

n multiclass datasets. 

Another active discussion in Class Imbalance is how to

alidate predictive models correctly. An interesting review on per-

ormance metrics to validate classifiers in imbalanced problems is

rovided in [46] . Regarding the validation approach, some tradi-

ional methods have shown to be inefficient to validate classifiers

nder imbalanced conditions as it was pointed out in the work
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I  
47] , in which Moreno-Torres et al. analyzed different traditional

ross-validation approaches for imbalanced problems. In addition,

he authors proposed a novel validation approach called DOB-

CV (Distribution Optimally Balanced Stratified Cross Validation),

hich is more resilient to covariate shift due to random selections.

he advantages of employing DOB-SCV was afterwards confirmed

n [48] through several experiments over different learning algo-

ithms and datasets extracted from different research fields. Thus,

e have assumed this validation approach for our experiments. 

The particular characteristics of Internet networks lead to a

igh level of Class Imbalance when NTC datasets are constructed

s we discuss for two different scenarios at Section 3.3.2 . In this

ork, we study a wide number of techniques to boost algorithm

erformances in imbalanced NTC, including 21 data-level tech-

iques, six ensembles techniques and one cost-sensitive approach.

mongst these algorithms, two new ensemble techniques are an-

lyzed based on the combination of Tomek Links and ROS with

oosting learning ( Section 3.4 ). Additionally, this work constitutes

 real-world case of study in which several novel methodology as-

ects are applied at first time in NTC. Below, we briefly review

ome relevant works on ML-based NTC to introduce readers to the

tate of the art. 

.2. Recent advances in ML-based NTC 

As aforementioned, ML has opened promising prospects in NTC

nd a wide number of researchers have attached their attention

n this approach. One of the most important contributors to ML-

ased NTC was Bernialle at el. with their manuscripts [49 , 50] . They

resented the concept of early traffic identification, which consists

n flow-based classification processing only a few number of pack-

ts at the beginning of TCP connections. The proposed classifica-

ion approach accomplished satisfactory accuracies using only five

ackets per flow and clustering-based algorithms. Another work

hat discusses the effective number of packets to consider for ac-

urate early classification is [6] . Peng et al. built their datasets us-

ng ordered sequence of packet sizes considering only TCP bidi-

ectional flows. The authors reported accuracies greater than 90%

sing only the first 5–7 packet-sizes as predictors. Li and Moore

51] also experimented varying the number of packets employed to

onform their datasets. They not only measured the performances

f classifiers based on accuracy, but also they studied the latency

n training and classification. The C4.5 Decision Tree algorithm was

eported as a promising technique for NTC due to its low latency

nd its high accuracy. 

Other authors have compared different state-of-the-art algo-

ithms for NTC datasets. The earliest comparative study amongst

L algorithms was presented in [52] . Williams et al. confirmed

he observations provided in [44] , which reported Decision Trees

s one of the most suitable learning algorithms for real-time NTC.

urthermore, they studied the behavior of correlation-based fea-

ure selection algorithms on their datasets showing that reducing

he number of predictive attributes speeds up learning and classifi-

ation without significant performances losses. Soysal and Schmidt

53] also provided a comparison between different ML algorithms

onfirming that Decision Trees outperform other approaches in

erms of per-class precision and recall. As an additional contribu-

ion of their work, the authors studied how class distributions and

rrors in labeling connection flows affect classifier performances.

lso, we carried out a comparison amongst ensemble algorithms

sing Decision Tree as base estimator in [54] . We assessed sev-

ral popular ensemble algorithms showing their advantages in

erms of accuracy but, also, their penalties in latency. To address

he latency degradation, we presented a novel ensemble struc-

ure called T-DTC, which consists in a sequential chain of estima-

ors acting as filters of their respective successors. T-DTC exhibited
romising performances in terms of latency and accuracy over

atasets extracted from two different network environments. Other

uthors have proposed other traffic classification approaches using

ifferent state-of-the-art learning algorithms, such as: Naïve Bayes

lassifier in [55] ; Bayesian Neural Networks in [56] ; and Support

ector Machines in [9 , 57] . 

A current tendency in ML-based NTC is contributing to open re-

earch lines proposing ad-hoc classifiers. In the instance of [5] , the

uthors faced the problem of detecting zero-day applications and

roposed a classification approach able to detect emerging traffic

nd retrain itself to classify it. The proposed algorithm is com-

osed essentially by three modules, an Unknown Discovery mod-

le, a Bag-of-Flows based classifier and a System Update module.

nother classification approach with the capacity of self-learning,

alled Self-Learning Intelligent Classifier (SLIC), was presented in

58] . SLIC dynamically builds a training dataset and retrains a pre-

ictive model based on K-Nearest Neighbors when a new sample

s introduced in the dataset. The results reported show how clas-

ification accuracy increases in each retraining iteration. The issue

f performance deterioration over distant-based classifiers due to

nternet dynamic conditions is analyzed in [59] . Camacho et al. as-

essed the generalization ability of 1-Nearest Neighbor in dynamic

ontexts, and proposed a flow pairing technique for traffic classi-

cation based on a similarity function to address this issue. Fur-

hermore, the authors extended their experiments for P2P traffic

dentification. 

Concerning Class Imbalance, some authors have tried to pro-

ide solutions for imbalanced NTC datasets. A class-oriented

eature selection (COFS) and an ensemble learning approach are

roposed in [7] to cope with non-uniform traffic distributions.

OFS combines local and global metrics to remove redundant and

rrelevant features outperforming traditional feature selection tech-

iques. The presented ensemble scheme is composed by several

ase learners per traffic class and a subsequent weighted voting.

wo simple data-level algorithms and one cost-sensitive approach

MetaCost) were compared in [22] for datasets extracted from net-

ork traces captured between 2003 and 2007. The authors applied

andom Undersampling and Oversampling using a new strategy in

rder to detect minority and majority classes and set the ratios

etween classes. In the instance of MetaCost, the cost coefficients

ere adjusted according to a strategy based on flow-ratio. The re-

orted results show how resampling algorithms can be very effec-

ive when there are insufficient training samples and cost-sensitive

hen there are enough number of samples. Finally, undersampling

rovided other interesting advantages, such as fast execution and

raining times. Wei and Sun et al. [21] also tackled the problem

f class imbalanced for real-time NTC comparing several ensemble

echniques that combine data sampling algorithms with boosting.

he authors also proposed a hybrid approach called BalancedBoost,

hich is quite similar to other ensemble algorithms considered in

his work. BalancedBoost outperformed the rest of algorithms us-

ng the UNIBS datasets, which is composed by traffic generated

nly by target hosts. Recently a cost-sensitive algorithm based on

ata gravitation-based classifier (IDGC) has been proposed in [8] to

itigate Class Imbalance in NTC. IDGC is a modification of the al-

orithm DGC proposed in [60] , which introduce sensitiveness to

mbalanced class distributions via applying a weighting phase us-

ng ratios between classes. Peng et al. showed that IDGC overcomes

ther ensemble and cost-sensitive methods focusing only on TCP

onnections and transforming multiclass NTC in simpler two-class

atasets. Finally, we suggest reading the surveys [1–4] to get a

ore general view of NTC. 

A large proportion of the above articles reported about imbal-

nced distributions in NTC datasets, however the works that tackle

his issue are scarce. Throughout this article, we discuss Class

mbalance over real-world NTC datasets in order to insightfully
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Fig. 2. Methodology overview. 
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analyze this problem. Additionally, the absence of studies conduct-

ing experiments to assess the benefits of solutions to Class Imbal-

ance in early NTC encourages us to provide a uniform comparison

among a wide number of these algorithms. The experiments pre-

sented below were conducted employing the most sophisticated

validation approach and performance metrics for imbalanced prob-

lems up to date. The experiments were conducted employing dif-

ferent datasets composed by TCP and UDP traffic and extracted

from two different environments, which present dissimilar Class

Imbalance conditions. The classification task is faced a multiclass

perspective, so that we had to adapt techniques preliminary de-

signed for two-class problems to multiclass datasets. As part of the

contributions of this work, we make our implementations available

for the research community. 

3. Material and methods 

The methodology followed in our experiments is described

in detail through this section. Fig. 2 depicts the methodology

overview applied to all our NTC datasets. During dataset creation,

the network traces were processed to generate a collection of

77 statistical attributes over each Internet connection assuming a

flow-based classification approach. A detailed description of this

process is provided at Section 3.3 along with a discussion on Class

Imbalance in our datasets. After creating the NTC datasets, we ap-

plied the DOB-SCV approach to generate folds of instances that

were used to train and validate the traffic classifiers, and the same

folds were employed for all algorithms studied. As it was discussed

in [47 , 48] , traditional validation approaches, which rely on naïve

random selection of samples, normally present a high covariate

shift in the generated validation folds. Instead of a random selec-

tion, DOB-SCV exploits more information keeping the data distri-

butions quite similar between folds, and thus minimizing covariate

shift among folds. We generated five folds so that one fold was

used to train the algorithms and the rest to validate the predictive

model generated during each validation epoch. All results reported

in Section 4 are the average scores obtained over the five valida-

tion folds. 

Only Fold 1 was supplied to a Feature Selection (FS) algorithm

in order to rank the most relevant predictors for our problem. The
S algorithm employed, called FCBFiP, is a modified version of the

opular Fast Correlation Based Feature Selection algorithm, which

peeds up the selection process via modifying the search strat-

gy. We presented this algorithm and validated it against several

atasets in [61] . Additionally, this algorithm was previously used

n our work [54] and it is publicly available in [62] . Through FS,

e generated a ranking of predictors that was applied to each fold

o as to reduce the attribute space. For our experiments, we con-

idered subset sizes from 2 to 20 with steps of 2 features in order

o assess the solutions to Class Imbalance against different subset

izes. 

Our main contributions are achieved essentially through two

xperiments. Firstly, we employed a base estimator (described at

ection 3.1 ) to generate a baseline and compare all techniques to

t. The same base estimator was afterwards employed during the

omparison of solutions to Class Imbalance as Fig. 2 illustrates.

n the case of data-level algorithms, each fold was resampled be-

ore being used to train the base estimator, meanwhile the rest of

olds were kept unaltered for validation. For ensemble and Cost-

ensitive algorithms, the base estimator was the core of the learn-

ng process. After obtaining the results, we analyzed algorithm per-

ormances according to several global performance metrics and

tatistically validated the outcomes to extract general observations

ver all datasets ( Section 4.2 ). Finally, we observe per-class metrics

or the most promising techniques on the most challenging dataset

t Section 4.3 so as to confirm that the studied solutions reinforce

he predictiveness on minority classes. 

The algorithms to deal with Class Imbalance were collected

rom different sources. The data-level and two of the ensemble

echniques studied are available in the Python Library imbalance-

earn [63] . The boosting ensemble approaches employed are

dapted versions to multiclass problems of some algorithms pro-

ided by a third party. In order to make these algorithms suitable

or multiclass problems, we have designed different strategies to

ssist the learning process in managing ratios between classes. In

otal we have compared 21 Data-Level algorithms, six ensemble

lgorithms and one Cost-Level approach; we make accessible our

mplementations to the research community in [64] , which con-

titutes an additional contribution of this work. A more detailed

escription of all techniques and the strategies assumed to adjust
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Fig. 3. Internal set of decision rules implemented by Decision Tree. The classes to predict are C1, C2 and C3; and the predictors are X1, X2 and X3. 
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lass ratios, associate classification costs with classes and assist

he ensemble learning process is provided at Section 3.4 . The al-

orithm comparison was performed in terms of several global and

er-class performance metrics, which are introduced and described

n Section 3.2 . 

.1. Estimator choice: CART decision tree 

During the first years of research on ML-based NTC many

esearchers focused on learning algorithm comparisons to find

ut which are the most effective learning approaches. Decision

ree has shown as one of the most suitable algorithms for on-

ine NTC due to the fact that it retains an excellent ratio be-

ween classification performances and latency [2 , 51 , 52] . In these

orks the authors shown how Decision Trees outperformed other

earning approaches, such as SVM, Neural Networks and Naïve

ayes. 

CART Decision tree is a learning algorithm that iteratively cre-

tes decision rules by splitting the attributes space according to an

nformation-based criterion, normally trying to minimize metrics

uch as Information Gain or GINI Impurity. When Decision Trees

re trained, their internal structures implement a hierarchical set

f rules that looks like a tree, as Fig. 3 shows for two different

ases. Each level in the tree is a conditional split that describes

ecision regions to classify unknown samples. New unknown sam-

les go through this hierarchical set of heuristics until they reach

he final leaf, in which they are finally classified. The final class

s assigned according to the classes that mostly populates the de-

ision region. Fig. 2 depicts the structure of two trained CART

ecision Trees in two different conditions of Class Imbalance. In

ig. 2 (a), the training dataset kept an almost uniform class distri-

ution, on the contrary, the tree (b) was trained under high Class

mbalance. Observing the bottom levels of the tree (a), we find that

27 C1 samples were correctly modeled of a total of 170, 104 C2

amples of 167, and 142 C3 samples of a total of 163. In the in-

tance of tree (b), none of the C1 samples were correctly modeled,

nd only three C2 samples of a total of 26 did, whereas 453 C3

amples from a total of 462 were accurately modeled. 

