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ABSTRACT

Network Traffic Classification is a fundamental component in network management, and the fast-paced
advances in Machine Learning have motivated the application of learning techniques to identify network
traffic. The intrinsic features of Internet networks lead to imbalanced class distributions when datasets
are conformed, phenomena called Class Imbalance and that is attaching an increasing attention in many
research fields. In spite of performance losses due to Class Imbalance, this issue has not been thoroughly
studied in Network Traffic Classification and some previous works are limited to few solutions and/or
assumed misleading methodological approaches. In this article, we deal with Class Imbalance in Network
Traffic Classification, studying the presence of this phenomenon and analyzing a wide number of solu-
tions in two different Internet environments: a lab network and a high-speed backbone. Namely, we ex-
perimented with 21 data-level algorithms, six ensemble methods and one cost-level approach. Through-
out the experiments performed, we have applied the most recent methodological aspects for imbalanced
problems, such as: DOB-SCV validation approach or the performance metrics assumed. And last but not
least, the strategies to tune parameters and our algorithm implementations to adapt binary methods to
multiclass problems are presented and shared with the research community, including two ensemble
techniques used for the first time in Machine Learning to the best of our knowledge. Our experimental
results reveal that some techniques mitigated Class Imbalance with interesting benefit for traffic classifi-
cation models. More specifically, some algorithms reached increases greater than 8% in overall accuracy
and greater than 4% in AUC-ROC for the most challenging network scenario.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

[1-10]. The application of ML to NTC brings important advantages
over previous approaches; however new challenges have risen up

Internet network administrators often confront vast amounts of
traffic and fast events happening in different points of Internet
networks. Controlling and managing network resources can be an
arduous task considering the fast increase of interconnected de-
vices and the complexity of underlying network topologies. Due to
the former facts, the provision of automatic tools to facilitate the
network administrators’ work is crucial and urgent. Network Traf-
fic Classification (NTC) is a fundamental functionality of network
management systems, since many cyber-attacks and network flaws
can be easily detected via monitoring the network traffic. Thereby,
researchers have shown an increasing interest in NTC recently [1].

Machine Learning (ML) has opened up promising future
prospects for NTC and the number of published articles propos-
ing traffic classifiers based on ML is increasing continuously
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and they must be solved to accomplish feasible classifiers. Port-
based classifiers [11] are the earliest and simplest techniques to
characterize Internet traffic. This kind of classifiers relies on port
numbers into IP headers to associate protocols and applications
with flow connections according to the well-known ports defined
by the IANA [12]. Unfortunately, emerging applications (predom-
inantly peer-to-peer) that dynamically use different ports and/or
deliberately mask their communications behind IANA ports im-
pose an unresolved obstacle for port-based classifiers. This hand-
icap motivated researchers to develop more sophisticated tech-
niques, gaining a relevant relevance an approach known as Deep
Packet Inspection (DPI). DPI tools [13] inspect binary informa-
tion found in the application layer of network packets in order
to seek matches between inspected packets and prefixed signa-
tures. Although network hardware is fast evolving and, thus, the
perspective of DPI tools are improving in some network scenar-
ios, these techniques have major drawbacks to be implemented in
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network devices with scarce memory and computation resources.
DPI approaches are pretty computationally weighted complicating
their scalability, and additionally signature databases are quite dif-
ficult to maintain due to zero-day protocols and software updates.
But the most limiting issue from the point of view of Internet
Service Providers (ISPs) is users’ privacy violation. DPI tools un-
ceasingly extract information from the application layer access-
ing to personal information about network users. The above rea-
sons are being motivating the advanced research on ML-based NTC,
since ML essentially provides accurate and fast classifiers respect-
ing users’ privacy [1-3].

ML provides a wide number of preprocessing techniques and
learning algorithms enabling highly accurate classifiers. Learning
algorithms are able to process the knowledge contained in training
datasets and generate predictive models describing the structure
of data. The resulting models are afterwards used to reproduce the
response for incoming unknown samples. If training datasets in-
clude the response to predict, we are solving a supervised learning
task; otherwise, it is an unsupervised problem. Regarding the type
of response, the modeling task is a classification problem if the re-
sponse is categorical; whereas the regression problems cover cases
in which the responses take continuous values.

NTC is a multiclass classification problem, since traffic
classifiers aim to categorize objects (Internet connection flows) in
different classes or traffic categories (protocols or applications).
The most extended approach in ML-based NTC is flow-based level
in which all packets associated with a connection are aggregated
and jointly processed to create classification objects. Both super-
vised and unsupervised approaches [14]| have been proposed over
recent years evidencing the potential of ML for NTC. Although un-
supervised learning techniques have interesting advantages, such
as the no necessity of a labeling process [1], supervised algorithms
have outperformed unsupervised techniques in terms of accuracy.
Furthermore, semi-supervised techniques [5] have also been stud-
ied with promising results. In this work we approach flow-based
NTC from a supervised perspective.

Network environments impose important challenges when ML
is employed. One of the main challenges is Class Imbalance, phe-
nomena that is being actively studied in numerous research fields
in which ML is applied [15] (such as: Banking Fraud [16], Com-
puter Vision [17] and Medical Diagnosis [18]). A classification prob-
lem is categorized as imbalanced when one or various classes are
overrepresented comparing to the others. In almost all network
environments some services are more often consumed than oth-
ers, which turns out non-uniform class distributions when NTC
datasets are conformed [8,19-22]. Class Imbalance is a key topic
in recent ML research, since imbalanced class distributions nega-
tively affect learning algorithm performances awarding the most
populated classes and punishing the underrepresented ones.

In this work, we provide a thoroughly study on a wide
number of solutions to Class Imbalance for data traffic ex-
tracted from different network environments and dates, which
present dissimilar levels of imbalance. The most challenging traces
was captured recently from an ISP backbone; meanwhile, the
rest of datasets were extracted from a lab network in which
users’activities were manually simulated. Between the algorithms
studied here to confront Class Imbalance, we include: six ensem-
ble algorithms that include resampling during their training be-
ing two of them original contributions of this work; 21 well-
known resampling algorithms and one well-known cost-sensitive
approach. Throughout our experiments, we have applied novel
methodological aspects that are gaining a special relevance due to
their goodness for imbalanced problems, and they have not been
employed in ML-based NTC yet, such as: the validation approach
DOB-SCV or the performance metrics assumed. As an extra contri-
bution of our research, we make publicly available our algorithm

implementations in order to share them with other researchers.
Some authors have already studied some solutions to Class Im-
balance for NTC datasets [8,21-23]; however, none of them em-
ployed a suitable cross-validation approach to minimize covariate
shift between samples in validation folds. Furthermore, many of
them employed outdated data, did not assume an early NTC ap-
proach and/or only considered TCP flows and excluded UDP traffic.
To the best of our knowledge, the most of techniques considered in
our experiments have not been explored for early ML-based NTC.

This article is structured as follows. Section 2 introduces
Class Imbalance and reviews the most recent NTC literature.
The methodological aspects applied in our experiments are pre-
sented at Section 2 along with a discussion on Class Imbalance
for our datasets. During our experiments we have assessed both
global and per-class performance metrics, and a novel ML valida-
tion approach (DOB-SCV) have been used to validate our results.
Section 4 presents and discusses the results obtained from the
experiments we have carried out. Firstly, we show and discuss
the effect of the imbalanced class distributions on a base esti-
mator, which is afterwards selected as baseline for the algorithm
comparison. Secondly, we have compared a wide number of tech-
niques for Class Imbalance evaluating their performances in terms
of global metrics and statistically validating the outcomes. Thirdly,
the most interesting algorithms are selected in order to thoroughly
analyze their performances for each individual traffic class. Finally,
Section 5 states the conclusions of this work and presents future
work lines.

2. Previous work

As aforementioned, many research efforts have been focused
on addressing the problem of Class Imbalance for ML problems.
Through this section, we firstly provide an introductory view of
Class Imbalance, and afterwards we briefly review the recent ad-
vances in ML-based NTC to state an illustrative background.

2.1. Confronting class imbalance

A wide number of real-world problems addressed with super-
vised learning fulfill the condition to be categorized as imbalanced
problems, which has motivated the research on solutions to evade
Class Imbalance [15-18,23]. A two-class dataset is denoted as im-
balanced when a class (majority class) has more instances than the
other (minority class). Standard learning algorithms were designed
under the assumption that labels are equally distributed in train-
ing datasets biasing the classifier performances towards the major-
ity class. Different solutions have been proposed in order to correct
the negative effects of Class Imbalance, a thorough study on many
of them is provided in [24]. Lépez et al. examined Class Imbal-
ance focusing on useful performance metrics and the reasons that
lead to performance losses in imbalanced scenarios (overlapping
regions, small disjuncts, noisy data, ...). Additionally, the authors
carried out several experiments to assess the existing solutions on
different binary datasets. As Fig. 1 shows, the existing techniques
to confront Class Imbalance are categorized in three main levels
according to how they address the problem:

Data level: Data-Level methods address Class Imbalance via
modifying class distributions before training, they are
also known as resampling algorithms. In order to offset
the class populations they create new minority samples
and/or remove the existing majority ones from the original
dataset. In the first case we refer to oversampling methods
[25-27], meanwhile the techniques that reduce the number
of majority samples are known as undersampling algorithms
[28-34]. Also hybrid algorithms, which combine oversam-
pling and undersampling, have been proposed [35,36].



102

S.E. Gomez, L. Herndndez-Callejo and B.C. Martinez et al./ Neurocomputing 343 (2019) 100-119

A 4

\

A

CONFRONTING

CLASS IMBALANCE
__——/

y

A 4

Data Level

Algorithm Level

Cost-sensitive Level

Pretraining Dataset
modification
I 5
| 1
Removing Majority Creating Minority
Samples Samples

Undersampling

Oversampling

4

Learning phase
modification

Ensembles

N

Class Costs

association
|

| |
Postprocessing and/or

Misclassification

|
Combining
Approaches

Hybrid
Algorithms

Preprocessing Costs
Meta-Learning M[:::r:::!s

Fig. 1. Categorization of solutions to Class Imbalance.

Algorithm level: This approach includes learning algorithms that
are able to award the minority class and punish the majority
while training. In this instance, modified versions of learning
algorithms have been proposed to tackle imbalanced distri-
butions. Some algorithm-level approaches gaining in promi-
nence are the ensemble techniques that incorporate a re-
sampling phase while creating ensembles [37-39].

Cost-sensitive level: In this approach the algorithms learn taking
into account for costs associated with the different classes
[40]. Thereby, a high misclassification cost is assigned to
the minority class strengthening its importance in the learn-
ing process; on the contrary, the majority class is weak-
ened. The human perception of the problem is essential for
assigning classification costs in this approach, which could
lead to human errors in some cases. There mainly exist
two approaches to cost-sensitive learning: (1) Direct Meth-
ods use costs directly associated with each class; meanwhile,
(2) Meta-learning employs pre-processing (usually data-level
techniques) and/or post-processing steps during algorithm
training.

Some authors have compared some of the former solutions
in their respective areas. For example, Loyola-Gonzalez et
al. [23] recently studied how resampling methods affect
pattern-based classifier performances. The authors adver-
tised about misleading results when global accuracy is em-
ployed as performance metric, and also they proved the ad-
vantages of resampling algorithms.

An emerging discussion in Class Imbalance is how to adapt
the proposed solutions, which have been primarily designed for
binary problems, to multiclass problems [30,41,42]. The difficulty
of dealing with multiclass imbalanced problems is quite superior
to learning from imbalanced binary datasets as it is shown in
[43]. Decomposition techniques have attached a relevant

prominence in order to adapt two-class algorithms to multi-
class problems. These data preprocessing techniques transform the
multiclass problem in several binary sub-problems and once the
problem has been simplified, algorithms are employed in all of the
sub-problems to offset Multiclass Imbalance. The most popular ap-
proaches to decompose a multiclass problem are One-versus-One
(OvO) [44] and One-versus-All (OvA) [45].

Both decomposition methods have been studied by several
authors. An extended analysis of imbalanced multiclass problems
is provided in [41]. The authors studied the multi-minority and
multi-majority effects over different performance metrics using ar-
tificial datasets and Decision Tree as base learner. Additionally,
Wang et al. compared some data-level and algorithm-level tech-
niques for 12 real-world datasets. A comparison between well-
known oversampling and undersampling algorithms along with a
cost-sensitive approach was carried out in [42]. The authors eval-
uated three state-of-art ML classifiers (Support Vector Machines,
Decision Trees and K-Nearest Neighbors) in terms of average per-
class accuracies and applying both OvO and OvA decomposition
methods over 20 real-world problems. The obtained results reveal
that oversampling techniques often provide better results than un-
dersampling, and confirmed the advantages of applying decom-
position techniques to Multiclass Imbalance. Charte et al. studied
several resampling methods over different multiclass datasets in
[30]. They combined simple random undersampling and oversam-
pling along with a complex minority and majority search schemes.
Furthermore, they presented measures to quantify Class Imbalance
in multiclass datasets.

Another active discussion in Class Imbalance is how to
validate predictive models correctly. An interesting review on per-
formance metrics to validate classifiers in imbalanced problems is
provided in [46]. Regarding the validation approach, some tradi-
tional methods have shown to be inefficient to validate classifiers
under imbalanced conditions as it was pointed out in the work
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[47], in which Moreno-Torres et al. analyzed different traditional
cross-validation approaches for imbalanced problems. In addition,
the authors proposed a novel validation approach called DOB-
SCV (Distribution Optimally Balanced Stratified Cross Validation),
which is more resilient to covariate shift due to random selections.
The advantages of employing DOB-SCV was afterwards confirmed
in [48] through several experiments over different learning algo-
rithms and datasets extracted from different research fields. Thus,
we have assumed this validation approach for our experiments.

The particular characteristics of Internet networks lead to a
high level of Class Imbalance when NTC datasets are constructed
as we discuss for two different scenarios at Section 3.3.2. In this
work, we study a wide number of techniques to boost algorithm
performances in imbalanced NTC, including 21 data-level tech-
niques, six ensembles techniques and one cost-sensitive approach.
Amongst these algorithms, two new ensemble techniques are an-
alyzed based on the combination of Tomek Links and ROS with
boosting learning (Section 3.4). Additionally, this work constitutes
a real-world case of study in which several novel methodology as-
pects are applied at first time in NTC. Below, we briefly review
some relevant works on ML-based NTC to introduce readers to the
state of the art.

2.2. Recent advances in ML-based NTC

As aforementioned, ML has opened promising prospects in NTC
and a wide number of researchers have attached their attention
on this approach. One of the most important contributors to ML-
based NTC was Bernialle at el. with their manuscripts [49,50]. They
presented the concept of early traffic identification, which consists
in flow-based classification processing only a few number of pack-
ets at the beginning of TCP connections. The proposed classifica-
tion approach accomplished satisfactory accuracies using only five
packets per flow and clustering-based algorithms. Another work
that discusses the effective number of packets to consider for ac-
curate early classification is [6]. Peng et al. built their datasets us-
ing ordered sequence of packet sizes considering only TCP bidi-
rectional flows. The authors reported accuracies greater than 90%
using only the first 5-7 packet-sizes as predictors. Li and Moore
[51] also experimented varying the number of packets employed to
conform their datasets. They not only measured the performances
of classifiers based on accuracy, but also they studied the latency
in training and classification. The C4.5 Decision Tree algorithm was
reported as a promising technique for NTC due to its low latency
and its high accuracy.

Other authors have compared different state-of-the-art algo-
rithms for NTC datasets. The earliest comparative study amongst
ML algorithms was presented in [52]. Williams et al. confirmed
the observations provided in [44], which reported Decision Trees
as one of the most suitable learning algorithms for real-time NTC.
Furthermore, they studied the behavior of correlation-based fea-
ture selection algorithms on their datasets showing that reducing
the number of predictive attributes speeds up learning and classifi-
cation without significant performances losses. Soysal and Schmidt
[53] also provided a comparison between different ML algorithms
confirming that Decision Trees outperform other approaches in
terms of per-class precision and recall. As an additional contribu-
tion of their work, the authors studied how class distributions and
errors in labeling connection flows affect classifier performances.
Also, we carried out a comparison amongst ensemble algorithms
using Decision Tree as base estimator in [54]. We assessed sev-
eral popular ensemble algorithms showing their advantages in
terms of accuracy but, also, their penalties in latency. To address
the latency degradation, we presented a novel ensemble struc-
ture called T-DTC, which consists in a sequential chain of estima-
tors acting as filters of their respective successors. T-DTC exhibited

promising performances in terms of latency and accuracy over
datasets extracted from two different network environments. Other
authors have proposed other traffic classification approaches using
different state-of-the-art learning algorithms, such as: Naive Bayes
classifier in [55]; Bayesian Neural Networks in [56]; and Support
Vector Machines in [9,57].