In spite of Class Imbalance sensitivity, Decision Tree algorithms

ave been widely employed in NTC research, and consequently we

ave chosen the CART Decision Tree algorithm implemented in

65] as base estimator. The CART decision Tree we have employed

n our experiments tries to minimize the Gini Impurity. Gini Impu-

ity is defined by Eq. (1) , where p is the probability for each class
i 
nd C is the number of classes. 

 G = 1 −
C ∑ 

i =1 

p i 
2 (1) 

This measure is quite sensitive to Class distributions, since I G 
s computed using the square root of class probabilities found in

he training dataset. Therefore, if the initial dataset is highly im-

alanced, this metric will bias towards the most populated classes.

he Class Imbalance sensitivity of CART Decision Tree makes it a

ood base estimator to assess the enhancements provided by the

echniques studied. 

.2. Performance metrics 

Which performance metrics use when an imbalanced problem

s faced is already an open research topic in ML. Traditional met-

ics that measure the overall classifier performances were designed

ithout considering Class Imbalance. Thus, no every assessment

etric is appropriate for validating learning systems in this con-

ext [46] . In order to consistently compare the performances of the

ifferent solutions to Class Imbalance, both global and per-class

etrics are assumed. We consider global metrics quite worthy to

gure out the performances of classifiers on the whole network

raffic. Additionally, per-class metrics describe the behavior of the

lgorithms on individual classes so that they are very insightful to

now if minority classes are really strengthened. Below, the per-

lass and global metrics used for our comparison are introduced.

inally, we introduce other measures to assess the level of Class

mbalance in our datasets, and the statistical approach used so as

o validate the results obtained in the comparison. 

.2.1. Per-class metrics: class accuracies and AUC-ROC 

The techniques to mitigate Class Imbalance are expected to re-

nforce the predictive power on minority classes and, eventually,

eaken the majority classes. Therefore, it is crucial to evaluate

he classifiers in terms of metrics that describe the performances

n individual classes. To this aim, we assume per-class accura-

ies and AUC-ROCs (Area Under Curve – Receiving Operating Char-

cteristics). The former is a general metric and it is defined by

q. (2) , where TP i denotes the true positives on samples belonging

o class i (note that ACC i is similar to per-class recall [46] ). The lat-

er is a scalar metric computed from the ROC curve. ROC curve is a

raphical representation of binary classifier performances in terms

f true positives and false positives. We have extended this bi-

ary metric to multiclass problems using One-versus-All approach.
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AUC-ROC method is quite interesting for imbalanced datasets, since

it measures the quality of classifiers irrespective of class distribu-

tions. 

AC C i = 

T P i 
# Sampl es of Cl ass i 

(2)

In order not to collapse the result section due to the high num-

ber of algorithms considered, we only present and discuss the per-

class metrics for the base estimator ( Section 4.1 ) and the most in-

teresting algorithms ( Section 4.3 ). 

3.2.2. Overall Metrics: Overall, Byte, average accuracies and 

multiclass AUC-ROC 

Global performances for classifiers are often assessed by Over-

all Accuracy (OA), OA measures the percentage of samples correctly

labeled as Eq. (3) describes. TP i denotes the number of true posi-

tives on class i and # Samples the total number of instances con-

tained in the dataset. Since flow-level classification is assumed, OA

can be considered as flow accuracy. 

OA = 

∑ 

T P i 
# Samples 

(3)

Other interesting performance is the Byte Accuracy (BA) defined

by Eq. (4) . Each Internet connection consumes network resources

in terms of duration, bytes and number of packets transferred.

From a network management perspective, measuring the quantity

of bytes correctly classified is quite reveling to figure out the qual-

ity of traffic classifiers. Thus, we report the BA score in the result

section, which is the percentage of bytes accurately classified over

the total number of bytes contained in network traces. 

BA = 

Bytes classi f ied correctly 

T otal bytes captured 
(4)

Both OA and BA metrics are quite sensitive to Class Imbalance.

If a class accumulates the most of instances and/or the most of

bytes transferred, OA and BA are not representative metrics for the

rest of minority classes. Satisfactory accuracies on majority classes

could mask poor classification rates on the minorities. To avoid

misleading observations, we have evaluated two additional well-

known metrics that accurately describe the quality of classifiers for

imbalanced problems. A reveling metric for imbalanced problems

is G-mean (GM), which is the geometric mean of all per-class ac-

curacies (or recalls [46] ). GM for a problem comprising n classes is

defined in Eq. (5) . One strategy to extend per-class metrics to mul-

ticlass metrics that summarize them is the macro averaging. The

Macro-Average is the arithmetic mean of metrics partially com-

puted for each individual class. This metric has shown more proper

for imbalanced datasets than other global scores, since the impacts

of minority and majority classes over the final score are the same.

Therefore, we assume the Multiclass AUC (MAUC), which is defined

by Eq. (6) for n classes. 

GM = 

n 

√ ∏ 

AC C i (5)

MAUC = 

∑ 

AU C i 
n 

(6)

3.3.3. Measuring the imbalance level: imbalance ratio per label 

An assessment approach to measure the level of Class Imbal-

ance in multiclass datasets was presented in [30] . This approach is

based on the imbalance ratio per label (IRLbl) defined by Eq. (7) ,

which is the ratio between the number of majority samples and

the number of samples belonging to a given class i . Thereby, IRLbl

for the majority class will be 1, meanwhile it will be larger for mi-

nority classes. 

IRLbl ( i ) = 

# Samples of ma jority class 

# Sampl es of cl ass i 
(7)
Once the IRLbl has been computed for each class, the mean and

ariance of all IRLbl values are computed to get general informa-

ion about Class Imbalance in the whole dataset. The larger the

ean of IRLbl, the higher the level of imbalance in the dataset;

nd the larger the variance, the higher the difference among class

opulations. We assume these metrics so as to figure out the

evel of difficulty imposed by imbalanced class distributions in our

atasets. 

.3.4. Statistical validation 

In our second experiment we compare a wide number of re-

ampling algorithms according to several global metrics over four

atasets. When algorithms are compared using different datasets,

he statistical significance must be verified to assure that the ob-

ained results are consistent [66] . A well-known method to com-

are a set of algorithms against different datasets is Friedman’s

est. Friedman’s Test is a non-parametric statistical method, which

ets as null hypothesis that all algorithms involved in the compar-

son achieve the same performances: in short, no statistical differ-

nces exist between them. In order to confirm or reject the null

ypothesis, algorithms are ranked for each dataset according to

heir performances, and the position that each algorithm occupies

n the ranking is assigned as scores. Then, Friedman’s score is com-

uted as Eq. (8) describes, being k the number of algorithms in

omparison, N the number of datasets and R j the score obtained

y each algorithm for the dataset j . 

2 
F = 

12 N 

k ∗ ( k + 1 ) 

[ ∑ 

j 

R 

2 
j − 0 . 25 k ∗ ( k + 1 ) 

2 

] 

(8)

Once χ2 
F is computed, the associated p -value is obtained from

 chi-squared random distribution with k − 1 degrees of freedom.

he lesser the resulting p -value, the greater the probability that

tatistical significance exists between the algorithms. 

.3. Datasets: network environments, feature extraction and level of 

lass imbalance 

Internet networks environments normally differ each other in

any features, such as: the kind of traffic observed, the quantity of

onnections belonging to each application, the topologies and traf-

c rates. These facts considerably affect the predictors contained in

TC datasets. Traffic rates could affect predictors related to Inter-

rrival Times, and network topologies may carry packet losses or

ultipath effect that influence the values of NTC predictors. Con-

equently, it is highly recommended to validate ML-based traffic

lassifiers in several network scenarios. We have selected four net-

ork traffic captures collected from two different network environ-

ents: a lab network and ISP backbone network. Table 1 includes

elevant information about the network traces employed in our ex-

eriments. 

Privacy policies normally hinder the possibility of getting third-

arty real network traces. To evade this constraint, the CBA re-

earch group of UPC BarcelonaTech generated network traffic for

esearch purposes in their lab. They manually simulated host ac-

ivities for a long term and captured the network traffic generated

n the hosts to assess DPI tools [67] . The datasets resulted from

rocessing these network captures have been called HOST datasets

n this work. 

In addition to HOST data, we have included datasets col-

ected from a much more challenging scenario. An Internet Service

rovider, which provide Internet to more than two million of users

cross Spain, has cooperated in this research sharing real network

raffic with research purposes. The network traffic was captured re-

ently in a node of their backbone network where traffic rates of

 GB/s are supported. These datasets have been called ISP traces in
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Table 1 

Network traffic traces information. IRLbL denotes the mean of IRLbl metric and σ ( IRLbL ) denotes its 

variance. 

Start date Duration Datasize # Packets # Flows IRLbL σ ( IRLbL ) 

ISP-1 17/01/2017 298 s 12.12 GB 8,863,530 231,137 38.50 35.79 

ISP-10 23/03/2017 600 s 35.62 GB 33,156,082 627,898 91.22 107.45 

HOST-1 25/02/2013 ∼59 days 9438 MB 5,062,825 121,293 4.42 3.15 

HOST-2 25/02/2013 ∼32 days 22 GB 21,0 0 0,0 0 0 245,627 17.29 18.28 
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ur result section. The name of the ISP is omitted in this work due

o security concerns. 

.3.1. Feature extraction: statistical attributes and labeling 

The datasets involved in our experiments include 77 statis-

ical attributes processing only five packets at the beginning of

ach Internet connection. Computing the attributes using a limited

umber of packets assures that our classifiers fulfil the early clas-

ification requirement presented in [49] . The classification objects

onsidered are bidirectional flows, therefore each flow sample con-

ains information about ingoing and outgoing packets. The com-

lete list of predictors is available at an Annex in our previous

rticle [54] . 

As we are assuming a supervised approach for our classification

roblem, we need to consistently associate each connection flow

o the application that generates it. There are several fashions to

abel instances for NTC datasets, but it is highly recommended to

mploy a DPI approach due to their high accuracy. Since the tool

DPI [13] , publicly available at [68] , has shown as one of the most

ccurate open source DPI tool and it is able to handle encrypted

raffic [69] , we used it to label our datasets. 

The tool nDPI classifies application flows with an excessive fine

ranularity, which turns out datasets with an unmanageable num-

er of classes. Evaluating Class Imbalance solutions on a high num-

er of classes leads to too heavy execution times and a major

hallenge when ratios between classes are adjusted for resampling

echniques. Additionally, some learning algorithms are pretty sen-

itive to the number of classes, hindering classifiers performances

hen they deal with a vast number of classes to predict. In or-

er to avoid the former constraints, we have assumed an appli-

ation grouping strategy, in which applications and protocols that

hare similar features are clustered in more general descriptive ob-

ects. Application grouping was introduced in [70] , and this strat-

gy has been commonly applied in numerous relevant ML-based

TC works [7 , 10 , 22 , 51 , 55 , 56 , 71] . 

The WWW class is composed by HTTP and HTTPS queries to-

ards many diverse websites. The DPI tool employed to label the

ataset is able to directly detect connections to the most popular

eb services (such Google, YouTube, Facebook and so on), how-

ver some HTTPS connections were labeled as SSL on port 443.

hese instances were also mapped to the WWW class. Other web-

ite queries are represented by QUIC class, QUIC is a recent trans-

ort protocol implemented by the browser Google Chrome whose

resence in the ISP traces is quite relevant. The eDonkey, Torrent

nd other peer-to-peer traffic have been grouped into P2P class.
Table 2 

Network application distribution for our datasets. %I denotes the percentage of instance

each application in the network captures. 

P2P WWW DNS INT S

%I %B %I %B %I %B %I %B %

ISP-1 – – 72.60 91.30 21.00 0.09 2.45 0.11 0

ISP-2 0.25 < 0.01 70.20 85.70 21.90 0.21 2.57 0.41 0

HOST-1 33.00 15.90 32.83 27.61 9.12 0.09 10.30 2.73 5

HOST-2 14.30 7.90 17.10 11.80 7.21 0.04 55.40 67.1 1
NS protocol has been found with a notable presence in HOST and

SP data, thereby this protocol was considered as an independent

lass. Media groups applications and protocols as RTP and Skype.

emote control protocols as SSH, Telnet and others were repre-

ented by the class interactive (INT). The network service protocols

such as NetBios, Radius, Kerberos and so on) have been grouped

n the class Service/Control (S/C). The Email/Chat class includes ap-

lications as WhatsApp, email services and so on. Finally, Bulk traf-

c groups File transfer protocols, such as FTP. NDPI reported some

onnection flows as unknown, so that we used the port numbers

IANA) to assign the final application class in these cases. If it was

ot possible to identify the application for any flow, these sam-

les were excluded from the datasets. Other applications groups, as

atabase queries and online games, were found in our traffic data;

owever, we excluded them from our experiments due to their

ugely weak presence in the datasets. The datasets used in our ex-

eriments are accessible to the research community via emailing

he authors. Table 2 contains the populations found in the datasets.