A current tendency in ML-based NTC is contributing to open re-
search lines proposing ad-hoc classifiers. In the instance of [5], the
authors faced the problem of detecting zero-day applications and
proposed a classification approach able to detect emerging traffic
and retrain itself to classify it. The proposed algorithm is com-
posed essentially by three modules, an Unknown Discovery mod-
ule, a Bag-of-Flows based classifier and a System Update module.
Another classification approach with the capacity of self-learning,
called Self-Learning Intelligent Classifier (SLIC), was presented in
[58]. SLIC dynamically builds a training dataset and retrains a pre-
dictive model based on K-Nearest Neighbors when a new sample
is introduced in the dataset. The results reported show how clas-
sification accuracy increases in each retraining iteration. The issue
of performance deterioration over distant-based classifiers due to
Internet dynamic conditions is analyzed in [59]. Camacho et al. as-
sessed the generalization ability of 1-Nearest Neighbor in dynamic
contexts, and proposed a flow pairing technique for traffic classi-
fication based on a similarity function to address this issue. Fur-
thermore, the authors extended their experiments for P2P traffic
identification.

Concerning Class Imbalance, some authors have tried to pro-
vide solutions for imbalanced NTC datasets. A class-oriented
feature selection (COFS) and an ensemble learning approach are
proposed in [7] to cope with non-uniform traffic distributions.
COFS combines local and global metrics to remove redundant and
irrelevant features outperforming traditional feature selection tech-
niques. The presented ensemble scheme is composed by several
base learners per traffic class and a subsequent weighted voting.
Two simple data-level algorithms and one cost-sensitive approach
(MetaCost) were compared in [22] for datasets extracted from net-
work traces captured between 2003 and 2007. The authors applied
Random Undersampling and Oversampling using a new strategy in
order to detect minority and majority classes and set the ratios
between classes. In the instance of MetaCost, the cost coefficients
were adjusted according to a strategy based on flow-ratio. The re-
ported results show how resampling algorithms can be very effec-
tive when there are insufficient training samples and cost-sensitive
when there are enough number of samples. Finally, undersampling
provided other interesting advantages, such as fast execution and
training times. Wei and Sun et al. [21] also tackled the problem
of class imbalanced for real-time NTC comparing several ensemble
techniques that combine data sampling algorithms with boosting.
The authors also proposed a hybrid approach called BalancedBoost,
which is quite similar to other ensemble algorithms considered in
this work. BalancedBoost outperformed the rest of algorithms us-
ing the UNIBS datasets, which is composed by traffic generated
only by target hosts. Recently a cost-sensitive algorithm based on
data gravitation-based classifier (IDGC) has been proposed in [8] to
mitigate Class Imbalance in NTC. IDGC is a modification of the al-
gorithm DGC proposed in [60], which introduce sensitiveness to
imbalanced class distributions via applying a weighting phase us-
ing ratios between classes. Peng et al. showed that IDGC overcomes
other ensemble and cost-sensitive methods focusing only on TCP
connections and transforming multiclass NTC in simpler two-class
datasets. Finally, we suggest reading the surveys [1-4] to get a
more general view of NTC.

A large proportion of the above articles reported about imbal-
anced distributions in NTC datasets, however the works that tackle
this issue are scarce. Throughout this article, we discuss Class
Imbalance over real-world NTC datasets in order to insightfully
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Fig. 2. Methodology overview.

analyze this problem. Additionally, the absence of studies conduct-
ing experiments to assess the benefits of solutions to Class Imbal-
ance in early NTC encourages us to provide a uniform comparison
among a wide number of these algorithms. The experiments pre-
sented below were conducted employing the most sophisticated
validation approach and performance metrics for imbalanced prob-
lems up to date. The experiments were conducted employing dif-
ferent datasets composed by TCP and UDP traffic and extracted
from two different environments, which present dissimilar Class
Imbalance conditions. The classification task is faced a multiclass
perspective, so that we had to adapt techniques preliminary de-
signed for two-class problems to multiclass datasets. As part of the
contributions of this work, we make our implementations available
for the research community.

3. Material and methods

The methodology followed in our experiments is described
in detail through this section. Fig. 2 depicts the methodology
overview applied to all our NTC datasets. During dataset creation,
the network traces were processed to generate a collection of
77 statistical attributes over each Internet connection assuming a
flow-based classification approach. A detailed description of this
process is provided at Section 3.3 along with a discussion on Class
Imbalance in our datasets. After creating the NTC datasets, we ap-
plied the DOB-SCV approach to generate folds of instances that
were used to train and validate the traffic classifiers, and the same
folds were employed for all algorithms studied. As it was discussed
in [47,48], traditional validation approaches, which rely on naive
random selection of samples, normally present a high covariate
shift in the generated validation folds. Instead of a random selec-
tion, DOB-SCV exploits more information keeping the data distri-
butions quite similar between folds, and thus minimizing covariate
shift among folds. We generated five folds so that one fold was
used to train the algorithms and the rest to validate the predictive
model generated during each validation epoch. All results reported
in Section 4 are the average scores obtained over the five valida-
tion folds.

Only Fold 1 was supplied to a Feature Selection (FS) algorithm
in order to rank the most relevant predictors for our problem. The

FS algorithm employed, called FCBFiP, is a modified version of the
popular Fast Correlation Based Feature Selection algorithm, which
speeds up the selection process via modifying the search strat-
egy. We presented this algorithm and validated it against several
datasets in [61]. Additionally, this algorithm was previously used
in our work [54] and it is publicly available in [62]. Through FS,
we generated a ranking of predictors that was applied to each fold
so as to reduce the attribute space. For our experiments, we con-
sidered subset sizes from 2 to 20 with steps of 2 features in order
to assess the solutions to Class Imbalance against different subset
sizes.

Our main contributions are achieved essentially through two
experiments. Firstly, we employed a base estimator (described at
Section 3.1) to generate a baseline and compare all techniques to
it. The same base estimator was afterwards employed during the
comparison of solutions to Class Imbalance as Fig. 2 illustrates.
In the case of data-level algorithms, each fold was resampled be-
fore being used to train the base estimator, meanwhile the rest of
folds were kept unaltered for validation. For ensemble and Cost-
Sensitive algorithms, the base estimator was the core of the learn-
ing process. After obtaining the results, we analyzed algorithm per-
formances according to several global performance metrics and
statistically validated the outcomes to extract general observations
over all datasets (Section 4.2). Finally, we observe per-class metrics
for the most promising techniques on the most challenging dataset
at Section 4.3 so as to confirm that the studied solutions reinforce
the predictiveness on minority classes.

The algorithms to deal with Class Imbalance were collected
from different sources. The data-level and two of the ensemble
techniques studied are available in the Python Library imbalance-
learn [63]. The boosting ensemble approaches employed are
adapted versions to multiclass problems of some algorithms pro-
vided by a third party. In order to make these algorithms suitable
for multiclass problems, we have designed different strategies to
assist the learning process in managing ratios between classes. In
total we have compared 21 Data-Level algorithms, six ensemble
algorithms and one Cost-Level approach; we make accessible our
implementations to the research community in [64], which con-
stitutes an additional contribution of this work. A more detailed
description of all techniques and the strategies assumed to adjust
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Fig. 3. Internal set of decision rules implemented by Decision Tree. The classes to predict are C1, C2 and C3; and the predictors are X1, X2 and X3.

class ratios, associate classification costs with classes and assist
the ensemble learning process is provided at Section 3.4. The al-
gorithm comparison was performed in terms of several global and
per-class performance metrics, which are introduced and described
in Section 3.2.

3.1. Estimator choice: CART decision tree

During the first years of research on ML-based NTC many
researchers focused on learning algorithm comparisons to find
out which are the most effective learning approaches. Decision
Tree has shown as one of the most suitable algorithms for on-
line NTC due to the fact that it retains an excellent ratio be-
tween classification performances and latency [2,51,52]. In these
works the authors shown how Decision Trees outperformed other
learning approaches, such as SVM, Neural Networks and Naive
Bayes.

CART Decision tree is a learning algorithm that iteratively cre-
ates decision rules by splitting the attributes space according to an
information-based criterion, normally trying to minimize metrics
such as Information Gain or GINI Impurity. When Decision Trees
are trained, their internal structures implement a hierarchical set
of rules that looks like a tree, as Fig. 3 shows for two different
cases. Each level in the tree is a conditional split that describes
decision regions to classify unknown samples. New unknown sam-
ples go through this hierarchical set of heuristics until they reach
the final leaf, in which they are finally classified. The final class
is assigned according to the classes that mostly populates the de-
cision region. Fig. 2 depicts the structure of two trained CART
Decision Trees in two different conditions of Class Imbalance. In
Fig. 2(a), the training dataset kept an almost uniform class distri-
bution, on the contrary, the tree (b) was trained under high Class
Imbalance. Observing the bottom levels of the tree (a), we find that
127 C1 samples were correctly modeled of a total of 170, 104 C2
samples of 167, and 142 C3 samples of a total of 163. In the in-
stance of tree (b), none of the C1 samples were correctly modeled,
and only three C2 samples of a total of 26 did, whereas 453 C3
samples from a total of 462 were accurately modeled.

In spite of Class Imbalance sensitivity, Decision Tree algorithms
have been widely employed in NTC research, and consequently we
have chosen the CART Decision Tree algorithm implemented in
[65] as base estimator. The CART decision Tree we have employed
in our experiments tries to minimize the Gini Impurity. Gini Impu-
rity is defined by Eq. (1), where p; is the probability for each class

and C is the number of classes.
c

lo=1-) p? 1)
i=1

This measure is quite sensitive to Class distributions, since I
is computed using the square root of class probabilities found in
the training dataset. Therefore, if the initial dataset is highly im-
balanced, this metric will bias towards the most populated classes.
The Class Imbalance sensitivity of CART Decision Tree makes it a
good base estimator to assess the enhancements provided by the
techniques studied.

3.2. Performance metrics

Which performance metrics use when an imbalanced problem
is faced is already an open research topic in ML. Traditional met-
rics that measure the overall classifier performances were designed
without considering Class Imbalance. Thus, no every assessment
metric is appropriate for validating learning systems in this con-
text [46]. In order to consistently compare the performances of the
different solutions to Class Imbalance, both global and per-class
metrics are assumed. We consider global metrics quite worthy to
figure out the performances of classifiers on the whole network
traffic. Additionally, per-class metrics describe the behavior of the
algorithms on individual classes so that they are very insightful to
know if minority classes are really strengthened. Below, the per-
class and global metrics used for our comparison are introduced.
Finally, we introduce other measures to assess the level of Class
Imbalance in our datasets, and the statistical approach used so as
to validate the results obtained in the comparison.

3.2.1. Per-class metrics: class accuracies and AUC-ROC

The techniques to mitigate Class Imbalance are expected to re-
inforce the predictive power on minority classes and, eventually,
weaken the majority classes. Therefore, it is crucial to evaluate
the classifiers in terms of metrics that describe the performances
on individual classes. To this aim, we assume per-class accura-
cies and AUC-ROCs (Area Under Curve - Receiving Operating Char-
acteristics). The former is a general metric and it is defined by
Eq. (2), where TP; denotes the true positives on samples belonging
to class i (note that ACG; is similar to per-class recall [46]). The lat-
ter is a scalar metric computed from the ROC curve. ROC curve is a
graphical representation of binary classifier performances in terms
of true positives and false positives. We have extended this bi-
nary metric to multiclass problems using One-versus-All approach.
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AUC-ROC method is quite interesting for imbalanced datasets, since
it measures the quality of classifiers irrespective of class distribu-
tions.

_ U

~ #Samples of Class i

ACG (2)

In order not to collapse the result section due to the high num-
ber of algorithms considered, we only present and discuss the per-
class metrics for the base estimator (Section 4.1) and the most in-
teresting algorithms (Section 4.3).

3.2.2. Overall Metrics: Overall, Byte, average accuracies and
multiclass AUC-ROC

Global performances for classifiers are often assessed by Over-
all Accuracy (OA), OA measures the percentage of samples correctly
labeled as Eq. (3) describes. TP; denotes the number of true posi-
tives on class i and #Samples the total number of instances con-
tained in the dataset. Since flow-level classification is assumed, OA
can be considered as flow accuracy.

0A = & (3)
#Samples

Other interesting performance is the Byte Accuracy (BA) defined
by Eq. (4). Each Internet connection consumes network resources
in terms of duration, bytes and number of packets transferred.
From a network management perspective, measuring the quantity
of bytes correctly classified is quite reveling to figure out the qual-
ity of traffic classifiers. Thus, we report the BA score in the result
section, which is the percentage of bytes accurately classified over
the total number of bytes contained in network traces.

Bytes classified correctly
BA =
Total bytes captured

(4)

Both OA and BA metrics are quite sensitive to Class Imbalance.
If a class accumulates the most of instances and/or the most of
bytes transferred, OA and BA are not representative metrics for the
rest of minority classes. Satisfactory accuracies on majority classes
could mask poor classification rates on the minorities. To avoid
misleading observations, we have evaluated two additional well-
known metrics that accurately describe the quality of classifiers for
imbalanced problems. A reveling metric for imbalanced problems
is G-mean (GM), which is the geometric mean of all per-class ac-
curacies (or recalls [46]). GM for a problem comprising n classes is
defined in Eq. (5). One strategy to extend per-class metrics to mul-
ticlass metrics that summarize them is the macro averaging. The
Macro-Average is the arithmetic mean of metrics partially com-
puted for each individual class. This metric has shown more proper
for imbalanced datasets than other global scores, since the impacts
of minority and majority classes over the final score are the same.
Therefore, we assume the Multiclass AUC (MAUC), which is defined
by Eq. (6) for n classes.

GM =/ JACG (5)

v - ZAG

(6)
3.3.3. Measuring the imbalance level: imbalance ratio per label

An assessment approach to measure the level of Class Imbal-
ance in multiclass datasets was presented in [30]. This approach is
based on the imbalance ratio per label (IRLbl) defined by Eq. (7),
which is the ratio between the number of majority samples and
the number of samples belonging to a given class i. Thereby, IRLbl
for the majority class will be 1, meanwhile it will be larger for mi-
nority classes.

#Samples of majority class

IRLDI(i) = #Samples of class i

(7)

Once the IRLbl has been computed for each class, the mean and
variance of all IRLbI values are computed to get general informa-
tion about Class Imbalance in the whole dataset. The larger the
mean of IRLbI, the higher the level of imbalance in the dataset;
and the larger the variance, the higher the difference among class
populations. We assume these metrics so as to figure out the
level of difficulty imposed by imbalanced class distributions in our
datasets.

3.3.4. Statistical validation

In our second experiment we compare a wide number of re-
sampling algorithms according to several global metrics over four
datasets. When algorithms are compared using different datasets,
the statistical significance must be verified to assure that the ob-
tained results are consistent [66]. A well-known method to com-
pare a set of algorithms against different datasets is Friedman'’s
Test. Friedman’s Test is a non-parametric statistical method, which
sets as null hypothesis that all algorithms involved in the compar-
ison achieve the same performances: in short, no statistical differ-
ences exist between them. In order to confirm or reject the null
hypothesis, algorithms are ranked for each dataset according to
their performances, and the position that each algorithm occupies
in the ranking is assigned as scores. Then, Friedman’s score is com-
puted as Eq. (8) describes, being k the number of algorithms in
comparison, N the number of datasets and R; the score obtained
by each algorithm for the dataset j.

12N

X% = R oED S R? - 025k % (k+1)° (8)
J

Once x2r is computed, the associated p-value is obtained from

a chi-squared random distribution with k — 1 degrees of freedom.

The lesser the resulting p-value, the greater the probability that

statistical significance exists between the algorithms.

3.3. Datasets: network environments, feature extraction and level of
class imbalance

Internet networks environments normally differ each other in
many features, such as: the kind of traffic observed, the quantity of
connections belonging to each application, the topologies and traf-
fic rates. These facts considerably affect the predictors contained in
NTC datasets. Traffic rates could affect predictors related to Inter-
Arrival Times, and network topologies may carry packet losses or
multipath effect that influence the values of NTC predictors. Con-
sequently, it is highly recommended to validate ML-based traffic
classifiers in several network scenarios. We have selected four net-
work traffic captures collected from two different network environ-
ments: a lab network and ISP backbone network. Table 1 includes
relevant information about the network traces employed in our ex-
periments.

Privacy policies normally hinder the possibility of getting third-
party real network traces. To evade this constraint, the CBA re-
search group of UPC BarcelonaTech generated network traffic for
research purposes in their lab. They manually simulated host ac-
tivities for a long term and captured the network traffic generated
in the hosts to assess DPI tools [67]. The datasets resulted from
processing these network captures have been called HOST datasets
in this work.

In addition to HOST data, we have included datasets col-
lected from a much more challenging scenario. An Internet Service
Provider, which provide Internet to more than two million of users
across Spain, has cooperated in this research sharing real network
traffic with research purposes. The network traffic was captured re-
cently in a node of their backbone network where traffic rates of
7 GB/s are supported. These datasets have been called ISP traces in
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Table 1
Network traffic traces information. IRLbL denotes the mean of IRLbl metric and o (IRLbL) denotes its
variance.
Start date Duration Datasize # Packets # Flows  IRLbL o (IRLbL)

ISP-1 17/01/2017 298 s 1212 GB 8,863,530 231,137 3850 35.79

ISP-10 23/03/2017 600 s 35.62 GB 33,156,082 627,898  91.22 107.45

HOST-1  25/02/2013  ~59 days 9438 MB 5,062,825 121,293 442 315

HOST-2  25/02/2013  ~32 days 22 GB 21,000,000 245,627  17.29 18.28

our result section. The name of the ISP is omitted in this work due
to security concerns.

3.3.1. Feature extraction: statistical attributes and labeling

The datasets involved in our experiments include 77 statis-
tical attributes processing only five packets at the beginning of
each Internet connection. Computing the attributes using a limited
number of packets assures that our classifiers fulfil the early clas-
sification requirement presented in [49]. The classification objects
considered are bidirectional flows, therefore each flow sample con-
tains information about ingoing and outgoing packets. The com-
plete list of predictors is available at an Annex in our previous
article [54].

As we are assuming a supervised approach for our classification
problem, we need to consistently associate each connection flow
to the application that generates it. There are several fashions to
label instances for NTC datasets, but it is highly recommended to
employ a DPI approach due to their high accuracy. Since the tool
nDPI [13], publicly available at [68], has shown as one of the most
accurate open source DPI tool and it is able to handle encrypted
traffic [69], we used it to label our datasets.

The tool nDPI classifies application flows with an excessive fine
granularity, which turns out datasets with an unmanageable num-
ber of classes. Evaluating Class Imbalance solutions on a high num-
ber of classes leads to too heavy execution times and a major
challenge when ratios between classes are adjusted for resampling
techniques. Additionally, some learning algorithms are pretty sen-
sitive to the number of classes, hindering classifiers performances
when they deal with a vast number of classes to predict. In or-
der to avoid the former constraints, we have assumed an appli-
cation grouping strategy, in which applications and protocols that
share similar features are clustered in more general descriptive ob-
jects. Application grouping was introduced in [70], and this strat-
egy has been commonly applied in numerous relevant ML-based
NTC works [7,10,22,51,55,56,71].

The WWW class is composed by HTTP and HTTPS queries to-
wards many diverse websites. The DPI tool employed to label the
dataset is able to directly detect connections to the most popular
web services (such Google, YouTube, Facebook and so on), how-
ever some HTTPS connections were labeled as SSL on port 443.
These instances were also mapped to the WWW class. Other web-
site queries are represented by QUIC class, QUIC is a recent trans-
port protocol implemented by the browser Google Chrome whose
presence in the ISP traces is quite relevant. The eDonkey, Torrent
and other peer-to-peer traffic have been grouped into P2P class.

Table 2

DNS protocol has been found with a notable presence in HOST and
ISP data, thereby this protocol was considered as an independent
class. Media groups applications and protocols as RTP and Skype.
Remote control protocols as SSH, Telnet and others were repre-
sented by the class interactive (INT). The network service protocols
(such as NetBios, Radius, Kerberos and so on) have been grouped
in the class Service/Control (S/C). The Email/Chat class includes ap-
plications as WhatsApp, email services and so on. Finally, Bulk traf-
fic groups File transfer protocols, such as FTP. NDPI reported some
connection flows as unknown, so that we used the port numbers
(IANA) to assign the final application class in these cases. If it was
not possible to identify the application for any flow, these sam-
ples were excluded from the datasets. Other applications groups, as
database queries and online games, were found in our traffic data;
however, we excluded them from our experiments due to their
hugely weak presence in the datasets. The datasets used in our ex-
periments are accessible to the research community via emailing
the authors. Table 2 contains the populations found in the datasets.

3.3.2. Level of class imbalance in our datasets

Table 2 contains the class distributions found in our datasets in
terms of number of flows and the bytes consumed by each group
of applications. In the instance of ISP traces, the majority classes
are WWW and DNS, which accumulate more than 90% of the sam-
ples contained in both datasets. On the contrary, we found that the
minorities are INT, S/C, E/C and QUIC for both, and also MEDIA and
P2P in the case of ISP-2. In spite of the different capture durations
and dates (Table 1), the distributions of classes are very similar to
each other, but with the main difference that P2P and Media traf-
fic emerged in ISP-2 with a quite low sample representation. This
fact affects the metrics used to assess the level of Class Imbalance,
note that IRLbL and o (IRLbL) for ISP-2 are much larger than the
ISP-1 (Table 1). Focusing on the byte populations for ISP traces, we
found that QUIC takes an important relevance. Although QUIC has
a weak presence in terms of%l, it consumed more than the 8% of
bytes for ISP-1 and more than the 13% for ISP-2. However, WWW
is remaining being the most byte-consuming for both datasets. Re-
garding HOST datasets, we find that they present a lesser degree of
imbalance than the ISP traces. This fact is caused by the differences
between network environments, since ISP traffic aggregates con-
nections flows coming from many users, meanwhile HOST traces
were captured in host computers.

The level of Class Imbalance in HOST-1 is much lower than
HOST-2 as can be noted observing IRLbL and o (IRLbL) from Table 1.
In the instance of HOST-1, P2P and WWW are the majority classes

Network application distribution for our datasets. %I denotes the percentage of instances belonging to each class and %B denotes the percentage of bytes transferred by

each application in the network captures.

P2P Www DNS INT S/C BULK Media E/C QuIC

%1 %B %1 %B %1 %B %1 %B %1 %B %1 %B %1 %B %1 %B %l %B
ISP-1 - - 7260 9130 21.00 0.09 245 0.11 066 0.16 - - - - 159 044 170 8.10
ISP-2 0.25 <0.01 7020 8570 2190 0.21 2.57 0.41 090 024 - - 026 0.10 159 025 233 13.40
HOST-1 33.00 15.90 32.83 2761 9.12 009 1030 273 596 006 572 2371 307 299 - - - -
HOST-2 14.30 7.90 17.10 11.80 721 0.04 5540 671 1.06  0.01 343 622 150 693 - - - -




108

Table 3

S.E. Gomez, L. Herndndez-Callejo and B.C. Martinez et al./ Neurocomputing 343 (2019) 100-119

Algorithm selected to deal with Class Imbalance in our NTC datasets. The strategies presented in Fig. 4 were applied to the algorithms marked with an asterisk.

Algorithm description

OVERSAMPLING
Random OverSampling (ROS*)

Synthetic Minority Oversampling
TEchnique (SMOTE*)

SMOTE with Borderline 1 and 2
(SMOTE-B1* and B2*)

ADAptive SYNthetic algorithm
(ADASYN*)

UNDERSAMPLING
Random UnderSampling (RUS*)

Near Miss (NM-1*, 2* and 3)

Condensed Nearest Neighbor (CNN)
Tomek Links (TL)

One Sided Selection (0SS)

Edited Nearest Neighbor (ENN)
Neighborhood Cleaning Rule (NCR)
Instance Hardness Threshold (IHT)

HYBRID SAMPLING

SMOTE+Undersampling (SMOTE-TL*,

SMOTE-ENN*)
ENSEMBLE ALGORITHMS
EasyEsemble (EE)

BalanceCascade (BC)

OverBoosting (ROSboost*,
SMOTEboost*)

UnderBoosting (RUSboost*, TLboost)

The minority class is resampled by replicating samples randomly selected. This algorithm is the simplest oversampling
technique.

Synthetic data are generated for the minority class [25]. K minority nearest neighbors are selected for each minority
sample, one of these neighbors is randomly chosen and one new sample is generated at a random point in the segment
that joins the neighbors. This process is repeated until accomplish the desired number of new minority samples.

This modification of SMOTE assumes that only minority samples placed near the borderline between classes are important
for learning [26]. This SMOTE version detects borderline examples and strengthens them according to two strategies. In
borderline 1 only k nearest neighbors belonging to minority class are oversampled, meanwhile both majority and minority,
borderline samples are generated in SMOTE-B2.

ADASYN adaptively resamples the minority class according to the level of difficulty in the learning process [27], so as that
more synthetic samples are generated for classes difficult to predict. In the generation process the algorithm randomly
selects the k nearest neighbors around minority samples and estimate the distribution of the data. Finally, new samples
are generated in middle points between minority samples and one of their neighbors randomly chosen.

RUS randomly selects samples belonging to the majority classes and removes them from original datasets. RUS is the
simplest approach to apply undersampling to imbalanced datasets.

Near-miss samples are defined as the majority samples that are located in minority class nearby. NM-1, 2 and 3 remove
the near-miss samples according to a KNN strategy. Three strategies were developed to determine if a given sample is
near-miss, all of them are described in [29].

CNN iteratively finds a consistent subset with the minimal number of initial samples. CNN employs the Nearest Neighbor
rule to determine if a sample will be retained or discarded.

A Tomek Link consists of a pair of samples that are nearest neighbors but each one belongs to a different class [34]. TL
detects and removes Tomek Links from the initial dataset.

0SS [30] intelligently removes the majority samples in two phases: (1) a 1-KNN classifier selects a representative subset of
majority samples, and (2) the majority samples that participate in Tomek Links are removed.

ENN removes samples that are misclassified by a k-NN classifier [31]. The purpose of this technique is to remove outliers
and overlapped samples between different classes.

NCR [32] removes noisy examples in two steps essentially: (1) NCR employs the ENN rule to identify noisy samples, and
(2) noisy samples with 3 of their 5 nearest neighbors belonging to different classes are removed.

IHT is a recent data reduction technique that trains a base classifier, estimates sample probabilities and removes the
training samples whit weak probabilities [33]. We employed decision tree as base estimator for our experiments.

SMOTE-TL [35] firstly oversamples minority samples using SMOTE and, afterwards, removes the TL links. Meanwhile,
SMOTE-ENN [36] cleans the oversampled dataset applying ENN rule.

EE creates a bag of balanced datasets using ROS to train a set of base estimators, whose predictions are aggregated
according majority voting [37].

BC is a supervised version of EE. BC creates a bag of balanced datasets, which are refined using a base estimator [37].
OverBoosting oversamples minority classes in each boosting iteration. ROSboost employs ROS during learning, meanwhile
SMOTEBoost oversamples the dataset using SMOTE [39].

UnderBoosting undersamples majority classes in each boosting iteration. RUSboost [38] employs RUS during learning,

meanwhile TLboost removes Tomek links in each iteration.

COST-SENSITIVE
MetaCOST (MetaCOST)

MetaCOST is a well-established cost-sensitive technique independent from the learning algorithm employed [40].

MetaCOST creates a set of estimator trained using resampled datasets, which estimates the post-probabilities of training
samples and applies classification costs to relabel the initial training set.

summing up more than the 60% of the samples, meanwhile MEDIA
is the lowest populated class with only the 3.07% of samples, fol-
lowed by S/C and BULK with a percentage of samples close to 6%
each one. Note that, although MEDIA and BULK flows do not have
a relevant presence in HOST-1 in terms of samples, these appli-
cations accumulate near the 60% of bytes. For this network trace,
P2P and WWW also consumed an important percentage of bytes,
meanwhile DNS, INT and S/C consumed much less. In the case of
HOST-2, INT is remarkably the most populated class having more
than 55% of samples. Contrary, the most underrepresented classes
in terms of instances for HOST-2 are S/C and INT with a 1.06% and
1.5% of instances, respectively. The high differences between the
majority and the minority classes cause that HOST-2 presents a
greater level of Class Imbalance than HOST-1. In terms of percent-
age of bytes for HOST-2, INT is the most byte-consuming applica-
tion with more than the 67% followed by WWW, P2P, MEDIA and
BULK, which add more than 30% of bytes. DNS and S/C are very
light in terms of bytes captured in the network trace.

As we have noted, Class Imbalance have an important pres-
ence in our datasets presenting multi-majority and multi-minority
classes. Below, we introduce the algorithms studied and the
multiclass strategies to confront Class Imbalance.

3.4. Algorithms and strategies to confront class imbalance

In this section, we introduce the algorithms employed in our
experiments and the strategies assumed to tune their parameters.
Table 3 contains a brief description of each algorithm and Fig. 4
shows the strategies applied. As part of the contributions provided
in this work, the algorithms we have implemented are accessible
to the research community in [64].

We have collected several techniques from different ap-
proaches to confront Class Imbalance: 21 data-level algorithms,
including undersampling, oversampling and hybrid approaches; 6
algorithm-level techniques and one well-known cost-sensitive ap-
proach. All data-level techniques along with Easy Ensemble and
Balance Cascade algorithms are implemented in the Python library
imbalanced-learn [63]. The other ensemble schemes are two-fold
contributions from a third party and ours. The algorithms SMOTE-
boost and RUSboost were collected from the algorithm reposi-
tory [72]. These algorithms were not adapted to multiclass prob-
lems, so that we had to upgrade the implementations to deal with
multiclass problems. Furthermore, we have implemented two un-
explored boosting algorithms: TLboost and ROSboost, which have
already not been applied to ML to the best of our knowledge. The
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Fig. 4. Strategies to adjust resampling ratios. C1, C2, C3 and C4 denote arbitrary classes, Ny, the minimum population, Np,;; the maximum population and Nmean the mean

of all populations.

maximum number of estimators were set to 10 for all ensemble
structures, since more estimators did not yielded better results for
our datasets.

Finally, we have implemented the cost-sensitive approach Meta-
COST [40]. Preliminarily, we tested the strategy presented in [22] to
compute the classification costs for MetaCOST, however majority
classes were strongly punished due to the huge differences be-
tween the number of samples for different classes. In order to mit-
igate this fact, we have applied Eq. (9) to compute classification
costs. Thereby, the cost associated with misclassifying a sample be-
longing to class i as class j is Cost; ;, where C; denotes the number
of samples for class i.

J

Cost; = {Logm(c,-)/logm(q) i #J )
1=]

NTC is a multi-minority and multi-majority problem, thus tun-
ing manually the ratio of each class for resampling methods is a
quite arduous and time-consuming task. Additionally, the boost-
ing algorithms need a procedure to set the resampling ratios be-
tween classes for each learning iteration. Consequently, we have
designed different strategies to set the former parameters during
our experiments (Fig. 4). In the case of Data-Level Undersampling,
majority classes are considered classes whose number of samples
are greater than the mean of all populations (Nmean), and major-
ity classes are undersampled until reaching Nmean S0 as to avoid
excessive information removal. Regarding Data-Level Oversampling,
minority classes are considered all classes with a lesser population
than the majority class (Ny,,), so that all minority classes are over-
sampled until equaling the majority class. In the instance of hy-
brid approaches, the classes with a number of samples lesser than
Nmean Were oversampled and the classes with greater populations
were undersampled until reaching Npean.

In the instance of ensemble algorithms, EE and BC are ensemble
algorithms based on creating bags of estimators trained using bal-
anced datasets. These algorithms state that the minorities classes
resampled until equaling the most majority class. However, boost-
ing algorithms need to implement a resampling strategy to adjust

the number of classes employed in each boosting iteration. In the
case of algorithms that combine boosting and undersampling (Un-
derBoosting), all classes with more than Npyean are undersampling
until Npean. Meanwhile, in the case of OverBoosting algorithms,
majority classes are considered the classes whose number of sam-
ples are lesser than Ny, and they are resampled until reaching
Ny, For both, Under and OverBoosting, the minority and majority
classes are proportionally resampled until accomplishing the cor-
responding sample populations.

4. Experimental results

Through this section we present and discuss the results ob-
tained during our experiments. Firstly, we analyze the effect
of Class Imbalance on the global and per-class metrics for our
datasets using the base estimator and with the aim of establish-
ing the baselines to compare the algorithms under study. Secondly,
we compare the techniques introduced in Section 3.4 in terms of
the global metrics in order to figure out which algorithms are the
most proper for imbalanced NTC. Additionally, a statistical proce-
dure is employed to extract general observations on algorithm per-
formances over all our NTC datasets. Finally, we validate the most
promising techniques in terms of per-class metrics for the most
challenging dataset so as to assure that minority classes are really
strengthened.

4.1. Preliminary results: assessing class imbalance and baseline

In this experiment, a CART Decision Tree was trained using the
datasets presented in Section 3.3 and varying the subset sizes af-
ter reducing the attribute space. Through this evaluation, we assess
the negative effect of Class Imbalance on the global and per-class
metrics and establish the baselines for the subsequent algorithm
comparison. Table 4 presents the global metrics resulting from this
preliminary experiment, and Table 5 contains the per-class metrics.