.3.2. Level of class imbalance in our datasets 

Table 2 contains the class distributions found in our datasets in

erms of number of flows and the bytes consumed by each group

f applications. In the instance of ISP traces, the majority classes

re WWW and DNS, which accumulate more than 90% of the sam-

les contained in both datasets. On the contrary, we found that the

inorities are INT, S/C, E/C and QUIC for both, and also MEDIA and

2P in the case of ISP-2. In spite of the different capture durations

nd dates ( Table 1 ), the distributions of classes are very similar to

ach other, but with the main difference that P2P and Media traf-

c emerged in ISP-2 with a quite low sample representation. This

act affects the metrics used to assess the level of Class Imbalance,

ote that IRLbL and σ ( IRLbL ) for ISP-2 are much larger than the

SP-1 ( Table 1 ). Focusing on the byte populations for ISP traces, we

ound that QUIC takes an important relevance. Although QUIC has

 weak presence in terms of%I, it consumed more than the 8% of

ytes for ISP-1 and more than the 13% for ISP-2. However, WWW

s remaining being the most byte-consuming for both datasets. Re-

arding HOST datasets, we find that they present a lesser degree of

mbalance than the ISP traces. This fact is caused by the differences

etween network environments, since ISP traffic aggregates con-

ections flows coming from many users, meanwhile HOST traces

ere captured in host computers. 

The level of Class Imbalance in HOST-1 is much lower than

OST-2 as can be noted observing IRLbL and σ ( IRLbL ) from Table 1 .

n the instance of HOST-1, P2P and WWW are the majority classes
s belonging to each class and %B denotes the percentage of bytes transferred by 

/C BULK Media E/C QUIC 

I %B %I %B %I %B %I %B %I %B 

.66 0.16 – – – – 1.59 0.44 1.70 8.10 

.90 0.24 – – 0.26 0.10 1.59 0.25 2.33 13.40 

.96 0.06 5.72 23.71 3.07 29.9 – – – –

.06 0.01 3.43 6.22 1.50 6.93 – – – –
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Table 3 

Algorithm selected to deal with Class Imbalance in our NTC datasets. The strategies presented in Fig. 4 were applied to the algorithms marked with an asterisk. 

Algorithm description 

OVERSAMPLING 

Random OverSampling (ROS ∗) The minority class is resampled by replicating samples randomly selected. This algorithm is the simplest oversampling 

technique. 

Synthetic Minority Oversampling 

TEchnique (SMOTE ∗) 

Synthetic data are generated for the minority class [25] . K minority nearest neighbors are selected for each minority 

sample, one of these neighbors is randomly chosen and one new sample is generated at a random point in the segment 

that joins the neighbors. This process is repeated until accomplish the desired number of new minority samples. 

SMOTE with Borderline 1 and 2 

(SMOTE-B1 ∗ and B2 ∗) 

This modification of SMOTE assumes that only minority samples placed near the borderline between classes are important 

for learning [26] . This SMOTE version detects borderline examples and strengthens them according to two strategies. In 

borderline 1 only k nearest neighbors belonging to minority class are oversampled, meanwhile both majority and minority, 

borderline samples are generated in SMOTE-B2. 

ADAptive SYNthetic algorithm 

(ADASYN 

∗) 

ADASYN adaptively resamples the minority class according to the level of difficulty in the learning process [27] , so as that 

more synthetic samples are generated for classes difficult to predict. In the generation process the algorithm randomly 

selects the k nearest neighbors around minority samples and estimate the distribution of the data. Finally, new samples 

are generated in middle points between minority samples and one of their neighbors randomly chosen. 

UNDERSAMPLING 

Random UnderSampling (RUS ∗) RUS randomly selects samples belonging to the majority classes and removes them from original datasets. RUS is the 

simplest approach to apply undersampling to imbalanced datasets. 

Near Miss (NM-1 ∗ , 2 ∗ and 3) Near-miss samples are defined as the majority samples that are located in minority class nearby. NM-1, 2 and 3 remove 

the near-miss samples according to a KNN strategy. Three strategies were developed to determine if a given sample is 

near-miss, all of them are described in [29] . 

Condensed Nearest Neighbor (CNN) CNN iteratively finds a consistent subset with the minimal number of initial samples. CNN employs the Nearest Neighbor 

rule to determine if a sample will be retained or discarded. 

Tomek Links (TL) A Tomek Link consists of a pair of samples that are nearest neighbors but each one belongs to a different class [34] . TL 

detects and removes Tomek Links from the initial dataset. 

One Sided Selection (OSS) OSS [30] intelligently removes the majority samples in two phases: (1) a 1-KNN classifier selects a representative subset of 

majority samples, and (2) the majority samples that participate in Tomek Links are removed. 

Edited Nearest Neighbor (ENN) ENN removes samples that are misclassified by a k-NN classifier [31] . The purpose of this technique is to remove outliers 

and overlapped samples between different classes. 

Neighborhood Cleaning Rule (NCR) NCR [32] removes noisy examples in two steps essentially: (1) NCR employs the ENN rule to identify noisy samples, and 

(2) noisy samples with 3 of their 5 nearest neighbors belonging to different classes are removed. 

Instance Hardness Threshold (IHT) IHT is a recent data reduction technique that trains a base classifier, estimates sample probabilities and removes the 

training samples whit weak probabilities [33] . We employed decision tree as base estimator for our experiments. 

HYBRID SAMPLING 

SMOTE + Undersampling (SMOTE-TL ∗ , 

SMOTE-ENN 

∗) 

SMOTE-TL [35] firstly oversamples minority samples using SMOTE and, afterwards, removes the TL links. Meanwhile, 

SMOTE-ENN [36] cleans the oversampled dataset applying ENN rule. 

ENSEMBLE ALGORITHMS 

EasyEsemble (EE) EE creates a bag of balanced datasets using ROS to train a set of base estimators, whose predictions are aggregated 

according majority voting [37] . 

BalanceCascade (BC) BC is a supervised version of EE. BC creates a bag of balanced datasets, which are refined using a base estimator [37] . 

OverBoosting (ROSboost ∗ , 

SMOTEboost ∗) 

OverBoosting oversamples minority classes in each boosting iteration. ROSboost employs ROS during learning, meanwhile 

SMOTEBoost oversamples the dataset using SMOTE [39] . 

UnderBoosting (RUSboost ∗ , TLboost) UnderBoosting undersamples majority classes in each boosting iteration. RUSboost [38] employs RUS during learning, 

meanwhile TLboost removes Tomek links in each iteration. 

COST-SENSITIVE 

MetaCOST (MetaCOST) MetaCOST is a well-established cost-sensitive technique independent from the learning algorithm employed [40] . 

MetaCOST creates a set of estimator trained using resampled datasets, which estimates the post-probabilities of training 

samples and applies classification costs to relabel the initial training set. 
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summing up more than the 60% of the samples, meanwhile MEDIA

is the lowest populated class with only the 3.07% of samples, fol-

lowed by S/C and BULK with a percentage of samples close to 6%

each one. Note that, although MEDIA and BULK flows do not have

a relevant presence in HOST-1 in terms of samples, these appli-

cations accumulate near the 60% of bytes. For this network trace,

P2P and WWW also consumed an important percentage of bytes,

meanwhile DNS, INT and S/C consumed much less. In the case of

HOST-2, INT is remarkably the most populated class having more

than 55% of samples. Contrary, the most underrepresented classes

in terms of instances for HOST-2 are S/C and INT with a 1.06% and

1.5% of instances, respectively. The high differences between the

majority and the minority classes cause that HOST-2 presents a

greater level of Class Imbalance than HOST-1. In terms of percent-

age of bytes for HOST-2, INT is the most byte-consuming applica-

tion with more than the 67% followed by WWW, P2P, MEDIA and

BULK, which add more than 30% of bytes. DNS and S/C are very

light in terms of bytes captured in the network trace. 

As we have noted, Class Imbalance have an important pres-

ence in our datasets presenting multi-majority and multi-minority

classes. Below, we introduce the algorithms studied and the

multiclass strategies to confront Class Imbalance. 
.4. Algorithms and strategies to confront class imbalance 

In this section, we introduce the algorithms employed in our

xperiments and the strategies assumed to tune their parameters.

able 3 contains a brief description of each algorithm and Fig. 4

hows the strategies applied. As part of the contributions provided

n this work, the algorithms we have implemented are accessible

o the research community in [64] . 

We have collected several techniques from different ap-

roaches to confront Class Imbalance: 21 data-level algorithms,

ncluding undersampling, oversampling and hybrid approaches; 6

lgorithm-level techniques and one well-known cost-sensitive ap-

roach. All data-level techniques along with Easy Ensemble and

alance Cascade algorithms are implemented in the Python library

mbalanced-learn [63] . The other ensemble schemes are two-fold

ontributions from a third party and ours. The algorithms SMOTE-

oost and RUSboost were collected from the algorithm reposi-

ory [72] . These algorithms were not adapted to multiclass prob-

ems, so that we had to upgrade the implementations to deal with

ulticlass problems. Furthermore, we have implemented two un-

xplored boosting algorithms: TLboost and ROSboost, which have

lready not been applied to ML to the best of our knowledge. The
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Fig. 4. Strategies to adjust resampling ratios. C1, C2, C3 and C4 denote arbitrary classes, N min the minimum population, N maj the maximum population and N mean the mean 

of all populations. 
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aximum number of estimators were set to 10 for all ensemble

tructures, since more estimators did not yielded better results for

ur datasets. 

Finally, we have implemented the cost-sensitive approach Meta-

OST [40] . Preliminarily, we tested the strategy presented in [22] to

ompute the classification costs for MetaCOST, however majority

lasses were strongly punished due to the huge differences be-

ween the number of samples for different classes. In order to mit-

gate this fact, we have applied Eq. (9) to compute classification

osts. Thereby, the cost associated with misclassifying a sample be-

onging to class i as class j is Cost i, j , where C i denotes the number

f samples for class i . 

os t i, j = 

{
log 10 ( C i ) / log 10 

(
C j 

)
i � = j 

0 i = j 
(9) 

NTC is a multi-minority and multi-majority problem, thus tun-

ng manually the ratio of each class for resampling methods is a

uite arduous and time-consuming task. Additionally, the boost-

ng algorithms need a procedure to set the resampling ratios be-

ween classes for each learning iteration. Consequently, we have

esigned different strategies to set the former parameters during

ur experiments ( Fig. 4 ). In the case of Data-Level Undersampling,

ajority classes are considered classes whose number of samples

re greater than the mean of all populations ( N mean ), and major-

ty classes are undersampled until reaching N mean so as to avoid

xcessive information removal. Regarding Data-Level Oversampling,

inority classes are considered all classes with a lesser population

han the majority class ( N maj ), so that all minority classes are over-

ampled until equaling the majority class. In the instance of hy-

rid approaches, the classes with a number of samples lesser than

 mean were oversampled and the classes with greater populations

ere undersampled until reaching N mean . 

In the instance of ensemble algorithms, EE and BC are ensemble

lgorithms based on creating bags of estimators trained using bal-

nced datasets. These algorithms state that the minorities classes

esampled until equaling the most majority class. However, boost-

ng algorithms need to implement a resampling strategy to adjust
he number of classes employed in each boosting iteration. In the

ase of algorithms that combine boosting and undersampling (Un-

erBoosting), all classes with more than N mean are undersampling

ntil N mean . Meanwhile, in the case of OverBoosting algorithms,

ajority classes are considered the classes whose number of sam-

les are lesser than N maj , and they are resampled until reaching

 maj . For both, Under and OverBoosting, the minority and majority

lasses are proportionally resampled until accomplishing the cor-

esponding sample populations. 

. Experimental results 

Through this section we present and discuss the results ob-

ained during our experiments. Firstly, we analyze the effect

f Class Imbalance on the global and per-class metrics for our

atasets using the base estimator and with the aim of establish-

ng the baselines to compare the algorithms under study. Secondly,

e compare the techniques introduced in Section 3.4 in terms of

he global metrics in order to figure out which algorithms are the

ost proper for imbalanced NTC. Additionally, a statistical proce-

ure is employed to extract general observations on algorithm per-

ormances over all our NTC datasets. Finally, we validate the most

romising techniques in terms of per-class metrics for the most

hallenging dataset so as to assure that minority classes are really

trengthened. 