From Table 4, it is apparent that notable differences exist be-
tween the global metrics obtained for different network scenarios.
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Table 4
Global metrics obtained varying the subset sizes and employing the base estimator as learner. The results are expressed in %.
ISP-1 ISP-2 HOST-1 HOST-2
#Fea  OA BA MAUC GM OA BA MAUC GM OA BA MAUC GM OA BA MAUC GM
2 7413 75.11 7756 42.01 4427 4590 7863 5840 7772 8195 8747 7718 9586 9448 9479 89.97
4 7697  78.67  78.49 4322 5354 5580 80.21 70.15 9439 9825 9547 91.53 98.20 9841 97.47 95.14
6 9045 9147 91.60 8497 6397 66.76 83.63 7482 9530 9699 96.21 9286 99.00 99.18 98.45 97.02
8 9094 9211 91.95 8557 8786 8835 9046 86.53 9543 9827  96.26 9294  99.01 99.17 98.42 96.96
10 91.93 93.01 91.87 85.21 87.74 88.55  90.75 8722 9637 9823  96.81 94.07 9916  99.21 98.61 97.38
12 91.73 9244 9185 85.00 8790 88.84 90.87 8754  98.21 99.24  98.60 9743 9923  99.00 98.80 97.68
14 91.63 92.62  91.86 85.18 88.09 8869 9135 8838 9820 99.51 98.61 9743 9923 9920 98.80 97.64
16 9242 9319 91.83 84.91 8823 8873 9123 88.07 9839 9943  98.69 9762 9920 99.06 98.78 97.69
18 9247 9310 91.86 85.12 88.59 8910 9127 8795 9848 9919  98.73 9765 9922 9893  98.80 97.66
20 9236 9285 91.84 8528 8854 8910 9130 88.13 9846 9946  98.72 97.68  99.22  99.19 98.77 97.63
Table 5
Per-class metrics obtained varying the subset sizes and employing the base estimator as learner. The results are expressed in %.
P2P Www DNS INT S/C BULK MEDIA E/C QUIC
ACC/AUC ACC/AUC ACC/AUC ACC/AUC ACC/AUC ACC/AUC ACC/AUC ACC/AUC ACC/AUC

ISP-1

2 -/- 87.23/91.83 29.59/64.56  74.96/85.89  4.35/52.13 -/- -/- 69.20/81.79  94.35/89.14

4 -/~ 90.91/93.65  29.96/64.74  78.24/87.85  4.64/52.30 -/~ -/~ 69.87/83.09  94.35/89.29

6 -/~ 91.94/94.50  87.60/93.50  83.02/90.75  84.70/91.31 -/~ -/~ 73.88/85.09  89.94/94.42

8 -/~ 91.90/94.45  90.04/94.73  83.50/90.99  86.32/92.18 -/- -/~ 73.24/84.76  89.90/94.60

10 -/- 93.48/9514  90.27/94.83  82.93/90.66  87.30/92.50  -/- -/~ 69.65/83.79  89.94/94.63

12 /- 92.81/94.82  90.12/94.76 83.86/91.11 86.78/92.23 /- -/~ 68.64/83.04  90.24/94.77

14 -/~ 93.05/94.94  90.06/94.73  83.09/90.73  86.96/92.31 -/- -/~ 70.11/83.85 89.99/94.65

16 -/ 93.24/94.86  92.51/95.98  82.41/90.44  85.86/91.91 -/- -/- 67.34/82.47 91.22/95.41

18 /- 93.36/94.97  92.50/95.95  82.22/90.33  86.14/92.06 -/~ -/~ 68.40/83.05  90.90/95.25

20 /- 93.25/94.96  92.85/96.12 82.64/90.59  85.91/91.98 -/- -/- 68.62/83.09  91.18/95.39

ISP-2

2 90.45/94.24  33.02/65.48  69.02/82.68  95.48/77.57 85.10/91.49 -/- 26.63/62.38  38.18/67.77 79.44/87.46

4 89.36/93.85  43.90/70.42  77.58/87.03 85.08/78.95  85.01/91.71 -/- 35.14/63.41 36.76/67.28 80.82/89.07

6 89.68/9410  57.61/77.69 78.94/87.87  93.84/84.76  85.55/92.17 -/~ 38.60/68.11 47.87|72.77 84.99/91.55

8 90.19/94.56  89.81/93.45  83.16/91.24 86.95/91.99  88.31/93.68  -/- 64.98/81.64  70.08/83.48  88.43/93.67

10 90.64/94.77  89.44/93.37  83.58/91.45 86.59/91.80  88.12/93.60 -/- 66.32/82.24  73.13/84.97 88.57/93.76

12 90.32/94.63  89.60/93.42  83.80/91.57 86.10/91.58 88.85/93.96  -/- 67.36/82.74 73.58/85.24  88.61/93.79

14 9045/94.70  89.68/93.58  83.92/91.64  87.65/92.22  88.92/94.01 -/- 68.75/83.46  77.17/87.19 89.03/94.00

16 90.77/94.86  89.89/93.65  84.04/91.69  87.43/92.20  88.64/93.88  -/- 68.15/83.11 76.17/86.72 88.54/93.76

18 90.58/94.76  90.28/93.85  84.39/91.85 87.76/92.49  89.10/94.12 -/~ 67.23/82.71 75.72/86.50  88.76/93.87

20 90.32/94.61 90.38/93.90  83.78/91.55 87.90/92.59  89.03/94.06  -/- 68.21/83.16 75.85/86.59  88.94/93.96

HOST-1

2 62.19/79.67 82.61/84.30  90.67/95.06  94.45/94.65  98.79/99.40  70.07/82.71 53.58/76.49  -|- -/-

4 97.24/97.30 93.38/96.36  90.68/95.07  99.30/99.55  98.89/99.44  89.93/9449  74.01/86.05 /- -/-

6 96.19/97.65 93.31/96.44  98.33/98.43  99.34/99.58  98.85/99.42  90.13/94.78 76.25/87.17 -/~ -/~

8 96.40/97.74 93.52/96.55  98.34/98.43  99.37/99.65  98.86/99.43  90.10/94.78 76.33/87.23 -/~ -/~

10 88.42/93.99  96.53/98.04 98.32/98.42  99.37/99.67  98.89/99.44  91.99/95.66  85.91/91.17 -/~ -/~

12 99.19/99.48 96.73/98.13 99.59/99.77  99.42/99.69  99.07/99.53  97.41/98.46 90.93/95.12 -/~ -/~

14 99.01/99.39  96.70/98.11 99.55/99.75  99.39/99.68  99.07/99.53  97.49/98.49  91.12/95.18 -/~ -/~

16 99.24/99.50  97.33/98.45  99.60/99.78  99.41/99.69  99.07/99.53  97.43/98.51 91.52/9546  -/- -/~

18 99.09/99.44  97.44/98.49  99.61/99.78  99.43/99.70  99.07/99.53  97.49/98.54  91.66/95.51 -/~ -/-

20 99.33/99.55  97.34/98.45 = 99.51/99.73 99.44/99.71  99.07/99.53  97.37/98.48 91.96/95.69  -/- -/~

HOST-2

2 88.76/94.01 92.48/95.40  94.96/97.26  99.78/99.39  95.81/97.82 85.45/92.50  74.93/87.16 -/~ -/~

4 98.26/99.05  96.26/97.86  96.94/98.30  99.67/99.81  96.62/98.25  89.14/94.38 89.65/94.63  -/- -/-

6 99.02/99.47  96.83/98.24  99.11/99.53 99.83/99.89  96.96/98.46  95.94/97.90  91.68/95.66  -/- -/-

8 99.07/99.50  96.92/98.28  99.09/99.51 99.82/99.88  96.96/98.46  95.95/97.90  91.19/95.42 -/~ -/~

10 99.21/99.56  97.40/98.59  99.11/99.52 99.90/99.92  96.96/98.46  96.67/98.27  92.60/96.15 -/~ -/-

12 99.28/99.60  97.45/98.64  99.09/99.51 99.90/99.92  96.92/98.44  97.70/98.74 93.55/96.67  -/- -/-

14 99.22/99.56  97.39/98.61 99.04/99.49  99.90/99.92  96.92/98.44  97.77/98.77 93.41/96.60  -/- -/~

16 99.25/99.58  97.21/98.53 99.10/99.52 99.88/99.92  97.04/98.50  97.75/98.76 93.71/96.74  -|- -/-

18 99.28/99.59  97.27/98.55 99.07/99.51 99.88/99.92  96.96/98.46  97.90/98.83 93.39/96.58  -/- -/-

20 99.32/99.61 97.24/98.54  99.10/99.52 99.90/99.93  96.96/98.46  97.72/98.74 93.36/96.57  -/- -/~

Generally,

the predictive models produced for ISP datasets

fic is much more susceptible to packet losses and packets out of

achieved lower performances than HOSTs. For example, the best
OA for ISP-1 reached 92%, meanwhile the highest OA for HOST-
1 overcame 98%. Note from Table 5 that per-class metrics for
HOST datasets are also greater than for ISP datasets. These clear
differences in performances suggest that ISP network environ-
ment comprises a more challenging traffic classification task than
HOST. As aforementioned in Section 3.3, the ISP traces were
captured in the middle of a high-speed backbone, where traf-

order.

Focusing on ISP traces, we find that the differences between
ISP-1 and ISP-2 are not as large as the observed between network
environments. However, the observations change depending on the
performance metric we focus on. In the instance of GM, the pre-
dictive model trained with ISP-2 generally overcame ISP-1, on con-
trast to OA, BA and MAUC, which were slightly greater for ISP-1
than for ISP-2. Note also that there are points in which all global
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metrics notably increased for both datasets when the subset sizes
vary, and that the performances smoothly fluctuated without high
variations after those points. The abrupt performance increases
happened when 6 and 8 predictors were selected for ISP-1 and
ISP-2, respectively. These sharp raises are strongly related to the
high improvements on WWW and DNS traffic detection, but also
on other applications with lesser impacts on the class distributions,
such as S/C for ISP-1 or Media and E/C for ISP-2. Another remark-
able observation is that the OA and BA losses are more significant
for ISP-2 than for ISP-1 when insufficient attributes were selected.
This fact is directly connected to important differences in WWW
per-class metrics (Table 5) amongst ISP traces, which reveals the
high impact of this traffic class over OA and BA. The best models
in terms of GM and MAUC were achieved using 8 and 14 predic-
tors for ISP-1 and ISP-2, respectively. Furthermore, the best OA and
BA were achieved using 16 and 18 features for ISP-1; meanwhile,
the subset with 18 attributes produced the best models in terms
of OA and BA for ISP-2.

Regarding HOST datasets, we find that all global metrics
(Table 4) fast boosted when 4 and 2 predictors were selected for
HOST-1 and HOST-2, respectively. After that point, the global met-
rics linearly grew up until reaching a point in which they fluc-
tuated with smooth variations when subset sizes change. In the
case of HOST-1, we find from Table 5 that P2P, WWW, S/C and
BULK samples were poorly detected when two predictors were se-
lected for training. Note also that the same happened for HOST-2,
but with weaker per-class metric deteriorations. In the instance of
HOST-1, the best models in terms of OA and BA were produced
with 18 and 14 attributes, whereas the maximum MAUC and GM
were accomplished selecting 18 and 20 predictors. While on HOST-
2, the maximum OA resulted from selecting 12 or 14 features and
the best BA from selecting 10. Respecting MAUC and GM for HOST-
2, the former reached its maximum at 16 and the latter at 12, 14
or 18 features.

Interestingly, we find that P2P and QUIC traffic presented simi-
lar detection rates for ISP traces in spite of having quite dissimilar
numbers of samples in the datasets (Table 2). The same happened
for HOST traffic, DNS obtained high per-class metrics in spite of
the fact that this class populated only the 9.12% and 7.21% of sam-
ples for HOST-1 and HOST-2. This fact indicates that the difficulty
of detecting some kinds of application is not directly related to the
class populations and there may exist other causes of performance
degradation, such as: overlapping samples in the attribute space.

In order to compare the solutions to Class Imbalance in terms
of performance increases or decreases with respect to the base es-
timator, we had to establish a baseline for each dataset. As this
study is focused on Class Imbalance, we selected the models that
produced the best results in terms of MAUC and/or GM to set the
baselines. Thus, we have selected the model with 8 and 14 at-
tributes for ISP-1 and ISP-2, respectively. We set the model with
18 attributes as baseline in the case of HOST-1, as it yielded the
highest MAUC and OA. Finally, we chose the model including 12
predictors for HOST-2, since it produced the highest MAUC and BA
accomplishing also the second best GM.

4.2. Addressing class imbalance: algorithm comparison

In this section we present the comparison between the algo-
rithms chosen to confront Class Imbalance in our NTC datasets.
The comparison is firstly carried out in terms of global metrics,
and per-class metrics are thoroughly explored for the most inter-
esting techniques in Section 4.3. The results discussed correspond
to the best-performing models in terms of MAUC, and they are
presented as performance differences between each algorithm and
the baselines set at Section 4.1. Firstly, we present the results ob-
tained from experimenting with ISP traffic (Table 6) and secondly

we focus on HOST network environment (Table 7). Finally, we
statistically validate the results and present general remarks about
the outcomes at Section 4.2.3.

4.2.1. ISP network environment

Table 6 shows the results for ISP-1 and ISP-2. Regarding over-
sampling on ISP-1, we find that all the algorithms generally per-
formed well improving the scores obtained by the baseline. The
best-performing algorithm in terms of OA and BA was SMOTE-
B1, which increased the baseline by 4.92% and 3.8%, respectively,
meanwhile SMOTE yielded the second highest OA and BA. If we
observe MAUC and GM, ROS obtains the best scores overcoming
the baseline in 5.05% and 9.48%. When ISP-2 was oversampled,
we observe that ROS remained to be the best method in terms
of MAUC and GM, with increases of 4.08% and 8.05%. However,
the observations on OA and BA change comparing to ISP-1. In
this instance, the highest OA and BA were yielded by ADASYNC,
which boosted both metrics in more than 6%. Interestingly, SMOTE-
B1, SMOTE-B2 and ADASYNC produced quite negative impacts on
MAUC and GM, evidencing that they did not clearly solve Class
Imbalance for ISP-2. As the differences in performances between
ISP traces reveal, the ISP-2 imposed a more difficult challenge than
ISP-1 for oversampling. Note also that the size increase for ISP-1
was larger than ISP-2 due to the fact that ISP-2 present two mi-
nority classes more than ISP-1 (see Table 2).

When undersampling techniques were employed on ISP-1, TL
obtained the best MAUC and GM with increases of 5.08% and 9.53%
nearly followed by ENN, NCR and OSS. These algorithms also ob-
tained the highest OAs and BAs amongst all the undersampling
techniques, and ENN and NCR exactly yielded the same results for
all global metrics. Note also that TL, ENN, NCR and OSS removed
a low number of samples compared to other approaches. Other
algorithms that notably overcame the baseline in terms of MAUC
and GM were RUS and IHT, but getting weaker increases. In the
case of RUS, these improvements were coupled with loose OA and
BA increases and with a considerable training subset size reduc-
tion (more than 60% of samples were removed). Unlike RUS, IHT
did not achieve improvements in terms of MAUC and GM. Further-
more, we find that there are some algorithms that dramatically
worsened all global metrics evidencing that they are not recom-
mendable choices for this network trace, they are: NM-1, NM-2,
NM-3 and CNN. The abrupt performance decays are due to the
fact that these algorithms removed a significant number of in-
stances leading to important information losses (CNN and NM-3
removed more than 90% of the original samples). In the instance
of ISP-2, the bad results obtained by NM-1, NM-2, NM-3 and CNN
confirm the detrimental effect of these algorithms for ISP traffic.
These techniques strongly lessened all global metrics, being the de-
crease more abrupt for OA and BA metrics. The best-performing
algorithms were NCR, ENN and TL when ISP-2 was undersampled.
NCR and ENN anew obtained pretty similar global metrics with in-
creases close to 1.8% for OA and BA, and increases of 4.1% and 8.11%
for MAUC and GM, respectively. In the case of IHT, we observe that
MAUC and GM metrics were reinforced, but it also yielded impor-
tant losses in terms of OA and BA. In the case of OSS and RUS, they
significantly overcame the baseline in terms of MAUC and GM,
however they got weak enhancements for OA and BA. The main
difference between both techniques is that RUS notably reduced
the size of the training dataset, meanwhile OSS only removed the
1.49% of samples. Similarly to oversampling, ISP-2 poses a greater
challenge than ISP-1 for undersampling algorithms.

When hybrid techniques are applied to ISP-1, we find that all
algorithms overcame the baseline for all global metrics. Among
all the hybrid algorithms, SMOTE-TL yielded the highest MAUC
and GM with increases of 4.56% and 8.43%, respectively, so that
it is the best hybrid method at confronting Class Imbalance for
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Table 6

Global metrics obtained for ISP network environment. The results are expressed as percentage increments or decrements respecting with the

baseline.

ISP-1 ISP-2
OA BA MAUC GM % #F  OA BA MAUC GM % #F

Oversampling
ROS 3.31 2.53 5.05 9.48 335.75 16 169 1.98 4.08 8.05 461.65 18
SMOTE 4.01 3.26 4.55 8.41 335.75 16 241 2.58 3.16 6.15 461.65 20
SMOTE-B1 492 3.84 3.48 6.10 335.75 18 226 2.37 —2.84 —6.88 461.65 14
SMOTE-B2 3.57 2.84 3.23 5.84 335.75 18 145 1.06 —2.55 —6.26 461.65 16
ADASYNC 341 2.82 0.57 0.53 336.18 12 6.77 6.19 —2.61 -6.92 461.74 18
Undersampling
RUS 21 114 4.82 9.23 -60.25 20 0.16 0.52 3.85 7.79 —-67.08 18
CNN -3825 3917 —5.46 -7.35 —91.62 10 -63.6 —61.07 —8.46 -19.69 -91.29 10
TL 3.38 2.29 5.08 9.53 -0.73 18 144 1.42 4.06 —-0.55 8.04 18
NM-1 -3634 3873 —4.01 —4.58 -60.25 20 -52.02 5216 -5.76 -10.76  —-67.08 12
NM-2 -5042  -5329 -6.39 -1132 -6025 20 -5578 5624 595 -12.5 —-67.08 16
NM-3 -6196  -62.09 1132 -2193 -92.8 8 -7295 -7266 -1028 3122 9191 8
0SS 2.99 2.04 4.99 9.42 -1.63 16 05 0.45 3.83 -149 7.68 10
ENN 3.09 2.24 5 9.43 —2.44 16 178 1.82 41 8.11 -3.8 20
NCR 3.09 2.24 5 9.43 -3.17 18 179 1.84 41 8.11 -3.8 20
IHT -5.35 -5.93 3.44 7.42 -16.41 16 -11.25 -10.38 2.02 4.73 —27.75 20
Hybrid sampling
SMOTE-TL 3.95 3.29 4.56 8.43 57.61 18 255 2.59 3.29 6.39 64.48 16
SMOTE-B1-TL 4.64 3.88 4.06 731 58.08 20 383 3.38 211 3.68 65.22 18
SMOTE-B2-TL 391 2.99 3.86 7.04 53.09 20 362 2.95 1.78 3.04 58.63 18
SMOTE-ENN 4.05 31 29 5.22 31.57 20 45 4.08 0.78 117 34.55 14
SMOTE-B1-ENN  3.51 2.77 2.39 423 40.65 16 513 49 —0.09 -114 42.76 14
SMOTE-B2-ENN  2.78 2.07 1.25 2.04 14.81 10 251 2.1 -24 —5.98 11.67 12
Ensemble algorithms
EE 0.9 118 4.96 9.87 - 20 162 1.89 412 8.14 - 18
BC 0.29 -0.03 4.69 9.46 - 18 -0.01 -0.43 3.84 778 - 18
ROSboost 5.48 5.22 5 9.21 - 16 816 7.56 3.52 6.12 - 18
SMOTEboost 5.6 5.48 4.59 8.38 - 16 811 7.67 3.02 5.06 - 16
RUSboost 17 1.61 5.02 9.88 - 18 229 2.65 4.21 8.23 - 20
TLboost 1.99 1.6 5.05 9.88 - 18 1.56 1.9 41 8.11 - 20
Cost-Sensitive
MetaCOST -1.48 -119 441 9.13 - 16 -236 -22 3.42 7.04 - 16

ISP-1. Additionally, SMOTE-B1-TL and SMOTE-B2-TL achieved also
really positive results, meanwhile the methods that combine
SMOTE and ENN provided very weak improvements for MAUC and
GM. While on OA and BA, we observe from Table 6 that SMOTE-
B1-TL improved the baseline in 4.64% and 3.88%, respectively, being
the best-performing for these metrics. Another hybrid techniques
that notably increased OA and BA were SMOTE-ENN, SMOTE-TL
and SMOTE-B2-TL. Conversely, the slightest increases in terms of
OA and BA were exhibited by SMOTE-B2-ENN and SMOTE-B1-ENN.
In the case of ISP-2, SMOTE-TL is anew the technique that most
improved the baseline in terms of MAUC and GM, it increased
MAUC by 3.29% and GM by 6.39%. SMOTE-B1-TL, SMOTE-B2-TL
and SMOTE-ENN also outperformed the baseline for MAUC and
GM, but their enhancements were not as significant as SMOTE-
TL. Focusing on OA and BA, the best OA and BA were obtained
by SMOTE-B1-ENN followed by SMOTE-ENN, however the former
negatively affected MAUC and GM. In general, all hybrid algorithms
produced positive outcomes for all global metrics but, on the con-
trary, SMOTE-B1-ENN and SMOTE-B2-ENN worsened MAUC and
GM. In the case of applying hybrid approaches to ISP traces, these
techniques also provided better results for ISP-1 than ISP-2.

In the case of training ensemble algorithms with ISP-1, RUS-
boost and TLboost tied for MAUC and GM yielding the highest en-
hancements with increases of 5.02% and 9.88%, respectively. Fur-
thermore, EE also obtained pretty relevant increases according to
MAUC and GM, being the third scored ensemble method. Gener-
ally, all ensemble techniques provided quite remarkable enhance-
ments for these metrics, achieving also important increases for
OA and BA in specific cases. That is the case of ROSboost and
SMOTEboost, which yielded quite beneficial results for all global

metrics accomplishing the two highest OAs and BAs amongst all
ensemble techniques. According to these performance metrics, the
rest of algorithms did not achieve results as significant as ROS-
boost and SMOTEboost, and even BC loosely underperformed the
baseline in terms of BA. Focusing on ISP-2, we observe similar out-
comes to the ISP-1. The best ensemble algorithms at dealing with
Class Imbalance for ISP-2 were RUSboost, EE and TLboost achiev-
ing increases superior to 4% for MAUC and superior to 8% for GM.
The rest of algorithms also got positive outcomes for these metrics,
however they were inferior to the former techniques. Regarding OA
and BA, we find that ROSboost and SMOTEboost obtained the high-
est performances incrementing OA in more than 8.1% and in more
than 7.5%, respectively. Although the other techniques did not per-
form as well as ROSboost and SMOTEboost, they also overcame the
baseline in terms of OA and BA with the exception of BC. Surpris-
ingly, ensemble algorithms yielded higher enhancements for ISP-2
than ISP-1 in contrast to the data-levels algorithm previously dis-
cussed.

When MetaCOST was employed on ISP-1, we observe that it
achieved to compensate Class Imbalance improving MAUC and GM
in 4.41% and 9.13%, respectively. On the contrary, MetaCOST weak-
ened OA and BA with decreases of —1.48% and —1.19%. The same
happened when MetaCOST was used to apply cost-sensitive to ISP-
2, MAUC and GM were greatly strengthened, in contrast to OA and
BA that deteriorated. In this case, the improvements on ISP-1 were
more significant than ISP-2.

4.2.2. HOST network environment
Table 7 contains the results obtained via applying the differ-
ent techniques to solve Class Imbalance for HOST datasets. When
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Global metrics obtained for HOST network environment. The results are expressed as percentage increments or decrements respecting

with the baseline.
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HOST-1 HOST-2

OA BA MAUC GM % #F  OA BA MAUC GM % #F
Oversampling
ROS 0.59 0.49 0.66 1.26 131.16 20 032 0.45 0.55 1.07 287.62 14
SMOTE 0.67 0.47 0.56 1.05 131.16 16 03 0.42 0.47 0.92 287.62 18
SMOTE-B1 0.10 0.58 0.10 0.18 131.16 14 -044 -023 -064 -131 287.62 14
SMOTE-B2 0.40 0.60 0.17 0.29 131.16 18 -0.91 -092 -085 -1.61 287.61 18
ADASYNC 0.70 0.63 0.23 0.36 130.87 18 0.3 0.54 0.13 0.21 287.55 18
Undersampling
RUS 0.38 0.40 0.60 116 —32.21 20 025 0.29 0.57 11 —41.14 12
CNN -11.9 -4.99 —4.80 -8.52 -73.03 20 -2.77 -5.05 -178 -329 -6952 12
TL 0.52 0.43 0.64 1.23 -0.21 20 026 0.3 0.57 11 —-0.03 12
NM-1 -14.1 -1485 -3.88 —6.41 —32.21 20 026 03 0.56 1.09 —41.14 20
NM-2 -21.23 -5.31 —6.36 -11.09 -32.21 12 0.12 0.19 0.37 0.75 —41.14 10
NM-3 -26.77 1498 -9.28 -1597 -7329 20 -9.35 -943 583 -13.1 —-69.65 12
0SS 0.10 0.37 049 0.99 -3.06 12 -1.73 -2.4 0.13 0.56 —-45.06 16
ENN 0.36 0.47 0.60 116 -1 20 025 0.33 0.56 1.09 -0.15 14
NCR 0.36 0.47 0.60 116 -1 20 025 0.33 0.56 1.09 -0.15 14
IHT -4.53 -3.07 -0.85 -1.08 -9.93 18 0.02 0.15 0.51 1.04 -1.02 12
Hybrid sampling
SMOTE-TL 0.6 0.38 0.53 0.99 3144 16 025 0.25 0.46 0.90 40.86 12
SMOTE-B1-TL -0.49 -0.21 -0.27 -0.52 30.36 18 -0.35 -023 -061 -124 4029 18
SMOTE-B2-TL —-0.26 -0.18 -0.24 -0.51 27.84 18 -0.2 -0.12 -0.34 -0.72  36.55 20
SMOTE-ENN 0.34 0.5 —-0.03 —0.09 26.49 20 -019 -0.11 —0.09 -0.15 3735 10
SMOTE-B1-ENN  -0.24 0.55 -0.18 -0.33 15.86 18 -069 -046 -1.04 -2.11 34.12 20
SMOTE-B2-ENN  —0.46 0.42 —0.51 -0.99 11.07 18 -052 -0.2 -1.06 -224  20.56 18
Ensemble algorithms
EE 0.55 -0.01 0.65 1.23 - 16  0.28 0.37 0.58 112 - 12
BC 0.33 -0.25 0.58 112 - 16 0.28 0.37 0.58 112 - 12
ROSboost 0.5 -1.23 0.47 0.89 - 18 0.17 0.41 0.52 1.02 - 12
SMOTEboost 0.49 0.23 0.44 0.82 - 18 -0.27 -0.21 0.18 043 - 14
RUSboost 0.17 -0.29 0.54 1.06 - 20 024 0.32 0.56 1.10 - 12
TLboost 0.54 0.06 0.65 1.23 - 20 03 0.38 0.58 112 - 12
Cost-sensitive
MetaCOST 0.46 0.07 0.6 113 - 18 0.26 0.36 0.54 1.04 - 14

oversampling techniques were applied to HOST-1, ROS and SMOTE
produced the best MAUCs and GMs with increases exceeding 0.55%
and 1%, respectively, so that they are the two best oversampling
methods at solving Class Imbalance for HOST-1. Although SMOTE-
B1 and B2 and ADASYNC overcame the baseline for all global met-
rics, they provided weak increases for MAUC and GM compared to
ROS and SMOTE. Focusing exclusively on OA and BA, we find that
ADASYNC achieved the highest increases, 0.7% for OA and 0.63%
for BA. In addition, ROS and SMOTE also yielded very remarkable
improvements in terms of OA. When HOST-2 was oversampled,
we find that ROS was anew the best method in terms of MAUC
and GM, increasing MAUC by 0.55% and MAUC by 1.07%. These
increases were also accompanied by significant improvements in
terms of OA and BA, being ROS the best-performing techniques for
OA. Additionally, SMOTE and ADASYNC also overcame the base-
line for OA and BA, and even ADASYNC provided the highest BA.
In the instance of SMOTE, this algorithm accomplished the second
best MAUC and GM followed by ADASYNC. Unlike other oversam-
pling algorithms, SMOTE-B1 and SMOTE-B2 negatively affected the
predictive power of the models decreasing all global metrics when
they were applied to HOST-2. In this case, the outcomes obtained
for HOST-2 were slightly poorer than HOST-1.

When HOST-1 was undersampled, we find from Table 7 that
TL is the best algorithm at confronting Class Imbalance for this
dataset, improving the baseline in 0.64% for MAUC and 1.23 for
GM. Additionally, RUS, ENN and NCR also achieved positive re-
sults obtaining the same performances in terms of BA, MAUC and
GM overcoming the baseline in 0.47%, 0.6% and 1.16%, respectively.
While on OA, TL got the highest OA with an increase of 0.52%, and
RUS slightly outperformed ENN and NCR. Another algorithm that

more loosely overcame the baseline for all global metrics was OSS,
but its enhancements are not as remarkable as the former tech-
niques. As it happened for ISP datasets (Table 6), CNN, NM-1, NM-2
and NM-3 had huge negative impacts on HOST-1. Surprisingly, IHT
did not achieve overcoming the baseline for any metrics explored
in contrast to ISP datasets. In the case of undersampling HOST-
2, RUS and TL provided the highest increases in terms of MAUC
and GM, nearly followed by NM-1, ENN and NCR. The main differ-
ences between the algorithms RUS, NM-1 and TL, ENN, NCR is the
sample reduction rate, since the former techniques removed more
than 40% of samples and the latter less than 0.20%. Among all un-
dersampling techniques, the highest OAs were obtained by TL and
NM-1; meanwhile, ENN and NCR outperformed the rest of algo-
rithms for BA. Another algorithms that improved all global metrics
comparing to the baseline were NM-2 and IHT. Surprisingly, the
performances exhibited by NM-1 and NM-2 on HOST-2 notably dif-
fer from the observed for the rest of datasets, in this case all global
metrics were reinforced. Observing the outcomes provided by OSS,
we find that OA and BA were worsened comparing to baseline, in
contrast to MAUC and GM that were loosely strengthened. Unlike
for other datasets, the only two undersampling algorithms that re-
ported negative impacts on all global metrics were CNN and NM-3.

When hybrid sampling was applied to HOST-1, the best-
performing technique to confront Class Imbalance was SMOTE-TL
according to MAUC and GM. This method was the only hybrid ap-
proach that enhanced all global metrics with respect to the base-
line. Additionally, SMOTE-ENN also increased some performance
metrics comparing to baseline, specifically the metrics that are
sensitive to Class Imbalance (OA and BA). The highest BA was ac-
complished by SMOTE-B1-ENN, which accurately classified 0.55%
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of bytes more than the base estimator. Combining SMOTE-B1 or
B2 with TL or ENN leaded to performance degradations with the
exception of BA for SMOTE-B1-ENN and SMOTE-B2-ENN. Focusing
on HOST-2, we find that the only hybrid algorithm that overcame
the baseline for all global metrics was anew SMOTE-TL. This tech-
nique achieved increases of 0.25% for both OA and BA, and in-
creases of 0.46% and 0.90% for MAUC and GM, respectively. The
rest of approaches obtained negative results for all global metrics
when they are employed on HOST-2. The most unsatisfactory re-
sults in terms of OA and BA were obtained by SMOTE-B1-ENN,
whereas SMOTE-B2-ENN yielded the poorest MAUC and GM with
decreases of —1.06% and —2.11%, respectively.

As Table 7 shows, ensemble algorithms that include resampling
while learning comprise interesting solutions to deal with Class
Imbalance. When these algorithms were trained with HOST-1, the
best results in terms of MAUC and GM were achieved by EE and
TLboost, which increased MAUC by 0.65% and GM by 1.23%. All
ensemble algorithms outperformed the baseline for these metrics,
and namely that BC and RUSboost obtained also very positive re-
sult. While on OA, EE obtained the highest score overcoming TL-
boost slightly, in contrast to BA for which the latter improved the
baseline and the former underperformed it. The highest BA was
obtained by SMOTEboost with an increase of 0.23%, and the rest of
ensemble algorithms yielded BA decays with the exception of TL-
boost. Namely, ROSboost decreased BA with respect to the baseline
by —1.23%. When ensemble algorithms were employed on HOST-2,
we find that three algorithm tied in terms of MAUC and GM. EE, BC
and TLboost obtained the best results for these performance met-
rics improving the baseline by 0.58% for MAUC and 1.12% for GM.
Furthermore, the rest of algorithms also overcame the baseline for
MAUC and GM achieving positive results, especially RUSboost and
ROSboost. Regarding OA, TLboost yielded the best outcomes in-
creasing the baseline by 0.3%, nearly followed by EE, BC and RUS-
boost. Among all the six ensemble algorithms, ROSboost yielded
the best results in terms of BA, and other algorithms that produced
positive results for this metric are: TLboost, EE, BC and RUSboost.
Furthermore, ROSboost also improved the baseline in terms of BA,
whereas OA and BA deteriorated when SMOTEboost was applied to
HOST-2.