.1. Preliminary results: assessing class imbalance and baseline 

In this experiment, a CART Decision Tree was trained using the

atasets presented in Section 3.3 and varying the subset sizes af-

er reducing the attribute space. Through this evaluation, we assess

he negative effect of Class Imbalance on the global and per-class

etrics and establish the baselines for the subsequent algorithm

omparison. Table 4 presents the global metrics resulting from this

reliminary experiment, and Table 5 contains the per-class metrics.

From Table 4 , it is apparent that notable differences exist be-

ween the global metrics obtained for different network scenarios.
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Table 4 

Global metrics obtained varying the subset sizes and employing the base estimator as learner. The results are expressed in %. 

ISP-1 ISP-2 HOST-1 HOST-2 

#Fea OA BA MAUC GM OA BA MAUC GM OA BA MAUC GM OA BA MAUC GM 

2 74.13 75.11 77.56 42.01 44.27 45.90 78.63 58.40 77.72 81.95 87.47 77.18 95.86 94.48 94.79 89.97 

4 76.97 78.67 78.49 43.22 53.54 55.80 80.21 70.15 94.39 98.25 95.47 91.53 98.20 98.41 97.47 95.14 

6 90.45 91.47 91.60 84.97 63.97 66.76 83.63 74.82 95.30 96.99 96.21 92.86 99.00 99.18 98.45 97.02 

8 90.94 92.11 91.95 85.57 87.86 88.35 90.46 86.53 95.43 98.27 96.26 92.94 99.01 99.17 98.42 96.96 

10 91.93 93.01 91.87 85.21 87.74 88.55 90.75 87.22 96.37 98.23 96.81 94.07 99.16 99.21 98.61 97.38 

12 91.73 92.44 91.85 85.00 87.90 88.84 90.87 87.54 98.21 99.24 98.60 97.43 99.23 99.00 98.80 97.68 

14 91.63 92.62 91.86 85.18 88.09 88.69 91.35 88.38 98.20 99.51 98.61 97.43 99.23 99.20 98.80 97.64 

16 92.42 93.19 91.83 84.91 88.23 88.73 91.23 88.07 98.39 99.43 98.69 97.62 99.20 99.06 98.78 97.69 

18 92.47 93.10 91.86 85.12 88.59 89.10 91.27 87.95 98.48 99.19 98.73 97.65 99.22 98.93 98.80 97.66 

20 92.36 92.85 91.84 85.28 88.54 89.10 91.30 88.13 98.46 99.46 98.72 97.68 99.22 99.19 98.77 97.63 

Table 5 

Per-class metrics obtained varying the subset sizes and employing the base estimator as learner. The results are expressed in %. 

P2P WWW DNS INT S/C BULK MEDIA E/C QUIC 

ACC/AUC ACC/AUC ACC/AUC ACC/AUC ACC/AUC ACC/AUC ACC/AUC ACC/AUC ACC/AUC 

ISP-1 

2 –/– 87.23/91.83 29.59/64.56 74.96/85.89 4.35/52.13 –/– –/– 69.20/81.79 94.35/89.14 

4 –/– 90.91/93.65 29.96/64.74 78.24/87.85 4.64/52.30 –/– –/– 69.87/83.09 94.35/89.29 

6 –/– 91.94/94.50 87.60/93.50 83.02/90.75 84.70/91.31 –/– –/– 73.88/85.09 89.94/94.42 

8 –/– 91.90/94.45 90.04/94.73 83.50/90.99 86.32/92.18 –/– –/– 73.24/84.76 89.90/94.60 

10 –/– 93.48/95.14 90.27/94.83 82.93/90.66 87.30/92.50 –/– –/– 69.65/83.79 89.94/94.63 

12 –/– 92.81/94.82 90.12/94.76 83.86/91.11 86.78/92.23 –/– –/– 68.64/83.04 90.24/94.77 

14 –/– 93.05/94.94 90.06/94.73 83.09/90.73 86.96/92.31 –/– –/– 70.11/83.85 89.99/94.65 

16 –/– 93.24/94.86 92.51/95.98 82.41/90.44 85.86/91.91 –/– –/– 67.34/82.47 91.22/95.41 

18 –/– 93.36/94.97 92.50/95.95 82.22/90.33 86.14/92.06 –/– –/– 68.40/83.05 90.90/95.25 

20 –/– 93.25/94.96 92.85/96.12 82.64/90.59 85.91/91.98 –/– –/– 68.62/83.09 91.18/95.39 

ISP-2 

2 90.45/94.24 33.02/65.48 69.02/82.68 95.48/77.57 85.10/91.49 –/– 26.63/62.38 38.18/67.77 79.44/87.46 

4 89.36/93.85 43.90/70.42 77.58/87.03 85.08/78.95 85.01/91.71 –/– 35.14/63.41 36.76/67.28 80.82/89.07 

6 89.68/94.10 57.61/77.69 78.94/87.87 93.84/84.76 85.55/92.17 –/– 38.60/68.11 47.87/72.77 84.99/91.55 

8 90.19/94.56 89.81/93.45 83.16/91.24 86.95/91.99 88.31/93.68 –/– 64.98/81.64 70.08/83.48 88.43/93.67 

10 90.64/94.77 89.44/93.37 83.58/91.45 86.59/91.80 88.12/93.60 –/– 66.32/82.24 73.13/84.97 88.57/93.76 

12 90.32/94.63 89.60/93.42 83.80/91.57 86.10/91.58 88.85/93.96 –/– 67.36/82.74 73.58/85.24 88.61/93.79 

14 90.45/94.70 89.68/93.58 83.92/91.64 87.65/92.22 88.92/94.01 –/– 68.75/83.46 77.17/87.19 89.03/94.00 

16 90.77/94.86 89.89/93.65 84.04/91.69 87.43/92.20 88.64/93.88 –/– 68.15/83.11 76.17/86.72 88.54/93.76 

18 90.58/94.76 90.28/93.85 84.39/91.85 87.76/92.49 89.10/94.12 –/– 67.23/82.71 75.72/86.50 88.76/93.87 

20 90.32/94.61 90.38/93.90 83.78/91.55 87.90/92.59 89.03/94.06 –/– 68.21/83.16 75.85/86.59 88.94/93.96 

HOST–1 

2 62.19/79.67 82.61/84.30 90.67/95.06 94.45/94.65 98.79/99.40 70.07/82.71 53.58/76.49 –/– –/–

4 97.24/97.30 93.38/96.36 90.68/95.07 99.30/99.55 98.89/99.44 89.93/94.49 74.01/86.05 –/– –/–

6 96.19/97.65 93.31/96.44 98.33/98.43 99.34/99.58 98.85/99.42 90.13/94.78 76.25/87.17 –/– –/–

8 96.40/97.74 93.52/96.55 98.34/98.43 99.37/99.65 98.86/99.43 90.10/94.78 76.33/87.23 –/– –/–

10 88.42/93.99 96.53/98.04 98.32/98.42 99.37/99.67 98.89/99.44 91.99/95.66 85.91/91.17 –/– –/–

12 99.19/99.48 96.73/98.13 99.59/99.77 99.42/99.69 99.07/99.53 97.41/98.46 90.93/95.12 –/– –/–

14 99.01/99.39 96.70/98.11 99.55/99.75 99.39/99.68 99.07/99.53 97.4 9/98.4 9 91.12/95.18 –/– –/–

16 99.24/99.50 97.33/98.45 99.60/99.78 99.41/99.69 99.07/99.53 97.43/98.51 91.52/95.46 –/– –/–

18 99.09/99.44 97.44/98.49 99.61/99.78 99.43/99.70 99.07/99.53 97.49/98.54 91.66/95.51 –/– –/–

20 99.33/99.55 97.34/98.45 99.51/99.73 99.44/99.71 99.07/99.53 97.37/98.48 91.96/95.69 –/– –/–

HOST–2 

2 88.76/94.01 92.48/95.40 94.96/97.26 99.78/99.39 95.81/97.82 85.45/92.50 74.93/87.16 –/– –/–

4 98.26/99.05 96.26/97.86 96.94/98.30 99.67/99.81 96.62/98.25 89.14/94.38 89.65/94.63 –/– –/–

6 99.02/99.47 96.83/98.24 99.11/99.53 99.83/99.89 96.96/98.46 95.94/97.90 91.68/95.66 –/– –/–

8 99.07/99.50 96.92/98.28 99.09/99.51 99.82/99.88 96.96/98.46 95.95/97.90 91.19/95.42 –/– –/–

10 99.21/99.56 97.40/98.59 99.11/99.52 99.90/99.92 96.96/98.46 96.67/98.27 92.60/96.15 –/– –/–

12 99.28/99.60 97.45/98.64 99.09/99.51 99.90/99.92 96.92/98.44 97.70/98.74 93.55/96.67 –/– –/–

14 99.22/99.56 97.39/98.61 99.04/99.49 99.90/99.92 96.92/98.44 97.77/98.77 93.41/96.60 –/– –/–

16 99.25/99.58 97.21/98.53 99.10/99.52 99.88/99.92 97.04/98.50 97.75/98.76 93.71/96.74 –/– –/–

18 99.28/99.59 97.27/98.55 99.07/99.51 99.88/99.92 96.96/98.46 97.90/98.83 93.39/96.58 –/– –/–

20 99.32/99.61 97.24/98.54 99.10/99.52 99.90/99.93 96.96/98.46 97.72/98.74 93.36/96.57 –/– –/–
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Generally, the predictive models produced for ISP datasets

achieved lower performances than HOSTs. For example, the best

OA for ISP-1 reached 92%, meanwhile the highest OA for HOST-

1 overcame 98%. Note from Table 5 that per-class metrics for

HOST datasets are also greater than for ISP datasets. These clear

differences in performances suggest that ISP network environ-

ment comprises a more challenging traffic classification task than

HOST. As aforementioned in Section 3.3 , the ISP traces were

captured in the middle of a high-speed backbone, where traf-
c is much more susceptible to packet losses and packets out of

rder. 

Focusing on ISP traces, we find that the differences between

SP-1 and ISP-2 are not as large as the observed between network

nvironments. However, the observations change depending on the

erformance metric we focus on. In the instance of GM, the pre-

ictive model trained with ISP-2 generally overcame ISP-1, on con-

rast to OA, BA and MAUC, which were slightly greater for ISP-1

han for ISP-2. Note also that there are points in which all global
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etrics notably increased for both datasets when the subset sizes

ary, and that the performances smoothly fluctuated without high

ariations after those points. The abrupt performance increases

appened when 6 and 8 predictors were selected for ISP-1 and

SP-2, respectively. These sharp raises are strongly related to the

igh improvements on WWW and DNS traffic detection, but also

n other applications with lesser impacts on the class distributions,

uch as S/C for ISP-1 or Media and E/C for ISP-2. Another remark-

ble observation is that the OA and BA losses are more significant

or ISP-2 than for ISP-1 when insufficient attributes were selected.

his fact is directly connected to important differences in WWW

er-class metrics ( Table 5 ) amongst ISP traces, which reveals the

igh impact of this traffic class over OA and BA. The best models

n terms of GM and MAUC were achieved using 8 and 14 predic-

ors for ISP-1 and ISP-2, respectively. Furthermore, the best OA and

A were achieved using 16 and 18 features for ISP-1; meanwhile,

he subset with 18 attributes produced the best models in terms

f OA and BA for ISP-2. 

Regarding HOST datasets, we find that all global metrics

 Table 4 ) fast boosted when 4 and 2 predictors were selected for

OST-1 and HOST-2, respectively. After that point, the global met-

ics linearly grew up until reaching a point in which they fluc-

uated with smooth variations when subset sizes change. In the

ase of HOST-1, we find from Table 5 that P2P, WWW, S/C and

ULK samples were poorly detected when two predictors were se-

ected for training. Note also that the same happened for HOST-2,

ut with weaker per-class metric deteriorations. In the instance of

OST-1, the best models in terms of OA and BA were produced

ith 18 and 14 attributes, whereas the maximum MAUC and GM

ere accomplished selecting 18 and 20 predictors. While on HOST-

, the maximum OA resulted from selecting 12 or 14 features and

he best BA from selecting 10. Respecting MAUC and GM for HOST-

, the former reached its maximum at 16 and the latter at 12, 14

r 18 features. 

Interestingly, we find that P2P and QUIC traffic presented simi-

ar detection rates for ISP traces in spite of having quite dissimilar

umbers of samples in the datasets ( Table 2 ). The same happened

or HOST traffic, DNS obtained high per-class metrics in spite of

he fact that this class populated only the 9.12% and 7.21% of sam-

les for HOST-1 and HOST-2. This fact indicates that the difficulty

f detecting some kinds of application is not directly related to the

lass populations and there may exist other causes of performance

egradation, such as: overlapping samples in the attribute space. 