In the case of the cost-sensitive approach studied, we observe
from Table 7 that MetaCOST improved all global metrics for both
dataset (HOST-1 and HOST-2). When MetaCOST was applied to
HOST-1, we find that OA and BA increased by 0.46% and 0.06%, re-
spectively; meanwhile, MAUC and GM improved in 0.6% and 1.13%.
In the case of HOST-2, the performance increases were loosely
lower than for HOST-1 with the exception of BA, which increased
by 0.36%.

4.2.3. Statistical validation and general remarks

In the previous section we compared different type of solu-
tions to Class Imbalance discussing their strengths and weakness
in terms of all global metrics for the best models after applying
FS. Through this section we pretend to confirm the previous ob-
servations validating statistically the results and to discuss more
general remarks about the analyzed techniques. Table 8 contains
the outcomes from applying the statistical approach presented at
Section 3.3.4, which enables algorithm comparison against differ-
ent datasets.

From Table 8, we find that some algorithms are fairly dis-
carded as suitable solutions to confront Class Imbalance for our
NTC dataset. The Friedman’s scores obtained by these techniques
are quite high revealing that they do not provide benefits for any
global metric, or even they produced detrimental performances.
These algorithms are: NM-3, CNN, NM-2, NM-1, IHT, OSS, SMOTE-
B2, SMOTE-B1, SMOTE-B1-ENN and SMOTE-B2-ENN.

Table 8
Friedmans Test. R; denotes the scores obtained by each algorithm.
OA BA MAUC GM
Oversampling
ROS 8.25 8.25 4.87 5.50
SMOTE 5.08 6.16 13.00 12.50
SMOTE-B1 13.87 10.12 20.75 20.75
SMOTE-B2 15.75 13.75 20.75 20.75
ADASYNC 433 3.75 20.37 20.75
Undersampling
RUS 14.31 16.75 6.56 6.45
CNN 26.25 26.25 26.50 26.50
TL 10.91 13.37 412 7.20
NM-1 20.41 22.37 19.81 20.16
NM-2 24.00 23.75 24.00 24.00
NM-3 28.00 28.00 28.00 28.00
0SS 20.12 19.50 12.37 14.62
ENN 12.06 11.66 3.83 512
NCR 11.81 1141 3.83 5.12
IHT 22.25 22.25 18.25 16.37
Hybrid sampling
SMOTE-TL 6.06 10.50 13.25 12.62
SMOTE-B1-TL 13.50 12.87 19.00 19.00
SMOTE-B2-TL 13.75 13.25 19.25 19.00
SMOTE-ENN 10.75 8.75 19.75 19.25
SMOTE-B1-ENN  14.50 10.75 2175 21.50
SMOTE-B2-ENN  17.75 14.75 23.25 23.25
Ensemble algorithms
EE 11.87 14.87 3.79 2.25
BC 16.37 17.87 7.66 6.16
ROSboost 6.50 775 10.33 12.50
SMOTEboost 8.00 9.50 14.75 15.25
RUSboost 15.50 14.75 5.06 4.62
TLboost 11.08 13.75 241 212
Cost-sensitive
MetaCOST 15.41 17.50 10.43 10.12
p-value 0.0015  0.0011 <0.0001 <0.0001

Other algorithms achieved reinforce metrics insensitive to im-
balanced class distributions (MAUC and GM), but also they yielded
very weak enhancements in terms of OA and BA. For example,
the ensemble algorithms EE, BC, RUSboost and TLboost produced
great improvements for MAUC and GM, and even TLboost and EE
were the two best scored algorithms for these metrics. On the
contrary, they obtained poor Friedman'’s scores for OA and BA. In
addition, the data-level algorithms RUS, TL, ENN and NCR, SMOTE-
TL, SMOTE-B1-TL, SMOTE-B2-TL and SMOTE-ENN also provided
positive results for metrics insensitive to Class Imbalance. Note
that ENN and NCR obtained the same Friedman’s scores and that
they were the best undersampling methods at mitigating Class Im-
balance for our NTC datasets. Interestingly, we find that the best-
performing techniques that employ undersampling tended to im-
prove MAUC and GM notably, meanwhile they did not obtained so
optimistic outcomes for OA and BA. In the case of MetaCOST, it did
not obtained remarkable results for any of all the global metrics.

When ROSboost, SMOTEBoost, ADASYNC, ROS were applied to
our datasets, we find that they notably strengthened OA and BA.
Whereas they did not get so positive increases in terms of MAUC
and GM. Among all the algorithms studied, ADASYNC was fairly the
best-performing in terms of OA and BA for our datasets followed
SMOTE. However, they did not yield so significant improvements
for MAUC and GM. While on ROS, it achieved to improve all global
metrics preserving a quite interesting tradeoff among metrics that
are sensitive to Class Imbalance and the metrics that are not. ROS-
boost was the best ranked ensemble algorithm in terms of OA and
BA followed by SMOTEboost, however they did not produce so no-
table improvements for the rest of metrics.

In short, the findings observed up to this point can be
summarized in the following brief remarks:
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« The algorithms that involve oversampling tend to rein-
force the metrics that are sensitive to Class Imbalance (OA
and BA). As we will show at Section 4.3, these improve-
ments are directly related to increases in the individual ac-
curacy of majority classes. Interestingly, ROS was able to
provide benefits for both minority and majority traffic ap-
plications achieving quite positive outcomes in terms of GM
and MAUC.

The algorithms that include undersampling are prone to
solve Class Imbalance and not to reinforce majority classes
uniquely. Although some of them provided quite detrimen-
tal outcomes due to an excessive information removal, there
are also some undersampling methods that constitute an in-
teresting solution to imbalanced NTC. And particularly, RUS
achieved to improve MAUC and GM with a significant sam-
ple reduction in spite of its simplicity, leading to faster train-
ing times.

The Hybrid approaches considered did not provide signifi-
cant benefits for imbalanced NTC comparing to other data-
level approaches. And more specifically, the combination of
SMOTE and TL generally outperformed the techniques that
combine SMOTE with ENN.

Regarding ensemble algorithms, we find that some of them
confronted Class Imbalance effectively. EE jointly with the
methods that included undersampling with boosting (TL-
boost and RUSboost) notably improved MAUC and GM, and
oppositely the methods combining oversampling and boost-
ing were prone to boost OA and BA more clearly than MAUC
and GM.

» The cost-sensitive approach assumed achieved to increase
MAUC and GM, however it produced losses in terms of OA
and BA. However, further experimentation could be per-
formed to study other more effective ways for computing
classification costs.

Through the experimentation on different datasets extracted
from two network scenarios presenting quite dissimilar
conditions, we find that some techniques present a more
stable behavior than others. A clear example of a stable tech-
nique is TLboost, which performed uniformly on the differ-
ent datasets. In the opposite side we find SMOTE-B1 and
0SS, which produced quite dissimilar outcomes for different
datasets.

Accordingly to the metrics explored in our experiments, we
find quite interesting to assess global metrics that are sensi-
tive to Class Imbalance jointly to metrics that are not. As we
have probed in previous sections, tradeoffs between perfor-
mance metrics could exist and monitoring several of them is
highly recommendable.

Finally, network environments could present different Class
Imbalance properties among them. In our work, the ISP
environment constitutes the most challenging network
scenario presenting a higher level of Class Imbalance. Inter-
estingly, we find that performance losses are not exclusively
related to class distributions, so that poor accuracies could
also be related to other facts, such as: packet losses, packets
out of order, overlapping regions and/or outliers.

In the following section we pretend to analyze individual ac-
curacies for majority and minority classes. We focus the discussion
on the most interesting methods explored with the purpose of val-
idating their outcomes for the most challenging NTC dataset.

4.3. Analysis of per-class metrics

Up to this point, a wide number of solutions to Class Imbal-
ance were compared analyzing their strengths and weaknesses in

terms of global metrics. We found that the effectiveness of each
technique depends on the metrics observed and also on the net-
work environments. Through this section, we analyze in more de-
tail the ability of reinforcement minority classes for some algo-
rithms aiming to confirm the suitability of them to be applied to
imbalanced NTC. In order to not collapse the article with redun-
dant results, we focus uniquely on the most remarkable algorithms
and the most challenging dataset according to the results pre-
viously discussed. As aforementioned, ISP-2 constitutes the most
challenging dataset, thus we report the per-class metrics obtained
for this dataset. Regarding the algorithms discussed in this section,
we have selected at least one algorithm from each approach con-
sidered. While on oversampling techniques, ROS has been selected
due to the fact that it is the best-performing oversampling method
in terms of MAUC and GM. Additionally, ADASYNC obtained the
best Friedman’s scores for OA and BA between all the algorithms
studied, and also it has been included in this section. NCR and
SMOTE-TL are also studied, since they obtained the highest MAUC
and GM for their respective resampling approaches according to
Table 8. Regarding ensemble algorithms, as TLboost was the most
remarkable method between all the comparison algorithms, we
have selected it for this section. Finally, we have included Meta-
COST. Thereby, Table 9 contains the per-class accuracies obtained
over ISP-2, the results are presented as increases or decreases com-
paring to the best model produced by the base estimator. As useful
information for the subsequent discussion, we remember that the
best-performing and that the minority classes for this dataset are
(Table 4): P2P, INT, S/C, MEDIA, E/C and QUIC.

Regarding the metrics exhibited by ROS, per-class enhance-
ments were not so positive when six or less predictors were cho-
sen. This fact could likely be caused by the low predictive power of
these subsets, since these subset sizes also produced negative out-
comes when the base estimator was trained (Table 4). Although
the best model in terms of MAUC was produced with 18 attributes
(Table 7), significant enhancements on per-class metrics were ob-
served with less features. For example, when models with more
than eight predictors were selected, we find that the most of
classes benefit from applying this oversampling technique. In gen-
eral, the performance improvements of minority classes were very
significant, and even the majority classes were also strengthened
with the exception of DNS for specific subset sizes. Namely, ROS
increased ACC and AUC for MEDIA (which was the most punished
class by the base estimator, see Table 5) by more than 20% and
10%, respectively and, similarly, E/C got important performance in-
creases.

While on ADASYNC, we find that all minority classes were neg-
atively affected for all subset sizes studied, being P2P the most
damaged class with decreases that reached —47.89% and —23.47%
for ACC and AUC, respectively. On the contrary, WWW and DNS
metrics were notably improved accomplishing the most significant
increases for these classes between all the algorithms discussed
through this section. Specifically, ACCs for WWW and DNS were
increased by more than 7% and 10% when more than 10 attributes
were selected. Due to this fact, ADASYNC obtained the best results
in terms of OA and BA, meanwhile it exhibited quite detrimental
performances for GM and MAUC.

Something similar to ROS happened when NCR was applied to
undersample ISP-2, no evident improvements were observed on
all classes when subset sizes equal or lesser than six were se-
lected. In the case of selecting six predictors, some classes were
strengthened, however the most of them were significantly pun-
ished. After that point, almost all per-class performances increased
with the exception of WWW and DNS for certain subset sizes.
The classes that exhibited the worst performances for the baseline
were significantly improved, but with weaker increases than ROS.
Conversely, other minority classes exhibited greater performances
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Table 9
Per-class metrics produced by the selected techniques on ISP-2. The baseline corresponds with the model formed by 14 features.

P2P Www DNS INT S/C MEDIA E/C QUIC

ACC/AUC ACC/AUC ACC/AUC ACC/AUC ACC/AUC ACC/AUC ACC/AUC ACC/AUC
ROS
2 4.42/1.74 —57.11/-27.83 —15.23/-8.94 8.73/-14.2 2.28/0.43 —28.39/-144 —30.19/-14.9 —3.10/-3.41
4 7.05/3.16 —45.77|-22.41 —6.08/—4.31 —1.06/-12.51 4.07/1.74 —15.68/-11.11 —26.76/-13.04  1.46/-0.12
6 6.60/3.06 —32.04/-15.15 —4.48/-3.51 8.32/-6.35 4.28/2.03 —10.03/-5.35 —13.68/-6.54 1.84/0.57
8 7.18/3.56 0.89/1.19 —0.68/-0.28 7.09/3.79 5.75/2.88 21.10/10.57 14.96/7.50 3.16/1.58
10  711/3.52 0.47/1.07 —0.22/-0.02 7.33/3.87 5.85/2.94 21.22/10.57 15.64/7.79 3.56/1.81
12 6.79/3.38 0.51/1.08 —-0.03/0.07 7.24/3.75 5.60/2.82 20.92/10.44 15.59/7.84 3.81/1.94
14  641/3.21 0.46/1.01 0.83/0.51 7.27/3.80 5.80/2.91 20.37/10.07 15.47/7.89 3.78/1.92
16  6.60/3.28 0.62/1.09 0.28/0.24 7.43/3.85 5.53/2.82 21.10/10.42 15.61/7.99 3.51/1.79
18 6.60/3.29 1.39/1.51 0.26/0.21 7.64/4.12 5.66/2.85 21.10/10.58 15.94/8.14 3.83/1.95
20  6.60/3.26 1.37/1.50 —0.25/-0.05 7.66/4.20 5.66/2.83 21.10/10.55 15.98/8.13 3.59/1.81
ADASYNC
2 —44.68/-2214  -50.98/-26.9 2.91/-0.78 —69.55/-33.25  -15.27/-779  —4.19/-21.69 —51.74/-24.93 —29.64/-14.95
4 —46.67/-22.97  —-31.67/-17.82 4.60/0.38 -9.11/-16.28 -12.93/-6.95 -55.25/-26.81  —49.01/-23.21 -16.3/-8.12
6 —14.62/-6.91 4.78/-3.61 6.38/1.57 —70.38/-33.66  —10.79/-5.34  —45.28/-21.93 —37.11/-17.43 —10.0/-4.78
8 —36.86/-18.64  4.07/1.15 6.64/3.07 —17.07/-7.86 —8.19/-4.00 —25.71/-12.32 —9.73/-4.02 ~7.26/-3.42
10 -6.99/-3.12 6.26/1.92 10.82/5.17 —1712/-748 -6.92/-3.35 —31.49/-15.08 —12.96/-5.53 —5.54/-2.45
12 -12.89/-6.00 7.33/2.31 11.38/5.49 —18.47/-7.98 —6.21/-2.91 —20.48/-9.55 —15.06/-6.50 —5.72/-2.53
14 -13.46/-6.29 714/2.34 11.83/5.70 —15.59/-6.50 —6.23/-2.91 —27.66/-13.28 -11.97/-4.91 —5.56/—2.38
16 -13.78/-6.53 4.70/1.08 11.48/4.74 —22.25/-9.95 -6.33/-2.97 —24.49/-11.57 —15.36/-6.85 —5.08/-2.21
18 -15.9/-751 7.54/2.81 10.04/4.83 —12.24/-4.93 —4.69/-2.34 —17.75/-8.10 -8.11/-2.97 -6.19/-2.71
20 —47.89/-2347  711/2.53 11.89/5.68 —14.20/-5.86 -8.12/-3.87 —22.12/-10.3 —-7.01/-2.59 —6.08/-2.68
NCR
2 3.20/1.40 —51.11/-27.23 —2219/-12.02  8.65/-14.19 1.82/0.55 —29.05/-1429  —31.28/-15.43 —3.86/-3.16
4 6.86/3.11 —46.10/-23.04 -9.03/-5.53 —0.57/-12.35 4.46/1.68 —15.92/-11.28 —26.61/-13.03  1.38/-0.26
6 7.18/3.29 —31.01/-16.42 —10.98/-6.05 8.55/-6.30 4.30/1.99 —10.33/-5.47 —13.80/-6.67 2.37/0.67
8 7.11/3.54 0.50/0.85 —-0.73/-0.30 7.20/3.84 5.64/2.84 20.61/10.39 15.28/7.51 3.21/1.60
10 718/3.55 —0.04/0.52 —-1.19/-0.45 7.07/3.65 5.85/2.93 20.61/10.30 15.35/7.50 3.56/1.78
12 6.86/3.42 —0.22/0.58 —0.14/0.03 7.48/3.74 5.62/2.83 20.61/10.31 15.57/7.70 3.85/1.94
14  6.60/3.31 0.27/0.72 —-0.53/-0.13 7.19/3.71 5.66/2.84 20.55/10.28 15.45/7.68 3.91/1.94
16 6.73/3.36 0.71/0.94 —-0.61/-0.21 7.37/3.86 5.83/2.93 21.10/10.55 15.63/7.85 3.41/1.74
18 6.73/3.36 —0.06/0.68 —0.63/-0.24 8.88/4.03 6.00/3.00 20.61/10.41 15.86/8.18 3.42/1.76
20  7.18/3.56 1.68/1.43 —-0.32/-0.03 7.84/4.21 6.21/3.11 20.73/10.48 15.83/8.12 3.81/1.94
SMOTE-TL
2 1.34/0.34 —54.93/-27.05 —12.95/-8.40 8.16/-14.44 —1.37/-1.06 —35.19/-17.54 —33.38/-16.38  —6.72/-4.62
4 2.05/0.90 —44.26/-21.96 —3.82/-3.57 -1.56/-12.71 —0.39/-0.35 —2522/-15.84  —31.03/-14.88 —3.25/-2.20
6 3.14/1.48 -30.59/-14.75  -2.97/-2.85 7.87]-6.57 1.00/0.48 —18.78/-9.50 —17.24/-8.21 —0.19/-0.27
8 4.42/[2.26 1.52/1.35 1.78/0.92 5.29/2.94 3.30/1.74 16.36/8.34 10.90/5.56 2.38/1.24
10  4.36/2.24 1.13/1.16 1.55/0.81 5.04/2.76 4.25/2.19 16.23/8.31 10.95/5.47 2.77/1.43
12 4.04/2.08 1.09/1.08 1.71/0.92 5.03/2.66 4.01/2.09 15.14/7.79 10.95/5.49 2.90/1.52
14 4.04/2.07 2.14/1.72 2.07/1.08 5.99/3.39 3.48/1.83 15.99/8.10 12.50/6.57 2.86/1.49
16 4.17/214 2.23/1.77 2.15/1.12 6.18/3.47 3.69/1.94 15.02/7.64 12.845/6.75 2.83/1.48
18 4.23/2.16 2.04/1.65 2.11/110 5.82/3.29 4.10/2.14 15.26/7.71 12.59/6.60 2.73/1.44
20  4.36/2.24 2.12/1.69 2.67/1.38 5.69/3.25 4.00/2.08 14.84/7.60 12.65/6.60 2.71/1.42
TLboost
2 4.16/1.70 —57.16/-27.86 —15.04/-8.92 8.74/-14.20 2.16/0.43 —28.26/-14.41 -30.22/-1492  -3.16/-3.45
4 6.92/3.10 —45.80/-22.48  —6.26/-4.41 -0.97/-12.49 4.05/1.66 —15.74/-11.10 —-26.60/-12.97  1.20/-0.23
6 6.60/3.10 —31.90/-15.12 -4.69/-3.58 8.33/-6.32 4.21/1.99 -9.97/-5.34 —13.73/-6.63 1.88/0.62
8 711/3.54 0.78/1.11 —0.44/-0.15 7.04/3.77 5.49/2.77 21.16/10.60 15.16/7.54 3.11/1.58
10 7.05/3.50 0.09/0.84 —0.29/-0.05 7.15/3.75 5.74/2.90 21.34/10.65 15.48/7.57 3.59/1.82
12 6.79/3.39 0.35/0.96 —-0.19/-0.01 7.20/3.77 5.75/2.88 20.91/10.47 15.59/7.71 3.81/1.93
14  7.05/3.50 0.52/1.03 —0.18/0.00 7.13/3.69 5.85/2.94 21.10/10.53 15.52/7.81 3.66/1.87
16  6.86/3.41 0.78/1.18 0.03/0.10 7.46/3.90 5.87/2.96 21.16/10.58 15.79/7.98 3.50/1.79
18 6.86/3.41 1.25/1.41 0.28/0.22 7.68/4.13 5.89/2.96 21.16/10.62 15.88/8.07 3.45/1.78
20  6.86/3.42 1.16/1.36 0.36/0.26 7.70/4.13 5.91/2.96 21.34/10.70 15.86/8.06 3.69/1.90
MetaCOST
2 3.46/0.56 —59.99/-29.07  -22.76/-1243  -63.89/-30.77  2.16/-0.08 13.44/-14.02 —29.87/-15.26  —4.84/-4.38
4 6.28/2.61 —54.93/-26.55  —13.90/-7.99 —63.44/-30.38  5.17/1.81 18.12/-11.06 —26.31/-13.13 3.43/0.53
6 5.77/2.40 —37.02/-17.53 -14.01/-7.79 —15.09/-14.15 4.84/1.67 —0.97/-6.36 —13.64/-6.90 3.16/0.71
8 6.15/2.97 —2.64/-0.33 —7.78/-3.74 7.71/3.27 6.53/2.95 20.24/9.87 14.99/7.13 4.86/2.15
10  7.18/3.48 —3.41/-0.69 —7.41/-3.56 6.28/2.59 6.62/3.02 21.03/10.22 15.08/6.90 4.90/2.21
12 6.60/3.21 —3.19/-0.57 —7.54/-3.62 6.86/2.90 6.66/3.06 21.16/10.23 15.37/7.13 5.64/2.56
14  6.86/3.32 —2.20/-0.08 —-7.05/-3.37 8.34/3.60 6.89/3.21 21.28/10.22 15.74/7.83 5.61/2.55
16  6.79/3.31 —2.19/-0.06 —7.15/-3.42 8.39/3.61 6.98/3.21 21.34/10.31 15.66/7.77 5.78/2.63
18 6.60/3.19 —-1.76/0.14 -7.12/-3.41 8.34/3.68 6.69/3.09 20.98/10.14 15.77/7.87 5.41/2.45
20  5.83/2.77 —1.92/0.06 —-7.70/-3.711 8.26/3.64 6.33/2.89 20.55/9.95 15.68/7.75 5.28/2.37
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than using ROS, which contributed to the fact that NCR achieved
better MAUCs and GMs than ROS, on contrast to OA and BA. The
best model from employing NCR on ISP-2 were produced with 20
features, obtaining notable increases for all classes with the excep-
tion of DNS whose metrics were slightly worsened.

Regarding SMOTE-TL and similarly to ROS and NCR, we find that
the most per-class metrics were worsened when less than eight at-
tributes were selected. After that point, SMOTE-TL exhibited infe-
rior improvements on minority classes to ROS and NCR, however
the enhancements were also quite remarkable. While on major-
ity classes, both WWW and DNS were reinforced with increases
greater than 2.1% and 1.1% for their ACCs and AUCs. The perfor-
mance increases exhibited on majority classes leaded SMOTE-TL to
get better scores for OA than ROS and NCR (Table 8), but without
reaching as significant increases as ADASYNC.

Among all the comparison algorithms, the best method at solv-
ing Class Imbalance was the ensemble technique TLboost, which is
an original contribution of this work. Although significant increases
on the most classes were observed for subset sizes greater than
six, the best model was produced using 20 attributes. Note that
per-class metrics for this subset size were generally greater than
the obtained by ROS and NCR, with the exception of WWW, E/C
and QUIC traffic.

Focusing on MetaCOST, we find a pretty different behavior from
the previous algorithms. We find that majority classes are dramat-
ically worsened comparing to baseline for all subset sizes con-
sidered, meanwhile minority classes were significantly improved
when more than six predictors were selected. There are essen-
tially one likely cause for this fact, remember that MetaCOST uses
post-probability estimates and applies classification cost for re-
labeling the original training set. We experimented with several
functions to compute classification costs, and finally the costs were
computed according to Eq. (9). The penalty on majority classes is
strongly dependent on the cost computation, so that more opti-
mal cost could conduct to better performance for MetaCOST. Fi-
nally, note that MetaCOST obtained the highest improvements on
most of the minority classes amongst all methods discussed in this
section, being the best model at improving QUIC, INT and S/C. Con-
versely, MEDIA, E/C and P2P obtained similar increases to TLboost.

The observations provided through this section confirm trade-
offs between metrics sensitive to Class Imbalance and other that
are not. Some algorithms strengthened minority classes, and even-
tually, these performance increases were accompanied also with
improvements on the majority classes. Other interesting observa-
tion is that most of the techniques obtaining positive outcomes for
MAUC and GM using less predictors than the best models provided
as baseline. This fact leads to attributes savings, which could be an
interesting feature for fast early NTC.

5. Conclusions and future work

Through this paper, 28 techniques to solve Class Imbalanced
were analyzed and compared for our NTC datasets. To the best
of our knowledge, this work constitutes the first study that an-
alyzes an important number of solutions to Class Imbalance for
multiclass NTC. Previous works limited the analysis to few meth-
ods or faced the problem simplifying it to binary subproblems.
Our algorithm comparison involved: 21 data-level solutions, six en-
semble techniques and one cost-sensitive approach. The selected
techniques were tested on two different network environments
evaluating several performance metrics to find out the strengths
and weakness of each method. Among the algorithms studied, we
presented two boosting algorithms that include data-level meth-
ods during learning, they are: ROSboost and TLboost. Additionally,
some algorithms had to be adapted to multiclass problems using
our own strategies to adjust the required parameters (Section 3.4).

We make publicly available all algorithms and strategies imple-
mented at [64], and encourage other authors to test them in their
respective research fields.

As result of our comparison, we find that many of the tech-
niques explored are able to benefit traffic classification models
compensating performance losses due to Class Imbalance. Re-
garding metrics sensitive to imbalanced class distributions, we
find that methods involving oversampling provided substantial im-
provements, being the algorithms that involve ROS and SMOTE the
most promising approaches. Conversely, the algorithms that em-
ploy undersampling produced the best improvements for metrics
insensitive to Class Imbalance, being our algorithm TLboost the
best-performing for these metrics. However, they leaded to weak
enhancements for OA and BA, being RUS the only undersampling
algorithm that keep an interesting tradeoff between metrics sen-
sitive and insensitive to imbalanced traffic distributions. As it has
been reported in our result section, hybrid resampling did not get
so positive results comparing to other solutions, and the same
happened for MetaCOST. Furthermore, we have confirmed that
minority classes are significantly benefit from applying the most
relevant algorithms and that important enhancements can be
achieved using less features than the baseline. The latter fact could
constitute an interesting advantage for fast early NTC.

In order to extend and improve the contributions provided here,
several research lines are envisioned as future work. Although we
have considered several algorithm-level and one cost-sensitive ap-
proaches, there exists novel algorithms based on decision trees
that could provide interesting enhancements for Class Imbalance.
The lack of implementations of these algorithms was the decisive
fact to not include them for our experiments. With respect to the
cost-sensitive approach studied, we found that it produced neg-
ative outcomes for majority classes, so that experimenting with
more sophisticated ways to compute classification cost may lead to
more optimistic improvements. Furthermore, the comparison car-
ried out in this work may be extended to other emerging knowl-
edge areas such as: IoT and Smart Cities. Finally, studying these so-
lutions with a finer classification granularity might constitute also
an interesting future research line.

Acknowledgments

This work has been partially funded by the Ministerio de
Economia y Competitividad del Gobierno de Espafia and the Fondo
de Desarrollo Regional (FEDER) within the project "Inteligencia dis-
tribuida para el control y adaptaciéon de redes dindmicas definidas
por software, Ref: TIN2014-57991-C3-2-P", in the Programa Estatal
de Fomento de la Investigacién Cientifica y Técnica de Excelen-
cia, Subprograma Estatal de Generacién de Conocimiento. Addition-
ally, we would like to thank the Broadband Communications Re-
search Group belonging to UPC BarcelonaTech, especially Valentin
Carela-Espafiol for providing the network traces we have used in
our work. Furthermore, we would like to thank the ISP for the real
network traffic captures and the resources shared with us for this
work. And finally, we would like to thank the reviewers of Neuro-
computing for the feedback provided, which has been very useful
to upgrade our manuscript.

References

[1] J. Khalife, A. Hajjar, J. Diaz-Verdejo, A multilevel taxonomy and requirements
for an optimal traffic- classification model , Int. ]. Netw. Manag. 24 (2014) 101-
120, doi:10.1002/nem.1855.

[2] A. Callado, et al., A survey on internet traffic identification, [EEE Commun. Surv.
Tutorials 11 (3) (2009) 37-52.

[3] T. Nguyen, G. Armitage, A survey of techniques for internet traffic classification
using machine learning, IEEE Commun. Surv. Tutorials 10 (4) (2008) 56-76.

[4] A. Dainotti, A. Pescape, K. Claffy, Issues and future directions in traffic classifi-
cation, IEEE Netw. 26 (1) (Jan. 2012) 35-40.


https://doi.org/10.13039/501100003329
https://doi.org/10.1002/nem.1855
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0001
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0001
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0001
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0003
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0003
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0003
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0003

118 S.E. Gémez, L. Herndndez-Callejo and B.C. Martinez et al./Neurocomputing 343 (2019) 100-119

[5] J. Zhang, X. Chen, Y. Xiang, W. Zhou, J. Wu, Robust network traffic classifica-
tion, IEEE/ACM Trans. Netw. 23 (4) (2015) 1257-1270.

[6] L. Peng, B. Yang, Y. Chen, Effective packet number for early stage internet traffic
identification, Neurocomputing 156 (2015) 252-267.

[7] Z. Liu, R. Wang, M. Tao, X. Cai, A class-oriented feature selection approach for
multi-class imbalanced network traffic datasets based on local and global met-
rics fusion, Neurocomputing 168 (2015) 365-381.

[8] L. Peng, H. Zhang, Y. Chen, B. Yang, Imbalanced traffic identification using an
imbalanced data gravitation-based classification model, Comput. Commun. 102
(2017) 177-189.

[9] H. Shi, H. Li, D. Zhang, C. Cheng, W. Wu, Efficient and robust feature extraction
and selection for traffic classification, Comput. Netw. 119 (2017) 1-16.

[10] S.E. Gomez, B.C. Martinez, A.J. Sanchez-Esguevillas, L. Hernandez Callejo, En-
semble network traffic classification: algorithm comparison and novel ensem-
ble scheme proposal, Comput. Netw. 127 (Nov. 2017) 68-80.

[11] CAIDA, CoralReef Software Suite. http://www.caida.org/tools/measurement/
coralreef/, 1999 [Accessed: 6-June-2018].

[12] IANA, List of assigned port numbers. [Online]. Available: http://www.iana.org/
assignments/port-numbers.

[13] L. Deri, M. Martinelli, T. Bujlow, A. Cardigliano, nDPI: open-source high-
-speed deep packet inspection, in: Proceedings of the 2014 International
Wireless Communications and Mobile Computing Conference (IWCMC), 2014,
pp. 617-622.

[14] ]. Zhang, Y. Xiang, W. Zhou, Y. Wang, Unsupervised traffic classification using
flow statistical properties and IP packet payload, J. Comput. Syst. Sci. 79 (5)
(2013) 573-585.

[15] G. Haixiang, L. Yijing, ]. Shang, G. Mingyun, H. Yuanyue, G. Bing, Learning from
class-imbalanced data: review of methods and applications, Expert Syst. Appl.
73 (2017) 220-239.

[16] W. Wei, ]. Li, L. Cao, Y. Ou, J. Chen, Effective detection of sophisticated online
banking fraud on extremely imbalanced data, World Wide Web 16 (4) (2013)
449-475.

[17] Y. Wang, X. Li, X. Ding, Probabilistic framework of visual anomaly detection for
unbalanced data, Neurocomputing 201 (Aug. 2016) 12-18.

[18] S. Shilaskar, A. Ghatol, P. Chatur, Medical decision support system for ex-
tremely imbalanced datasets, Inf. Sci. (Ny). 384 (Apr. 2017) 205-219.

[19] J. Erman, A. Mahanti, M. Arlitt, Byte me: a case for byte accuracy in traffic
classification, in: Proc. 3rd Annu. ACM Work. Min. Netw. Data, 2007, pp. 35—
38, doi:10.1145/1269880.1269890.

[20] T. Qin, L. Wang, Z. Liu, X. Guan, Robust application identification methods for
P2P and VolP traffic classification in backbone networks, Knowl. Based Syst. 82
(2015) 152-162.

[21] H. Wei, B. Sun, M. Jing, BalancedBoost: a hybrid approach for real-time net-
work traffic classification, in: Proc. - Int. Conf. Comput. Commun. Networks,
ICCCN, 2014. https://doi.org/10.1109/ICCCN.2014.6911833.

[22] Q. Liu, Z. Liu, A comparison of improving multi-class imbalance for internet
traffic classification, Inf. Syst. Front. 16 (3) (2014) 509-521.

[23] O. Loyola-Gonzalez, J.F. Martinez-Trinidad, ].A. Carrasco-Ochoa, M. Garcia-Bor-
roto, Study of the impact of resampling methods for contrast pattern based
classifiers in imbalanced databases, Neurocomputing 175 (2016) 935-947.