In order to compare the solutions to Class Imbalance in terms

f performance increases or decreases with respect to the base es-

imator, we had to establish a baseline for each dataset. As this

tudy is focused on Class Imbalance, we selected the models that

roduced the best results in terms of MAUC and/or GM to set the

aselines. Thus, we have selected the model with 8 and 14 at-

ributes for ISP-1 and ISP-2, respectively. We set the model with

8 attributes as baseline in the case of HOST-1, as it yielded the

ighest MAUC and OA. Finally, we chose the model including 12

redictors for HOST-2, since it produced the highest MAUC and BA

ccomplishing also the second best GM. 

.2. Addressing class imbalance: algorithm comparison 

In this section we present the comparison between the algo-

ithms chosen to confront Class Imbalance in our NTC datasets.

he comparison is firstly carried out in terms of global metrics,

nd per-class metrics are thoroughly explored for the most inter-

sting techniques in Section 4.3 . The results discussed correspond

o the best-performing models in terms of MAUC, and they are

resented as performance differences between each algorithm and

he baselines set at Section 4.1 . Firstly, we present the results ob-

ained from experimenting with ISP traffic ( Table 6 ) and secondly
e focus on HOST network environment ( Table 7 ). Finally, we

tatistically validate the results and present general remarks about

he outcomes at Section 4.2.3 . 

.2.1. ISP network environment 

Table 6 shows the results for ISP-1 and ISP-2. Regarding over-

ampling on ISP-1, we find that all the algorithms generally per-

ormed well improving the scores obtained by the baseline. The

est-performing algorithm in terms of OA and BA was SMOTE-

1, which increased the baseline by 4.92% and 3.8%, respectively,

eanwhile SMOTE yielded the second highest OA and BA. If we

bserve MAUC and GM, ROS obtains the best scores overcoming

he baseline in 5.05% and 9.48%. When ISP-2 was oversampled,

e observe that ROS remained to be the best method in terms

f MAUC and GM, with increases of 4.08% and 8.05%. However,

he observations on OA and BA change comparing to ISP-1. In

his instance, the highest OA and BA were yielded by ADASYNC,

hich boosted both metrics in more than 6%. Interestingly, SMOTE-

1, SMOTE-B2 and ADASYNC produced quite negative impacts on

AUC and GM, evidencing that they did not clearly solve Class

mbalance for ISP-2. As the differences in performances between

SP traces reveal, the ISP-2 imposed a more difficult challenge than

SP-1 for oversampling. Note also that the size increase for ISP-1

as larger than ISP-2 due to the fact that ISP-2 present two mi-

ority classes more than ISP-1 (see Table 2 ). 

When undersampling techniques were employed on ISP-1, TL

btained the best MAUC and GM with increases of 5.08% and 9.53%

early followed by ENN, NCR and OSS. These algorithms also ob-

ained the highest OAs and BAs amongst all the undersampling

echniques, and ENN and NCR exactly yielded the same results for

ll global metrics. Note also that TL, ENN, NCR and OSS removed

 low number of samples compared to other approaches. Other

lgorithms that notably overcame the baseline in terms of MAUC

nd GM were RUS and IHT, but getting weaker increases. In the

ase of RUS, these improvements were coupled with loose OA and

A increases and with a considerable training subset size reduc-

ion (more than 60% of samples were removed). Unlike RUS, IHT

id not achieve improvements in terms of MAUC and GM. Further-

ore, we find that there are some algorithms that dramatically

orsened all global metrics evidencing that they are not recom-

endable choices for this network trace, they are: NM-1, NM-2,

M-3 and CNN. The abrupt performance decays are due to the

act that these algorithms removed a significant number of in-

tances leading to important information losses (CNN and NM-3

emoved more than 90% of the original samples). In the instance

f ISP-2, the bad results obtained by NM-1, NM-2, NM-3 and CNN

onfirm the detrimental effect of these algorithms for ISP traffic.

hese techniques strongly lessened all global metrics, being the de-

rease more abrupt for OA and BA metrics. The best-performing

lgorithms were NCR, ENN and TL when ISP-2 was undersampled.

CR and ENN anew obtained pretty similar global metrics with in-

reases close to 1.8% for OA and BA, and increases of 4.1% and 8.11%

or MAUC and GM, respectively. In the case of IHT, we observe that

AUC and GM metrics were reinforced, but it also yielded impor-

ant losses in terms of OA and BA. In the case of OSS and RUS, they

ignificantly overcame the baseline in terms of MAUC and GM,

owever they got weak enhancements for OA and BA. The main

ifference between both techniques is that RUS notably reduced

he size of the training dataset, meanwhile OSS only removed the

.49% of samples. Similarly to oversampling, ISP-2 poses a greater

hallenge than ISP-1 for undersampling algorithms. 

When hybrid techniques are applied to ISP-1, we find that all

lgorithms overcame the baseline for all global metrics. Among

ll the hybrid algorithms, SMOTE-TL yielded the highest MAUC

nd GM with increases of 4.56% and 8.43%, respectively, so that

t is the best hybrid method at confronting Class Imbalance for
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Table 6 

Global metrics obtained for ISP network environment. The results are expressed as percentage increments or decrements respecting with the 

baseline. 

ISP-1 ISP-2 

OA BA MAUC GM % #F OA BA MAUC GM % #F 

Oversampling 

ROS 3.31 2.53 5.05 9.48 335.75 16 1.69 1.98 4.08 8.05 461.65 18 

SMOTE 4.01 3.26 4.55 8.41 335.75 16 2.41 2.58 3.16 6.15 461.65 20 

SMOTE-B1 4.92 3.84 3.48 6.10 335.75 18 2.26 2.37 −2.84 −6.88 461.65 14 

SMOTE-B2 3.57 2.84 3.23 5.84 335.75 18 1.45 1.06 −2.55 −6.26 461.65 16 

ADASYNC 3.41 2.82 0.57 0.53 336.18 12 6.77 6.19 −2.61 −6.92 461.74 18 

Undersampling 

RUS 2.1 1.14 4.82 9.23 −60.25 20 0.16 0.52 3.85 7.79 −67.08 18 

CNN −38.25 −39.17 −5.46 −7.35 −91.62 10 −63.6 −61.07 −8.46 −19.69 −91.29 10 

TL 3.38 2.29 5.08 9.53 −0.73 18 1.44 1.42 4.06 −0.55 8.04 18 

NM-1 −36.34 −38.73 −4.01 −4.58 −60.25 20 −52.02 −52.16 −5.76 −10.76 −67.08 12 

NM-2 −50.42 −53.29 −6.39 −11.32 −60.25 20 −55.78 −56.24 −5.95 −12.5 −67.08 16 

NM-3 −61.96 −62.09 −11.32 −21.93 −92.8 8 −72.95 −72.66 −10.28 −31.22 −91.91 8 

OSS 2.99 2.04 4.99 9.42 −1.63 16 0.5 0.45 3.83 −1.49 7.68 10 

ENN 3.09 2.24 5 9.43 −2.44 16 1.78 1.82 4.1 8.11 −3.8 20 

NCR 3.09 2.24 5 9.43 −3.17 18 1.79 1.84 4.1 8.11 −3.8 20 

IHT −5.35 −5.93 3.44 7.42 −16.41 16 −11.25 −10.38 2.02 4.73 −27.75 20 

Hybrid sampling 

SMOTE-TL 3.95 3.29 4.56 8.43 57.61 18 2.55 2.59 3.29 6.39 64.48 16 

SMOTE-B1-TL 4.64 3.88 4.06 7.31 58.08 20 3.83 3.38 2.11 3.68 65.22 18 

SMOTE-B2-TL 3.91 2.99 3.86 7.04 53.09 20 3.62 2.95 1.78 3.04 58.63 18 

SMOTE-ENN 4.05 3.1 2.9 5.22 31.57 20 4.5 4.08 0.78 1.17 34.55 14 

SMOTE-B1-ENN 3.51 2.77 2.39 4.23 40.65 16 5.13 4.9 −0.09 −1.14 42.76 14 

SMOTE-B2-ENN 2.78 2.07 1.25 2.04 14.81 10 2.51 2.1 −2.4 −5.98 11.67 12 

Ensemble algorithms 

EE 0.9 1.18 4.96 9.87 – 20 1.62 1.89 4.12 8.14 – 18 

BC 0.29 −0.03 4.69 9.46 – 18 −0.01 −0.43 3.84 7.78 – 18 

ROSboost 5.48 5.22 5 9.21 – 16 8.16 7.56 3.52 6.12 – 18 

SMOTEboost 5.6 5.48 4.59 8.38 – 16 8.11 7.67 3.02 5.06 – 16 

RUSboost 1.7 1.61 5.02 9.88 – 18 2.29 2.65 4.21 8.23 – 20 

TLboost 1.99 1.6 5.05 9.88 – 18 1.56 1.9 4.1 8.11 – 20 

Cost-Sensitive 

MetaCOST −1.48 −1.19 4.41 9.13 – 16 −2.36 −2.2 3.42 7.04 – 16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m  

e  

r  

b  

b  

c  

C  

i  

T  

h  

a  

e  

t  

f  

b  

i  

t  

c

 

a  

i  

e  

h  

2  

B  

m

4

 

e  
ISP-1. Additionally, SMOTE-B1-TL and SMOTE-B2-TL achieved also

really positive results, meanwhile the methods that combine

SMOTE and ENN provided very weak improvements for MAUC and

GM. While on OA and BA, we observe from Table 6 that SMOTE-

B1-TL improved the baseline in 4.64% and 3.88%, respectively, being

the best-performing for these metrics. Another hybrid techniques

that notably increased OA and BA were SMOTE-ENN, SMOTE-TL

and SMOTE-B2-TL. Conversely, the slightest increases in terms of

OA and BA were exhibited by SMOTE-B2-ENN and SMOTE-B1-ENN.

In the case of ISP-2, SMOTE-TL is anew the technique that most

improved the baseline in terms of MAUC and GM, it increased

MAUC by 3.29% and GM by 6.39%. SMOTE-B1-TL, SMOTE-B2-TL

and SMOTE-ENN also outperformed the baseline for MAUC and

GM, but their enhancements were not as significant as SMOTE-

L. Focusing on OA and BA, the best OA and BA were obtained

by SMOTE-B1-ENN followed by SMOTE-ENN, however the former

negatively affected MAUC and GM. In general, all hybrid algorithms

produced positive outcomes for all global metrics but, on the con-

trary, SMOTE-B1-ENN and SMOTE-B2-ENN worsened MAUC and

GM. In the case of applying hybrid approaches to ISP traces, these

techniques also provided better results for ISP-1 than ISP-2. 

In the case of training ensemble algorithms with ISP-1, RUS-

boost and TLboost tied for MAUC and GM yielding the highest en-

hancements with increases of 5.02% and 9.88%, respectively. Fur-

thermore, EE also obtained pretty relevant increases according to

MAUC and GM, being the third scored ensemble method. Gener-

ally, all ensemble techniques provided quite remarkable enhance-

ments for these metrics, achieving also important increases for

OA and BA in specific cases. That is the case of ROSboost and

SMOTEboost, which yielded quite beneficial results for all global
etrics accomplishing the two highest OAs and BAs amongst all

nsemble techniques. According to these performance metrics, the

est of algorithms did not achieve results as significant as ROS-

oost and SMOTEboost, and even BC loosely underperformed the

aseline in terms of BA. Focusing on ISP-2, we observe similar out-

omes to the ISP-1. The best ensemble algorithms at dealing with

lass Imbalance for ISP-2 were RUSboost, EE and TLboost achiev-

ng increases superior to 4% for MAUC and superior to 8% for GM.

he rest of algorithms also got positive outcomes for these metrics,

owever they were inferior to the former techniques. Regarding OA

nd BA, we find that ROSboost and SMOTEboost obtained the high-

st performances incrementing OA in more than 8.1% and in more

han 7.5%, respectively. Although the other techniques did not per-

orm as well as ROSboost and SMOTEboost, they also overcame the

aseline in terms of OA and BA with the exception of BC. Surpris-

ngly, ensemble algorithms yielded higher enhancements for ISP-2

han ISP-1 in contrast to the data-levels algorithm previously dis-

ussed. 

When MetaCOST was employed on ISP-1, we observe that it

chieved to compensate Class Imbalance improving MAUC and GM

n 4.41% and 9.13%, respectively. On the contrary, MetaCOST weak-

ned OA and BA with decreases of −1.48% and −1.19%. The same

appened when MetaCOST was used to apply cost-sensitive to ISP-

, MAUC and GM were greatly strengthened, in contrast to OA and

A that deteriorated. In this case, the improvements on ISP-1 were

ore significant than ISP-2. 

.2.2. HOST network environment 

Table 7 contains the results obtained via applying the differ-

nt techniques to solve Class Imbalance for HOST datasets. When
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Table 7 

Global metrics obtained for HOST network environment. The results are expressed as percentage increments or decrements respecting 

with the baseline. 