[24] V. Lopez, A. Fernandez, S. Garcia, V. Palade, F. Herrera, An insight into classi-
fication with imbalanced data: empirical results and current trends on using
data intrinsic characteristics, Inf. Sci. (Ny). 250 (2013) 113-141.

[25] N.V. Chawla, KW. Bowyer, L.O. Hall, W.P. Kegelmeyer, SMOTE: synthetic mi-
nority over-sampling technique, J. Artif. Intell. Res. 16 (2002) 321-357, doi:10.
1613/jair.953.

[26] H. Han, W. Wang, B. Mao, Borderline-SMOTE: a new over-sampling method
in imbalanced data sets learning, in: Adv. Intell. Comput., 2005, pp. 878-887,
doi:10.1007/11538059_91.

[27] H. He, Y. Bai, E.A. Garcia, S. Li, ADASYN: adaptive synthetic sampling approach
for imbalanced learning, in: IEEE Int. Jt. Conf. Neural Networks (IEEE World
Congr. Comput. Intell., IEEE.), 2008, pp. 1322-1328, doi:10.1109/IJCNN.2008.
4633969.

[28] P. Hart, The condensed nearest neighbor rule (Corresp.), IEEE Trans. Inf. Theory
14 (3) (May 1968) 515-516.

[29] ]. Zhang, 1. Mani, kNN approach to unbalanced data distributions: a case study
involving information extraction, in: Proceedings of the Workshop on Learning
from Imbalanced Datasets I ICML, 2003, Washingt. DC, 2003, pp. 42-48.

[30] F. Charte, AJ. Rivera, M.J. del Jesus, F. Herrera, Addressing imbalance in multi-
label classification: measures and random resampling algorithms, Neurocom-
puting 163 (2015) 3-16.

[31] D.L. Wilson, Asymptotic properties of nearest neighbor rules using edited data,
IEEE Trans. Syst. Man Cybern. 2 (3) (1972) 408-421.

[32] J. Laurikkala, Improving identification of difficult small classes by balancing
class distribution, in: Proceedings of the Eighth Conference on Artificial Intel-
ligence in Medicine in Europe, 2001, pp. 63-66.

[33] MR. Smith, T. Martinez, C. Giraud-Carrier, An instance level analysis of data
complexity, Mach. Learn. 95 (2) (2014) 225-256.

[34] 1. Tomek, Two Modifications of CNN, IEEE Trans. Syst. Man. Cybern. SMC-6 (11)
(Nov. 1976) 769-772.

[35] G.E.AA.PA. Batista, A.L.C. Bazzan, M.C. Monard, Balancing training data for au-
tomated annotation of keywords: a case study, in: Proceedings of the Second
Brazilian Workshop on Bioinformatics, 2003, pp. 35-43.

[36] G.E.A.PA. Batista, R.C. Prati, M.C. Monard, A study of the behavior of several
methods for balancing machine learning training data, SIGKDD Explor. Newsl.
6 (1) (2004) 20-29.

[37] X.Y. Liu, J. Wu, ZH. Zhou, Exploratory under-sampling for class-imbalance
learning, in: Proc. - IEEE Int. Conf. Data Mining, ICDM, 39, 2006, pp. 965-969,
doi:10.1109/ICDM.2006.68.

[38] C. Seiffert, TM. Khoshgoftaar, ]J. Van Hulse, a. Napolitano, RUSBoost: improv-
ing classification performance when training data is skewed, in: Proceedings
of the 2008 Nineteenth International Conference Pattern Recognition, March
2016, 2008, pp. 8-11.

[39] N.V. Chawla, A. Lazarevic, L.O. Hall, and K.W. Bowyer, “SMOTEBoost: improving
prediction of the minority class in boosting,” pp. 107-119, 2003.

[40] P. Domingos, MetaCost: a general method for making classifiers cost-sensitive,
in: Proceedings of the fifth ACM SIGKDD international conference on Knowl-
edge discovery and data mining - KDD '99, 1999, pp. 155-164.

[41] S. Wang and X. Yao, “Multiclass imbalance problems: analysis and potential
solutions,” vol. 42, no. 4, pp. 1119-1130, 2012.

[42] A. Fernandez, V. Lépez, M. Galar, M. José, F. Herrera, Analysing the classifi-
cation of imbalanced data-sets with multiple classes: binarization techniques
and ad-hoc approaches, Knowl. Based Syst. 42 (2013) 97-110.

[43] Z.H. Zhou, X.Y. Liu, Training cost-sensitive neural networks with methods ad-
dressing the class imbalance problem, IEEE Trans. Knowl. Data Eng. 18 (1)
(2006) 63-77.

[44] T. Hastie, R. Tibshirani, Classification by pairwise coupling, Ann. Stat. 26 (2)
(1998) 451-471.

[45] R. Ryan, A. Klautau, In defense of one-vs-all classification, Notes 7 (2004)
101-141.

[46] N. Japkowicz, Assessment metrics for imbalanced learning, Imbalanced Learn-
ing, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2013, pp. 187-206.

[47] J.G. Moreno-Torres, J.A. Saez, F. Herrera, Study on the impact of partition-in-
duced dataset shift on k-fold cross-validation, IEEE Trans. Neural Networks
Learn. Syst. 23 (8) (2012) 1304-1312.

[48] V. Lépez, A. Fernandez, F. Herrera, On the importance of the validation tech-
nique for classification with imbalanced datasets: addressing covariate shift
when data is skewed, Inf. Sci. (Ny). 257 (2014) 1-13.

[49] L. Bernaille, R. Teixeira, K. Salamatian, Early application identification, in: Pro-
ceedings of the 2006 ACM CoNEX Conference, 1-6, 2006, p. 6. 12.

[50] L. Bernaille, R. Teixeira, I. Akodjenou, A. Soule, K. Salamatian, Traffic classifica-
tion on the fly, ACM SIGCOMM Comput. Commun. Rev. 36 (2) (2006) 23-26.

[51] W. Li, AW. Moore, A machine learning approach for efficient traffic classifica-
tion, in: Proceedings of the 2007 Fifteenth International Symposium on Mod-
eling, Analysis, and Simulation of Computer and Telecommunication Systems,
2007, pp. 310-317.

[52] N. Williams, S. Zander, G. Armitage, A preliminary performance comparison of
five machine learning algorithms for practical IP traffic flow classification, ACM
SIGCOMM Comput. Commun. Rev. 36 (5) (Oct. 2006) 5.

[53] M. Soysal, E.G. Schmidt, Machine learning algorithms for accurate flow-based
network traffic classification: evaluation and comparison, Perform. Eval. 67 (6)
(2010) 451-467.

[54] S.E. Gomez, B.C. Martinez, AJ. Sinchez-Esguevillas, L. Herndndez Callejo, En-
semble network traffic classification: algorithm comparison and novel ensem-
ble scheme proposal, Comput. Netw. 127 (2017) 68-80.

[55] A.W. Moore, D. Zuev, Internet traffic classification using Bayesian analysis tech-
niques, ACM SIGMETRICS Perform. Eval. Rev. 33 (1) (2005) 50.

[56] T. Auld, AW. Moore, S.F. Gull, Bayesian neural networks for internet traffic
classification, IEEE Trans. Neural Netw. 18 (1) (2007) 223-239.

[57] A. Este, F. Gringoli, L. Salgarelli, Support vector machines for TCP traffic classi-
fication, Comput. Netw. 53 (14) (2009) 2476-2490.

[58] D.M. Divakaran, L. Su, Y.S. Liau, V.L. Vrizlynn, SLIC: self-learning intelligent
classifier for network traffic, Comput. Netw. 91 (2015) 283-297.

[59] J. Camacho, P. Padilla, P. Garcia-teodoro, J. Diaz-verdejo, A generalizable dy-
namic flow pairing method for traffic classification, Comput. Netw. 57 (14)
(2013) 2718-2732.

[60] L. Peng, B. Yang, Y. Chen, A. Abraham, Data gravitation based classification, Inf.
Sci. (Ny). 179 (6) (Mar. 2009) 809-819.

[61] S. Egea, A. Rego, B. Carro, A. Sanchez-Esguevillas, J. Lloret, Intelligent IoT traf-
fic classification using novel search strategy for fast based-correlation feature
selection in industrial environments, IEEE Internet Things J. (2018).

[62] S.E. Gémez, FCBF module. 2018. [Online]. Available: https://github.com/
SantiagoEG/FCBF_module. [Accessed: 23-May-2018].

[63] G. Lemaitre, F. Nogueira, C.K. Aridas, Imbalanced-learn: a python toolbox to
tackle the curse of imbalanced datasets in machine learning, J. Mach. Learn.
Res. 18 (2016) 1-5. http://www.jmlr.org/papers/volume18/16-365/16-365.pdf.

[64] S.E. Gbémez, GitHub - SantiagoEG/ImbalancedMulticlass, 2018. [Online].
Available:  https://github.com/SantiagoEG/ImbalancedMulticlass/tree/master.
[Accessed: 06-Jun-2018].

[65] F. Pedregosa, et al., Scikit-learn: machine learning in python, ]J. Mach. Learn.
Res. 12 (2012) 2825-2830.

[66] J. Dem3ar, Statistical comparisons of classifiers over multiple data sets, J. Mach.
Learn. Res. 7 (2006) 1-30.

[67] V. Carela-Espafiol, T. Bujlow, and P. Barlet-Ros, “Is our ground-truth for traffic
classification reliable?,” 2014, pp. 98-108.

[68] “nDPI - ntop.” [Online]. Available: https://www.ntop.org/products/deep-
packet-inspection/ndpi/. [Accessed 15 February 2018].

[69] T. Bujlow, V. Carela-Espafiol, P. Barlet-Ros, Independent comparison of popular
DPI tools for traffic classification, Comput. Netw. 76 (2015) 75-89.

[70] A.W. Moore, K. Papagiannaki, Toward the Accurate Identification of Network
Applications, Springer, Berlin, Heidelberg, 2005, pp. 41-54.


http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0004
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0004
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0004
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0004
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0004
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0004
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0005
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0005
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0005
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0005
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0007
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0007
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0007
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0007
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0007
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0009
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0009
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0009
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0009
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0009
http://www.caida.org/tools/measurement/coralreef/
http://www.iana.org/assignments/port-numbers
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0011
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0011
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0011
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0011
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0011
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0012
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0012
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0012
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0012
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0012
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0013
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0013
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0013
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0013
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0013
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0013
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0013
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0015
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0015
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0015
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0015
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0016
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0016
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0016
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0016
https://doi.org/10.1145/1269880.1269890
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0018
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0018
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0018
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0018
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0018
https://doi.org/10.1109/ICCCN.2014.6911833
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0019
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0019
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0019
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0020
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0020
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0020
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0020
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0020
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0021
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0021
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0021
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0021
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0021
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0021
https://doi.org/10.1613/jair.953
https://doi.org/10.1007/11538059_91
https://doi.org/10.1109/IJCNN.2008.4633969
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0022
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0022
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0023
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0023
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0023
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0024
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0024
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0024
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0024
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0024
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0025
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0025
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0026
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0026
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0027
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0027
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0027
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0027
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0028
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0028
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0029
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0029
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0029
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0029
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0030
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0030
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0030
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0030
https://doi.org/10.1109/ICDM.2006.68
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0031
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0031
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0031
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0031
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0031
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0032
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0032
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0033
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0033
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0033
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0033
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0033
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0033
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0034
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0034
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0034
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0035
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0035
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0035
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0036
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0036
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0036
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0037
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0037
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0038
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0038
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0038
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0038
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0039
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0039
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0039
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0039
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0040
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0040
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0040
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0040
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0041
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0041
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0041
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0041
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0041
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0041
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0042
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0042
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0042
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0043
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0043
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0043
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0043
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0044
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0044
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0044
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0045
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0045
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0045
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0045
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0045
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0046
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0046
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0046
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0047
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0047
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0047
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0047
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0048
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0048
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0048
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0048
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0049
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0049
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0049
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0049
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0049
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0050
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0050
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0050
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0050
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0050
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0051
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0051
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0051
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0051
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0051
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0052
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0052
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0052
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0052
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0052
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0052
https://github.com/SantiagoEG/FCBF_module
http://www.jmlr.org/papers/volume18/16-365/16-365.pdf
https://github.com/SantiagoEG/ImbalancedMulticlass/tree/master
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0056
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0056
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0056
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0057
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0057
https://www.ntop.org/products/deep-packet-inspection/ndpi/
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0058
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0058
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0058
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0058
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0059
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0059
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0059

S.E. Gémez, L. Herndndez-Callejo and B.C. Martinez et al./Neurocomputing 343 (2019) 100-119 119

[71] A. Callado, J. Kelner, D. Sadok, C. Alberto Kamienski, S. Fernandes, Better net-
work traffic identification through the independent combination of techniques,
J. Netw. Comput. Appl. 33 (4) (Jul. 2010) 433-446.

[72] R. Jhonson, imbalanced-algorithms, 2017. [Online]. Available: https://github.
com/dialnd/imbalanced-algorithms. [Accessed: 23-May-2018].

Santiago Egea received the Telecommunication Engineer-
ing Degree from Polythenique University of Cartagena,
Murcia, Spain. He is a Ph.D. student at University of Val-
ladolid, Valladolid, Spain. He is member of the Commu-
nications Systems and Networks (SRC) laboratory. His re-
search interests include Signal Processing and Machine
Learning specifically applied to telecommunication net-
works.

Luis Hernandez received the Ph.D. degree in Demand
Forecast in Microgrids from the University of Valladolid,
Valladolid, Spain, in 2014. He is wide-experienced engi-
neer in sectors as Energy Efficiency, Distributed Genera-

Belén Carro received the Ph.D. degree in the field of
broadband access networks from the University of Val-
ladolid, Valladolid, Spain, in 2001. She is a Professor at
the Department of Signal Theory and Communications
and Telematics Engineering, University of Valladolid. She
is the Director of the Communications Systems and Net-
works (SRC) laboratory, working as a Technical Researcher
and Research Manager in European and national projects
in the areas of service engineering and SOA systems, IP
broadband communications, NGN/IMS, VoIP/QoS and ma-
chine learning. She has supervised several Ph.D. students
on topics related to personal communications, IMS and
machine learning. She has extensive research publications

experience, as author, reviewer and editor.

Antonio Sanchez-Esguevillas (Senior Member, IEEE) re-
ceived the Ph.D. degree (with honors) in the field of QoS
for real time multimedia services over IP networks from
the University of Valladolid, Valladolid, Spain, in 2004. He
has been managing innovation at Telefonica (both at Tele-
fonica I+D-Services line and at Telefonica Corporation),
Madrid, Spain. He has also been Adjunct Professor and
Honorary Collaborator at the University of Valladolid, su-
pervising several Ph.D. students. He has coordinated very
large (in excess of 100 million) international R&D projects
in the field of personal communication services, particu-
larly related to voice over IP (VoIP) and Internet protocol
(IP) multimedia subsystem (IMS). He has more than 50

tion, Smart Grids, Smart Metering and Microgrids. He is
also a Professor at University of Valladolid. He has super-
vised several Ph.D. students on topics related to: Artificial
Intelligence, Photovoltaic Hot Spot Thermography and Mi-
crogrids. He has remarkable research publications experi-
ences as author and reviewer.

international publications and several patents. His current research interests are in
the area of digital services, including machine learning. He is a member of the Edi-
torial Board of IEEE COMMUNICATIONS MAGAZINE among others.


http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0060
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0060
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0060
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0060
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0060
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0060
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0061
http://refhub.elsevier.com/S0925-2312(19)30164-X/sbref0061
https://github.com/dialnd/imbalanced-algorithms

	Exploratory study on Class Imbalance and solutions for Network Traffic Classification
	1 Introduction
	2 Previous work
	2.1 Confronting class imbalance
	2.2 Recent advances in ML-based NTC

	3 Material and methods
	3.1 Estimator choice: CART decision tree
	3.2 Performance metrics
	3.2.1 Per-class metrics: class accuracies and AUC-ROC
	3.2.2 Overall Metrics: Overall, Byte, average accuracies and multiclass AUC-ROC
	3.3.3 Measuring the imbalance level: imbalance ratio per label
	3.3.4 Statistical validation

	3.3 Datasets: network environments, feature extraction and level of class imbalance
	3.3.1 Feature extraction: statistical attributes and labeling
	3.3.2 Level of class imbalance in our datasets

	3.4 Algorithms and strategies to confront class imbalance

	4 Experimental results
	4.1 Preliminary results: assessing class imbalance and baseline
	4.2 Addressing class imbalance: algorithm comparison
	4.2.1 ISP network environment
	4.2.2 HOST network environment
	4.2.3 Statistical validation and general remarks

	4.3 Analysis of per-class metrics

	5 Conclusions and future work
	Acknowledgments
	References