HOST-1 HOST-2 

OA BA MAUC GM % #F OA BA MAUC GM % #F 

Oversampling 

ROS 0.59 0.49 0.66 1.26 131.16 20 0.32 0.45 0.55 1.07 287.62 14 

SMOTE 0.67 0.47 0.56 1.05 131.16 16 0.3 0.42 0.47 0.92 287.62 18 

SMOTE-B1 0.10 0.58 0.10 0.18 131.16 14 −0.44 −0.23 −0.64 −1.31 287.62 14 

SMOTE-B2 0.40 0.60 0.17 0.29 131.16 18 −0.91 −0.92 −0.85 −1.61 287.61 18 

ADASYNC 0.70 0.63 0.23 0.36 130.87 18 0.3 0.54 0.13 0.21 287.55 18 

Undersampling 

RUS 0.38 0.40 0.60 1.16 −32.21 20 0.25 0.29 0.57 1.11 −41.14 12 

CNN −11.9 −4.99 −4.80 −8.52 −73.03 20 −2.77 −5.05 −1.78 −3.29 −69.52 12 

TL 0.52 0.43 0.64 1.23 −0.21 20 0.26 0.3 0.57 1.11 −0.03 12 

NM-1 −14.1 −14.85 −3.88 −6.41 −32.21 20 0.26 0.3 0.56 1.09 −41.14 20 

NM-2 −21.23 −5.31 −6.36 −11.09 −32.21 12 0.12 0.19 0.37 0.75 −41.14 10 

NM-3 −26.77 −14.98 −9.28 −15.97 −73.29 20 −9.35 −9.43 −5.83 −13.1 −69.65 12 

OSS 0.10 0.37 0.49 0.99 −3.06 12 −1.73 −2.4 0.13 0.56 −45.06 16 

ENN 0.36 0.47 0.60 1.16 −1 20 0.25 0.33 0.56 1.09 −0.15 14 

NCR 0.36 0.47 0.60 1.16 −1 20 0.25 0.33 0.56 1.09 −0.15 14 

IHT −4.53 −3.07 −0.85 −1.08 −9.93 18 0.02 0.15 0.51 1.04 −1.02 12 

Hybrid sampling 

SMOTE-TL 0.6 0.38 0.53 0.99 31.44 16 0.25 0.25 0.46 0.90 40.86 12 

SMOTE-B1-TL −0.49 −0.21 −0.27 −0.52 30.36 18 −0.35 −0.23 −0.61 −1.24 40.29 18 

SMOTE-B2-TL −0.26 −0.18 −0.24 −0.51 27.84 18 −0.2 −0.12 −0.34 −0.72 36.55 20 

SMOTE-ENN 0.34 0.5 −0.03 −0.09 26.49 20 −0.19 −0.11 −0.09 −0.15 37.35 10 

SMOTE-B1-ENN −0.24 0.55 −0.18 −0.33 15.86 18 −0.69 −0.46 −1.04 −2.11 34.12 20 

SMOTE-B2-ENN −0.46 0.42 −0.51 −0.99 11.07 18 −0.52 −0.2 −1.06 −2.24 20.56 18 

Ensemble algorithms 

EE 0.55 −0.01 0.65 1.23 – 16 0.28 0.37 0.58 1.12 – 12 

BC 0.33 −0.25 0.58 1.12 – 16 0.28 0.37 0.58 1.12 – 12 

ROSboost 0.5 −1.23 0.47 0.89 – 18 0.17 0.41 0.52 1.02 – 12 

SMOTEboost 0.49 0.23 0.44 0.82 – 18 −0.27 −0.21 0.18 0.43 – 14 

RUSboost 0.17 −0.29 0.54 1.06 – 20 0.24 0.32 0.56 1.10 – 12 

TLboost 0.54 0.06 0.65 1.23 – 20 0.3 0.38 0.58 1.12 – 12 

Cost-sensitive 

MetaCOST 0.46 0.07 0.6 1.13 – 18 0.26 0.36 0.54 1.04 – 14 

o  

p  

a  

m  

B  

r  

R  

A  

f  

i  

w  

a  

i  

t  

O  

l  

I  

b  

p  

p  

t  

f

 

T  

d  

G  

s  

G  

W  

R  

m  

b  

n  

a  

d  

i  

2  

a  

e  

s  

t  

d  

N  

r  

c  

p  

f  

m  

w  

c  

f  

p  

 

p  

a  

p  

l  

m  

s  

c  
versampling techniques were applied to HOST-1, ROS and SMOTE

roduced the best MAUCs and GMs with increases exceeding 0.55%

nd 1%, respectively, so that they are the two best oversampling

ethods at solving Class Imbalance for HOST-1. Although SMOTE-

1 and B2 and ADASYNC overcame the baseline for all global met-

ics, they provided weak increases for MAUC and GM compared to

OS and SMOTE. Focusing exclusively on OA and BA, we find that

DASYNC achieved the highest increases, 0.7% for OA and 0.63%

or BA. In addition, ROS and SMOTE also yielded very remarkable

mprovements in terms of OA. When HOST-2 was oversampled,

e find that ROS was anew the best method in terms of MAUC

nd GM, increasing MAUC by 0.55% and MAUC by 1.07%. These

ncreases were also accompanied by significant improvements in

erms of OA and BA, being ROS the best-performing techniques for

A. Additionally, SMOTE and ADASYNC also overcame the base-

ine for OA and BA, and even ADASYNC provided the highest BA.

n the instance of SMOTE, this algorithm accomplished the second

est MAUC and GM followed by ADASYNC. Unlike other oversam-

ling algorithms, SMOTE-B1 and SMOTE-B2 negatively affected the

redictive power of the models decreasing all global metrics when

hey were applied to HOST-2. In this case, the outcomes obtained

or HOST-2 were slightly poorer than HOST-1. 

When HOST-1 was undersampled, we find from Table 7 that

L is the best algorithm at confronting Class Imbalance for this

ataset, improving the baseline in 0.64% for MAUC and 1.23 for

M. Additionally, RUS, ENN and NCR also achieved positive re-

ults obtaining the same performances in terms of BA, MAUC and

M overcoming the baseline in 0.47%, 0.6% and 1.16%, respectively.

hile on OA, TL got the highest OA with an increase of 0.52%, and

US slightly outperformed ENN and NCR. Another algorithm that
ore loosely overcame the baseline for all global metrics was OSS,

ut its enhancements are not as remarkable as the former tech-

iques. As it happened for ISP datasets ( Table 6 ), CNN, NM-1, NM-2

nd NM-3 had huge negative impacts on HOST-1. Surprisingly, IHT

id not achieve overcoming the baseline for any metrics explored

n contrast to ISP datasets. In the case of undersampling HOST-

, RUS and TL provided the highest increases in terms of MAUC

nd GM, nearly followed by NM-1, ENN and NCR. The main differ-

nces between the algorithms RUS, NM-1 and TL, ENN, NCR is the

ample reduction rate, since the former techniques removed more

han 40% of samples and the latter less than 0.20%. Among all un-

ersampling techniques, the highest OAs were obtained by TL and

M-1; meanwhile, ENN and NCR outperformed the rest of algo-

ithms for BA. Another algorithms that improved all global metrics

omparing to the baseline were NM-2 and IHT. Surprisingly, the

erformances exhibited by NM-1 and NM-2 on HOST-2 notably dif-

er from the observed for the rest of datasets, in this case all global

etrics were reinforced. Observing the outcomes provided by OSS,

e find that OA and BA were worsened comparing to baseline, in

ontrast to MAUC and GM that were loosely strengthened. Unlike

or other datasets, the only two undersampling algorithms that re-

orted negative impacts on all global metrics were CNN and NM-3.

When hybrid sampling was applied to HOST-1, the best-

erforming technique to confront Class Imbalance was SMOTE-TL

ccording to MAUC and GM. This method was the only hybrid ap-

roach that enhanced all global metrics with respect to the base-

ine. Additionally, SMOTE-ENN also increased some performance

etrics comparing to baseline, specifically the metrics that are

ensitive to Class Imbalance (OA and BA). The highest BA was ac-

omplished by SMOTE-B1-ENN, which accurately classified 0.55%



114 S.E. Gómez, L. Hernández-Callejo and B.C. Martínez et al. / Neurocomputing 343 (2019) 100–119 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8 

Friedman ́s Test. R j denotes the scores obtained by each algorithm. 

OA BA MAUC GM 

Oversampling 

ROS 8.25 8.25 4.87 5.50 

SMOTE 5.08 6.16 13.00 12.50 

SMOTE-B1 13.87 10.12 20.75 20.75 

SMOTE-B2 15.75 13.75 20.75 20.75 

ADASYNC 4.33 3.75 20.37 20.75 

Undersampling 

RUS 14.31 16.75 6.56 6.45 

CNN 26.25 26.25 26.50 26.50 

TL 10.91 13.37 4.12 7.20 

NM-1 20.41 22.37 19.81 20.16 

NM-2 24.00 23.75 24.00 24.00 

NM-3 28.00 28.00 28.00 28.00 

OSS 20.12 19.50 12.37 14.62 

ENN 12.06 11.66 3.83 5.12 

NCR 11.81 11.41 3.83 5.12 

IHT 22.25 22.25 18.25 16.37 

Hybrid sampling 

SMOTE-TL 6.06 10.50 13.25 12.62 

SMOTE-B1-TL 13.50 12.87 19.00 19.00 

SMOTE-B2-TL 13.75 13.25 19.25 19.00 

SMOTE-ENN 10.75 8.75 19.75 19.25 

SMOTE-B1-ENN 14.50 10.75 21.75 21.50 

SMOTE-B2-ENN 17.75 14.75 23.25 23.25 

Ensemble algorithms 

EE 11.87 14.87 3.79 2.25 

BC 16.37 17.87 7.66 6.16 

ROSboost 6.50 7.75 10.33 12.50 

SMOTEboost 8.00 9.50 14.75 15.25 

RUSboost 15.50 14.75 5.06 4.62 

TLboost 11.08 13.75 2.41 2.12 

Cost-sensitive 

MetaCOST 15.41 17.50 10.43 10.12 

p -value 0.0015 0.0011 < 0.0 0 01 < 0.0 0 01 
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of bytes more than the base estimator. Combining SMOTE-B1 or

B2 with TL or ENN leaded to performance degradations with the

exception of BA for SMOTE-B1-ENN and SMOTE-B2-ENN. Focusing

on HOST-2, we find that the only hybrid algorithm that overcame

the baseline for all global metrics was anew SMOTE-TL. This tech-

nique achieved increases of 0.25% for both OA and BA, and in-

creases of 0.46% and 0.90% for MAUC and GM, respectively. The

rest of approaches obtained negative results for all global metrics

when they are employed on HOST-2. The most unsatisfactory re-

sults in terms of OA and BA were obtained by SMOTE-B1-ENN,

whereas SMOTE-B2-ENN yielded the poorest MAUC and GM with

decreases of −1.06% and −2.11%, respectively. 

As Table 7 shows, ensemble algorithms that include resampling

while learning comprise interesting solutions to deal with Class

Imbalance. When these algorithms were trained with HOST-1, the

best results in terms of MAUC and GM were achieved by EE and

TLboost, which increased MAUC by 0.65% and GM by 1.23%. All

ensemble algorithms outperformed the baseline for these metrics,

and namely that BC and RUSboost obtained also very positive re-

sult. While on OA, EE obtained the highest score overcoming TL-

boost slightly, in contrast to BA for which the latter improved the

baseline and the former underperformed it. The highest BA was

obtained by SMOTEboost with an increase of 0.23%, and the rest of

ensemble algorithms yielded BA decays with the exception of TL-

boost. Namely, ROSboost decreased BA with respect to the baseline

by −1.23%. When ensemble algorithms were employed on HOST-2,

we find that three algorithm tied in terms of MAUC and GM. EE, BC

and TLboost obtained the best results for these performance met-

rics improving the baseline by 0.58% for MAUC and 1.12% for GM.

Furthermore, the rest of algorithms also overcame the baseline for

MAUC and GM achieving positive results, especially RUSboost and

ROSboost. Regarding OA, TLboost yielded the best outcomes in-

creasing the baseline by 0.3%, nearly followed by EE, BC and RUS-

boost. Among all the six ensemble algorithms, ROSboost yielded

the best results in terms of BA, and other algorithms that produced

positive results for this metric are: TLboost, EE, BC and RUSboost.

Furthermore, ROSboost also improved the baseline in terms of BA,

whereas OA and BA deteriorated when SMOTEboost was applied to

HOST-2. 

In the case of the cost-sensitive approach studied, we observe

from Table 7 that MetaCOST improved all global metrics for both

dataset (HOST-1 and HOST-2). When MetaCOST was applied to

HOST-1, we find that OA and BA increased by 0.46% and 0.06%, re-

spectively; meanwhile, MAUC and GM improved in 0.6% and 1.13%.

In the case of HOST-2, the performance increases were loosely

lower than for HOST-1 with the exception of BA, which increased

by 0.36%. 

4.2.3. Statistical validation and general remarks 

In the previous section we compared different type of solu-

tions to Class Imbalance discussing their strengths and weakness

in terms of all global metrics for the best models after applying

FS. Through this section we pretend to confirm the previous ob-

servations validating statistically the results and to discuss more

general remarks about the analyzed techniques. Table 8 contains

the outcomes from applying the statistical approach presented at

Section 3.3.4 , which enables algorithm comparison against differ-

ent datasets. 

From Table 8 , we find that some algorithms are fairly dis-

carded as suitable solutions to confront Class Imbalance for our

NTC dataset. The Friedman’s scores obtained by these techniques

are quite high revealing that they do not provide benefits for any

global metric, or even they produced detrimental performances.

These algorithms are: NM-3, CNN, NM-2, NM-1, IHT, OSS, SMOTE-

B2, SMOTE-B1, SMOTE-B1-ENN and SMOTE-B2-ENN. 
Other algorithms achieved reinforce metrics insensitive to im-

alanced class distributions (MAUC and GM), but also they yielded

ery weak enhancements in terms of OA and BA. For example,

he ensemble algorithms EE, BC, RUSboost and TLboost produced

reat improvements for MAUC and GM, and even TLboost and EE

ere the two best scored algorithms for these metrics. On the

ontrary, they obtained poor Friedman’s scores for OA and BA. In

ddition, the data-level algorithms RUS, TL, ENN and NCR, SMOTE-

L, SMOTE-B1- TL, SMOTE-B2- TL and SMOTE-ENN also provided

ositive results for metrics insensitive to Class Imbalance. Note

hat ENN and NCR obtained the same Friedman’s scores and that

hey were the best undersampling methods at mitigating Class Im-

alance for our NTC datasets. Interestingly, we find that the best-

erforming techniques that employ undersampling tended to im-

rove MAUC and GM notably, meanwhile they did not obtained so

ptimistic outcomes for OA and BA. In the case of MetaCOST, it did

ot obtained remarkable results for any of all the global metrics. 

When ROSboost, SMOTEBoost, ADASYNC, ROS were applied to

ur datasets, we find that they notably strengthened OA and BA.

hereas they did not get so positive increases in terms of MAUC

nd GM. Among all the algorithms studied, ADASYNC was fairly the

est-performing in terms of OA and BA for our datasets followed

MOTE. However, they did not yield so significant improvements

or MAUC and GM. While on ROS, it achieved to improve all global

etrics preserving a quite interesting tradeoff among metrics that

re sensitive to Class Imbalance and the metrics that are not. ROS-

oost was the best ranked ensemble algorithm in terms of OA and

A followed by SMOTEboost, however they did not produce so no-

able improvements for the rest of metrics. 

In short, the findings observed up to this point can be

ummarized in the following brief remarks: 
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• The algorithms that involve oversampling tend to rein-

force the metrics that are sensitive to Class Imbalance (OA

and BA). As we will show at Section 4.3 , these improve-

ments are directly related to increases in the individual ac-

curacy of majority classes. Interestingly, ROS was able to

provide benefits for both minority and majority traffic ap-

plications achieving quite positive outcomes in terms of GM

and MAUC. 

• The algorithms that include undersampling are prone to

solve Class Imbalance and not to reinforce majority classes

uniquely. Although some of them provided quite detrimen-

tal outcomes due to an excessive information removal, there

are also some undersampling methods that constitute an in-

teresting solution to imbalanced NTC. And particularly, RUS

achieved to improve MAUC and GM with a significant sam-

ple reduction in spite of its simplicity, leading to faster train-

ing times. 

• The Hybrid approaches considered did not provide signifi-

cant benefits for imbalanced NTC comparing to other data-

level approaches. And more specifically, the combination of

SMOTE and TL generally outperformed the techniques that

combine SMOTE with ENN. 

• Regarding ensemble algorithms, we find that some of them

confronted Class Imbalance effectively. EE jointly with the

methods that included undersampling with boosting (TL-

boost and RUSboost) notably improved MAUC and GM, and

oppositely the methods combining oversampling and boost-

ing were prone to boost OA and BA more clearly than MAUC

and GM. 

• The cost-sensitive approach assumed achieved to increase

MAUC and GM, however it produced losses in terms of OA

and BA. However, further experimentation could be per-

formed to study other more effective ways for computing

classification costs. 

• Through the experimentation on different datasets extracted

from two network scenarios presenting quite dissimilar

conditions, we find that some techniques present a more

stable behavior than others. A clear example of a stable tech-

nique is TLboost, which performed uniformly on the differ-

ent datasets. In the opposite side we find SMOTE-B1 and

OSS, which produced quite dissimilar outcomes for different

datasets. 

• Accordingly to the metrics explored in our experiments, we

find quite interesting to assess global metrics that are sensi-

tive to Class Imbalance jointly to metrics that are not. As we

have probed in previous sections, tradeoffs between perfor-

mance metrics could exist and monitoring several of them is

highly recommendable. 

• Finally, network environments could present different Class

Imbalance properties among them. In our work, the ISP

environment constitutes the most challenging network 

scenario presenting a higher level of Class Imbalance. Inter-

estingly, we find that performance losses are not exclusively

related to class distributions, so that poor accuracies could

also be related to other facts, such as: packet losses, packets

out of order, overlapping regions and/or outliers. 

In the following section we pretend to analyze individual ac-

uracies for majority and minority classes. We focus the discussion

n the most interesting methods explored with the purpose of val-

dating their outcomes for the most challenging NTC dataset. 

.3. Analysis of per-class metrics 

Up to this point, a wide number of solutions to Class Imbal-

nce were compared analyzing their strengths and weaknesses in
erms of global metrics. We found that the effectiveness of each

echnique depends on the metrics observed and also on the net-

ork environments. Through this section, we analyze in more de-

ail the ability of reinforcement minority classes for some algo-

ithms aiming to confirm the suitability of them to be applied to

mbalanced NTC. In order to not collapse the article with redun-

ant results, we focus uniquely on the most remarkable algorithms

nd the most challenging dataset according to the results pre-

iously discussed. As aforementioned, ISP-2 constitutes the most

hallenging dataset, thus we report the per-class metrics obtained

or this dataset. Regarding the algorithms discussed in this section,

e have selected at least one algorithm from each approach con-

idered. While on oversampling techniques, ROS has been selected

ue to the fact that it is the best-performing oversampling method

n terms of MAUC and GM. Additionally, ADASYNC obtained the

est Friedman’s scores for OA and BA between all the algorithms

tudied, and also it has been included in this section. NCR and

MOTE-TL are also studied, since they obtained the highest MAUC

nd GM for their respective resampling approaches according to

able 8 . Regarding ensemble algorithms, as TLboost was the most

emarkable method between all the comparison algorithms, we

ave selected it for this section. Finally, we have included Meta-

OST. Thereby, Table 9 contains the per-class accuracies obtained

ver ISP-2, the results are presented as increases or decreases com-

aring to the best model produced by the base estimator. As useful

nformation for the subsequent discussion, we remember that the

est-performing and that the minority classes for this dataset are

 Table 4 ): P2P, INT, S/C, MEDIA, E/C and QUIC. 

Regarding the metrics exhibited by ROS, per-class enhance-

ents were not so positive when six or less predictors were cho-

en. This fact could likely be caused by the low predictive power of

hese subsets, since these subset sizes also produced negative out-

omes when the base estimator was trained ( Table 4 ). Although

he best model in terms of MAUC was produced with 18 attributes

 Table 7 ), significant enhancements on per-class metrics were ob-

erved with less features. For example, when models with more

han eight predictors were selected, we find that the most of

lasses benefit from applying this oversampling technique. In gen-

ral, the performance improvements of minority classes were very

ignificant, and even the majority classes were also strengthened

ith the exception of DNS for specific subset sizes. Namely, ROS

ncreased ACC and AUC for MEDIA (which was the most punished

lass by the base estimator, see Table 5 ) by more than 20% and

0%, respectively and, similarly, E/C got important performance in-

reases. 

While on ADASYNC, we find that all minority classes were neg-

tively affected for all subset sizes studied, being P2P the most

amaged class with decreases that reached −47.89% and −23.47%

or ACC and AUC, respectively. On the contrary, WWW and DNS

etrics were notably improved accomplishing the most significant

ncreases for these classes between all the algorithms discussed

hrough this section. Specifically, ACCs for WWW and DNS were

ncreased by more than 7% and 10% when more than 10 attributes

ere selected. Due to this fact, ADASYNC obtained the best results

n terms of OA and BA, meanwhile it exhibited quite detrimental

erformances for GM and MAUC. 

Something similar to ROS happened when NCR was applied to

ndersample ISP-2, no evident improvements were observed on

ll classes when subset sizes equal or lesser than six were se-

ected. In the case of selecting six predictors, some classes were

trengthened, however the most of them were significantly pun-

shed. After that point, almost all per-class performances increased

ith the exception of WWW and DNS for certain subset sizes.

he classes that exhibited the worst performances for the baseline

ere significantly improved, but with weaker increases than ROS.

onversely, other minority classes exhibited greater performances
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Table 9 

Per-class metrics produced by the selected techniques on ISP-2. The baseline corresponds with the model formed by 14 features. 

P2P WWW DNS INT S/C MEDIA E/C QUIC 

ACC/AUC ACC/AUC ACC/AUC ACC/AUC ACC/AUC ACC/AUC ACC/AUC ACC/AUC 

ROS 

2 4.42/1.74 −57.11/ −27.83 −15.23/ −8.94 8.73/ −14.2 2.28/0.43 −28.39/ −14.4 −30.19/ −14.9 −3.10/ −3.41 

4 7.05/3.16 −45.77/ −22.41 −6.08/ −4.31 −1.06/ −12.51 4.07/1.74 −15.68/ −11.11 −26.76/ −13.04 1.46/ −0.12 

6 6.60/3.06 −32.04/ −15.15 −4.48/ −3.51 8.32/ −6.35 4.28/2.03 −10.03/ −5.35 −13.68/ −6.54 1.84/0.57 

8 7.18/3.56 0.89/1.19 −0.68/ −0.28 7.09/3.79 5.75/2.88 21.10/10.57 14.96/7.50 3.16/1.58 

10 7.11/3.52 0.47/1.07 −0.22/ −0.02 7.33/3.87 5.85/2.94 21.22/10.57 15.64/7.79 3.56/1.81 

12 6.79/3.38 0.51/1.08 −0.03/0.07 7.24/3.75 5.60/2.82 20.92/10.44 15.59/7.84 3.81/1.94 

14 6.41/3.21 0.46/1.01 0.83/0.51 7.27/3.80 5.80/2.91 20.37/10.07 15.47/7.89 3.78/1.92 

16 6.60/3.28 0.62/1.09 0.28/0.24 7.43/3.85 5.53/2.82 21.10/10.42 15.61/7.99 3.51/1.79 

18 6.60/3.29 1.39/1.51 0.26/0.21 7.64/4.12 5.66/2.85 21.10/10.58 15.94/8.14 3.83/1.95 

20 6.60/3.26 1.37/1.50 −0.25/ −0.05 7.66/4.20 5.66/2.83 21.10/10.55 15.98/8.13 3.59/1.81 

ADASYNC 

2 −44.68/ −22.14 −50.98/ −26.9 2.91/ −0.78 −69.55/ −33.25 −15.27/ −7.79 −4.19/ −21.69 −51.74/ −24.93 −29.64/ −14.95 

4 −46.67/ −22.97 −31.67/ −17.82 4.60/0.38 −9.11/ −16.28 −12.93/ −6.95 −55.25/ −26.81 −49.01/ −23.21 −16.3/ −8.12 

6 −14.62/ −6.91 4.78/ −3.61 6.38/1.57 −70.38/ −33.66 −10.79/ −5.34 −45.28/ −21.93 −37.11/ −17.43 −10.0/ −4.78 

8 −36.86/ −18.64 4.07/1.15 6.64/3.07 −17.07/ −7.86 −8.19/ −4.00 −25.71/ −12.32 −9.73/ −4.02 −7.26/ −3.42 

10 −6.99/ −3.12 6.26/1.92 10.82/5.17 −17.12/ −7.48 −6.92/ −3.35 −31.49/ −15.08 −12.96/ −5.53 −5.54/ −2.45 

12 −12.89/ −6.00 7.33/2.31 11.38/5.49 −18.47/ −7.98 −6.21/ −2.91 −20.48/ −9.55 −15.06/ −6.50 −5.72/ −2.53 

14 −13.46/ −6.29 7.14/2.34 11.83/5.70 −15.59/ −6.50 −6.23/ −2.91 −27.66/ −13.28 −11.97/ −4.91 −5.56/ −2.38 

16 −13.78/ −6.53 4.70/1.08 11.48/4.74 −22.25/ −9.95 −6.33/ −2.97 −24.49/ −11.57 −15.36/ −6.85 −5.08/ −2.21 

18 −15.9/ −7.51 7.54/2.81 10.04/4.83 −12.24/ −4.93 −4.69/ −2.34 −17.75/ −8.10 −8.11/ −2.97 −6.19/ −2.71 

20 −47.89/ −23.47 7.11/2.53 11.89/5.68 −14.20/ −5.86 −8.12/ −3.87 −22.12/ −10.3 −7.01/ −2.59 −6.08/ −2.68 

NCR 

2 3.20/1.40 −51.11/ −27.23 −22.19/ −12.02 8.65/ −14.19 1.82/0.55 −29.05/ −14.29 −31.28/ −15.43 −3.86/ −3.16 

4 6.86/3.11 −46.10/ −23.04 −9.03/ −5.53 −0.57/ −12.35 4.46/1.68 −15.92/ −11.28 −26.61/ −13.03 1.38/ −0.26 

6 7.18/3.29 −31.01/ −16.42 −10.98/ −6.05 8.55/ −6.30 4.30/1.99 −10.33/ −5.47 −13.80/ −6.67 2.37/0.67 

8 7.11/3.54 0.50/0.85 −0.73/ −0.30 7.20/3.84 5.64/2.84 20.61/10.39 15.28/7.51 3.21/1.60 

10 7.18/3.55 −0.04/0.52 −1.19/ −0.45 7.07/3.65 5.85/2.93 20.61/10.30 15.35/7.50 3.56/1.78 

12 6.86/3.42 −0.22/0.58 −0.14/0.03 7.48/3.74 5.62/2.83 20.61/10.31 15.57/7.70 3.85/1.94 

14 6.60/3.31 0.27/0.72 −0.53/ −0.13 7.19/3.71 5.66/2.84 20.55/10.28 15.45/7.68 3.91/1.94 

16 6.73/3.36 0.71/0.94 −0.61/ −0.21 7.37/3.86 5.83/2.93 21.10/10.55 15.63/7.85 3.41/1.74 

18 6.73/3.36 −0.06/0.68 −0.63/ −0.24 8.88/4.03 6.0 0/3.0 0 20.61/10.41 15.86/8.18 3.42/1.76 

20 7.18/3.56 1.68/1.43 −0.32/ −0.03 7.84/4.21 6.21/3.11 20.73/10.48 15.83/8.12 3.81/1.94 

SMOTE-TL 

2 1.34/0.34 −54.93/ −27.05 −12.95/ −8.40 8.16/ −14.44 −1.37/ −1.06 −35.19/ −17.54 −33.38/ −16.38 −6.72/ −4.62 

4 2.05/0.90 −44.26/ −21.96 −3.82/ −3.57 −1.56/ −12.71 −0.39/ −0.35 −25.22/ −15.84 −31.03/ −14.88 −3.25/ −2.20 

6 3.14/1.48 −30.59/ −14.75 −2.97/ −2.85 7.87/ −6.57 1.00/0.48 −18.78/ −9.50 −17.24/ −8.21 −0.19/ −0.27 

8 4.42/2.26 1.52/1.35 1.78/0.92 5.29/2.94 3.30/1.74 16.36/8.34 10.90/5.56 2.38/1.24 

10 4.36/2.24 1.13/1.16 1.55/0.81 5.04/2.76 4.25/2.19 16.23/8.31 10.95/5.47 2.77/1.43 

12 4.04/2.08 1.09/1.08 1.71/0.92 5.03/2.66 4.01/2.09 15.14/7.79 10.95/5.49 2.90/1.52 

14 4.04/2.07 2.14/1.72 2.07/1.08 5.99/3.39 3.48/1.83 15.99/8.10 12.50/6.57 2.86/1.49 

16 4.17/2.14 2.23/1.77 2.15/1.12 6.18/3.47 3.69/1.94 15.02/7.64 12.845/6.75 2.83/1.48 

18 4.23/2.16 2.04/1.65 2.11/1.10 5.82/3.29 4.10/2.14 15.26/7.71 12.59/6.60 2.73/1.44 

20 4.36/2.24 2.12/1.69 2.67/1.38 5.69/3.25 4.00/2.08 14.84/7.60 12.65/6.60 2.71/1.42 

TLboost 

2 4.16/1.70 −57.16/ −27.86 −15.04/ −8.92 8.74/ −14.20 2.16/0.43 −28.26/ −14.41 −30.22/ −14.92 −3.16/ −3.45 

4 6.92/3.10 −45.80/ −22.48 −6.26/ −4.41 −0.97/ −12.49 4.05/1.66 −15.74/ −11.10 −26.60/ −12.97 1.20/ −0.23 

6 6.60/3.10 −31.90/ −15.12 −4.69/ −3.58 8.33/ −6.32 4.21/1.99 −9.97/ −5.34 −13.73/ −6.63 1.88/0.62 

8 7.11/3.54 0.78/1.11 −0.44/ −0.15 7.04/3.77 5.49/2.77 21.16/10.60 15.16/7.54 3.11/1.58 

10 7.05/3.50 0.09/0.84 −0.29/ −0.05 7.15/3.75 5.74/2.90 21.34/10.65 15.48/7.57 3.59/1.82 

12 6.79/3.39 0.35/0.96 −0.19/ −0.01 7.20/3.77 5.75/2.88 20.91/10.47 15.59/7.71 3.81/1.93 

14 7.05/3.50 0.52/1.03 −0.18/0.00 7.13/3.69 5.85/2.94 21.10/10.53 15.52/7.81 3.66/1.87 

16 6.86/3.41 0.78/1.18 0.03/0.10 7.46/3.90 5.87/2.96 21.16/10.58 15.79/7.98 3.50/1.79 

18 6.86/3.41 1.25/1.41 0.28/0.22 7.68/4.13 5.89/2.96 21.16/10.62 15.88/8.07 3.45/1.78 

20 6.86/3.42 1.16/1.36 0.36/0.26 7.70/4.13 5.91/2.96 21.34/10.70 15.86/8.06 3.69/1.90 

MetaCOST 

2 3.46/0.56 −59.99/ −29.07 −22.76/ −12.43 −63.89/ −30.77 2.16/ −0.08 13.44/ −14.02 −29.87/ −15.26 −4.84/ −4.38 

4 6.28/2.61 −54.93/ −26.55 −13.90/ −7.99 −63.44/ −30.38 5.17/1.81 18.12/ −11.06 −26.31/ −13.13 3.43/0.53 

6 5.77/2.40 −37.02/ −17.53 −14.01/ −7.79 −15.09/ −14.15 4.84/1.67 −0.97/ −6.36 −13.64/ −6.90 3.16/0.71 

8 6.15/2.97 −2.64/ −0.33 −7.78/ −3.74 7.71/3.27 6.53/2.95 20.24/9.87 14.99/7.13 4.86/2.15 

10 7.18/3.48 −3.41/ −0.69 −7.41/ −3.56 6.28/2.59 6.62/3.02 21.03/10.22 15.08/6.90 4.90/2.21 

12 6.60/3.21 −3.19/ −0.57 −7.54/ −3.62 6.86/2.90 6.66/3.06 21.16/10.23 15.37/7.13 5.64/2.56 

14 6.86/3.32 −2.20/ −0.08 −7.05/ −3.37 8.34/3.60 6.89/3.21 21.28/10.22 15.74/7.83 5.61/2.55 

16 6.79/3.31 −2.19/ −0.06 −7.15/ −3.42 8.39/3.61 6.98/3.21 21.34/10.31 15.66/7.77 5.78/2.63 

18 6.60/3.19 −1.76/0.14 −7.12/ −3.41 8.34/3.68 6.69/3.09 20.98/10.14 15.77/7.87 5.41/2.45 

20 5.83/2.77 −1.92/0.06 −7.70/ −3.71 8.26/3.64 6.33/2.89 20.55/9.95 15.68/7.75 5.28/2.37 
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han using ROS, which contributed to the fact that NCR achieved

etter MAUCs and GMs than ROS, on contrast to OA and BA. The

est model from employing NCR on ISP-2 were produced with 20

eatures, obtaining notable increases for all classes with the excep-

ion of DNS whose metrics were slightly worsened. 

Regarding SMOTE-TL and similarly to ROS and NCR, we find that

he most per-class metrics were worsened when less than eight at-

ributes were selected. After that point, SMOTE-TL exhibited infe-

ior improvements on minority classes to ROS and NCR, however

he enhancements were also quite remarkable. While on major-

ty classes, both WWW and DNS were reinforced with increases

reater than 2.1% and 1.1% for their ACCs and AUCs. The perfor-

ance increases exhibited on majority classes leaded SMOTE-TL to

et better scores for OA than ROS and NCR ( Table 8 ), but without

eaching as significant increases as ADASYNC. 

Among all the comparison algorithms, the best method at solv-

ng Class Imbalance was the ensemble technique TLboost, which is

n original contribution of this work. Although significant increases

n the most classes were observed for subset sizes greater than

ix, the best model was produced using 20 attributes. Note that

er-class metrics for this subset size were generally greater than

he obtained by ROS and NCR, with the exception of WWW, E/C

nd QUIC traffic. 

Focusing on MetaCOST, we find a pretty different behavior from

he previous algorithms. We find that majority classes are dramat-

cally worsened comparing to baseline for all subset sizes con-

idered, meanwhile minority classes were significantly improved

hen more than six predictors were selected. There are essen-

ially one likely cause for this fact, remember that MetaCOST uses

ost-probability estimates and applies classification cost for re-

abeling the original training set. We experimented with several

unctions to compute classification costs, and finally the costs were

omputed according to Eq. (9) . The penalty on majority classes is

trongly dependent on the cost computation, so that more opti-

al cost could conduct to better performance for MetaCOST. Fi-

ally, note that MetaCOST obtained the highest improvements on

ost of the minority classes amongst all methods discussed in this

ection, being the best model at improving QUIC, INT and S/C. Con-

ersely, MEDIA, E/C and P2P obtained similar increases to TLboost. 

The observations provided through this section confirm trade-

ffs between metrics sensitive to Class Imbalance and other that

re not. Some algorithms strengthened minority classes, and even-

ually, these performance increases were accompanied also with

mprovements on the majority classes. Other interesting observa-

ion is that most of the techniques obtaining positive outcomes for

AUC and GM using less predictors than the best models provided

s baseline. This fact leads to attributes savings, which could be an

nteresting feature for fast early NTC. 

. Conclusions and future work 

Through this paper, 28 techniques to solve Class Imbalanced

ere analyzed and compared for our NTC datasets. To the best

f our knowledge, this work constitutes the first study that an-

lyzes an important number of solutions to Class Imbalance for

ulticlass NTC. Previous works limited the analysis to few meth-

ds or faced the problem simplifying it to binary subproblems.

ur algorithm comparison involved: 21 data-level solutions, six en-

emble techniques and one cost-sensitive approach. The selected

echniques were tested on two different network environments

valuating several performance metrics to find out the strengths

nd weakness of each method. Among the algorithms studied, we

resented two boosting algorithms that include data-level meth-

ds during learning, they are: ROSboost and TLboost. Additionally,

ome algorithms had to be adapted to multiclass problems using

ur own strategies to adjust the required parameters ( Section 3.4 ).
e make publicly available all algorithms and strategies imple-

ented at [64] , and encourage other authors to test them in their

espective research fields. 

As result of our comparison, we find that many of the tech-

iques explored are able to benefit traffic classification models

ompensating performance losses due to Class Imbalance. Re-

arding metrics sensitive to imbalanced class distributions, we

nd that methods involving oversampling provided substantial im-

rovements, being the algorithms that involve ROS and SMOTE the

ost promising approaches. Conversely, the algorithms that em-

loy undersampling produced the best improvements for metrics

nsensitive to Class Imbalance, being our algorithm TLboost the

est-performing for these metrics. However, they leaded to weak

nhancements for OA and BA, being RUS the only undersampling

lgorithm that keep an interesting tradeoff between metrics sen-

itive and insensitive to imbalanced traffic distributions. As it has

een reported in our result section, hybrid resampling did not get

o positive results comparing to other solutions, and the same

appened for MetaCOST. Furthermore, we have confirmed that

inority classes are significantly benefit from applying the most

elevant algorithms and that important enhancements can be

chieved using less features than the baseline. The latter fact could

onstitute an interesting advantage for fast early NTC. 

In order to extend and improve the contributions provided here,

everal research lines are envisioned as future work. Although we

ave considered several algorithm-level and one cost-sensitive ap-

roaches, there exists novel algorithms based on decision trees

hat could provide interesting enhancements for Class Imbalance.

he lack of implementations of these algorithms was the decisive

act to not include them for our experiments. With respect to the

ost-sensitive approach studied, we found that it produced neg-

tive outcomes for majority classes, so that experimenting with

ore sophisticated ways to compute classification cost may lead to

ore optimistic improvements. Furthermore, the comparison car-

ied out in this work may be extended to other emerging knowl-

dge areas such as: IoT and Smart Cities. Finally, studying these so-

utions with a finer classification granularity might constitute also

n interesting future research line. 
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