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This paper proposes a new model based on Fuzzy k-Nearest Neighbors for classification with monotonic
constraints, Monotonic Fuzzy k-NN (MonFkNN). Real-life data-sets often do not comply with monotonic
constraints due to class noise. MonFkNN incorporates a new calculation of fuzzy memberships, which
increases robustness against monotonic noise without the need for relabeling. Our proposal has been
designed to be adaptable to the different needs of the problem being tackled. In several experimental
studies, we show significant improvements in accuracy while matching the best degree of monotonicity
obtained by comparable methods. We also show that MonFkNN empirically achieves improved perfor-
mance compared with Monotonic k-NN in the presence of large amounts of class noise.
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1. Introduction

Monotonic constraints are prior-knowledge of some ordinal
classification or regression problems about the order relationships
between attributes and class labels [9]. Consider the example of
house pricing. The following constraints are applied: A bigger
house in the same neighborhood is constrained by higher prices
as compared to smaller houses with the same features. That is,
the classifier decisions should not decrease in the presence of bet-
ter features while the rest remains the same. These prior con-
straints are required by many real-life evaluation problems, such
as credit risk modeling [12] and lecturer evaluation [7]. These
problems are known as Classification with Monotonic Constraints
or Monotonic Classification [3].

These learning tasks have additional objectives besides accurate
models, such as the monotonic consistency of predictions and min-
imization of the misclassification costs. The latter is also relevant
since the errors between ordered classes do not hold the same
importance. More metrics must be used during the learning and
validation of the models. However, these other objectives may
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impair accuracy [4]. Hence, a fair balance must be sought between
the different needs of each problem.

Standard classifiers are discouraged for monotonic classification
since they do not contemplate these constraints and their predic-
tions violate the monotonicity required by certain applications. A
classic example of these non-monotonic models is the standard
decision tree [3]. Standard k-Nearest Neighbors algorithm also
does not take these restrictions into account, which may lead to
further harm as a result of their presence in preprocessing tech-
niques [22].

In recent years, new algorithms have been designed to mini-
mize the number of monotonic violations in their predictions
[3,23,9], i.e. the number of pairs of instances that break monotonic-
ity [3]. To do so, some approaches focus their entire learning mech-
anism just on monotonicity. This strategy usually achieves
completely monotonic models, but it could lead to wrong general-
izations being made that are different to the knowledge of the
problem. Others infer monotonic relations from the training set
while maximizing their accuracy. These models have been adapted
from different families of classifiers [9], such as decision trees
[3,32,34], support vector machines [12], fuzzy model based classi-
fiers [1,29], neural networks [17,40] and ensemble learning
[13,36,23].

Instance-based learning has proven to be a good approach for
monotonic classification [2,15,31,18]. However, some of these
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methods, such as Monotonic k-Nearest Neighbors [15] (MkKNN),
need to learn from a fully monotonic set to ensure monotonic pre-
dictions. This is rarely the case in real-life scenarios, where class
noise and discrepancies are common. Therefore, data preprocess-
ing [21,33,8,22] and relabeling strategies [35,16] must be used to
remove non-monotonic samples or to change their class labels in
order to force a monotonic set.

In standard classification, Fuzzy k-Nearest Neighbors [25] is a
very solid method with high performance, thanks to its high
robustness to class noise [14]. This class noise robustness mainly
lies in the extraction of the class memberships for the crisp train-
ing samples by nearest neighbor rule. In this process, the class
memberships of noisy instances are shared with surrounding
classes and the incorrectly assigned class looses its influence. How-
ever, these mechanisms do not consider monotonic constraints and
Fuzzy k-NN cannot deal with monotonic violations or monotonic
noise in the training set.

In this paper, a new model designed on the basis of Fuzzy k-NN
with notions of MkNN is proposed to take monotonic constraints
into account, and is called Monotonic Fuzzy k-Nearest Neighbors
(MonFkNN). MonFkNN has been designed with three desired
features:

(i) Robustness against monotonic violations.

(ii) Monotonic predictions without a pure monotonic training
set.

(iii) Flexibility in its configurations covering different needs of
performance.

With these objectives in mind, MonFkNN has been designed
with new mechanisms to manage monotonicity constraints and
the monotonic violations in the training set. The main contribu-
tions of the MonFkNN design are:

(i) The initial robustness of Fuzzy k-NN has been redesigned to
mitigate the influence of monotonic violations. Firstly, the vio-
lations due to sample replicas with different classes are joined
to form one class membership. Then, our approach incorporates
a strictly monotonic nearest neighbor rule to the calculation of
the memberships of the training examples.

(ii) These monotonically constrained memberships and their
medians are used in the prediction phase. The class member-
ships aggregation of MonFkNN is also monotonically con-
strained by the nearest neighbor extraction or a penalty to the
contribution of non-monotonic instances.

(iii) MonFkNN was built as a flexible classifier that covers dif-
ferent necessities of monotonicity and accuracy by tuning its
parameters. It can be configured with a rigidly monotonic or
standard k-NN rule if monotonicity or precision is preferred in
the predictions, respectively.

All these mechanisms reinforce the robustness of our proposal
against monotonic noise without the need for relabeling. We
understand monotonic noise as being the actual noise that can
alter the class labels and, as a result, change the monotonic con-
straints among the samples in the data. Their parameters make
our proposal adaptable to the different objectives of monotonic
classification. We distinguish two different parameter configura-
tions: a pure monotonic version in which monotonicity is priori-
tized, and an approximate configuration that focuses more on the
prediction accuracy.

We have performed several empirical studies to verify the
desired features of MonFkNN. First, different behaviors of its two
configurations are empirically analyzed and compared to the orig-
inal FkNN. Then, our proposal is compared with 7 methods from
the state-of-the-art, exhibiting substantial improvements in accu-

107

Neurocomputing 439 (2021) 106-121

racy and maintaining the best degree of monotonicity. Finally,
the robustness of our method against monotonic noise, i.e. mono-
tonic violations, is shown in contrast to MkNN. In this last experi-
ment, MonFkNN performs considerably better than Monotonic k-
NN in scenarios with large amounts of class noise. The experimen-
tal framework used consists of 12 data-sets commonly used in
monotonic classification, 7 monotonic classifiers and 3 metrics
covering different aspects of performance: Accuracy, Mean Abso-
lute Error and Non-Monotonic Index. All results are additionally
validated with the non-parametric statistical Wilcoxon and Fried-
man rank [20,19] and Bayesian Sign tests [5].

The paper is organized as follows. In Section 2, we present the
problem of classification with monotonic constraints and the
methods related to our proposal: MkNN and Fuzzy k-NN. Section 3
is dedicated to explaining our model MonFkNN in detail and its
algorithmic differences as compared to FkNN. The experimental
framework used in the different empirical studies is presented in
Section 4. In Section 5, the previously mentioned empirical studies
are carried out and analyzed. Finally, the main conclusions of this
study are stated in Section 6.

2. Preliminaries

In this section, we introduce the preliminaries needed: Classifi-
cation with monotonicity constraints, Monotonic k-Nearest Neigh-
bors and the original Fuzzy k-Nearest Neighbors.

2.1. Monotonic classification

Monotonic classification [9] is an ordinal regression problem
with monotonic constraints relating to the order of the variables
and the class labels. Ordinal regression and/or classification can
be seen as a nonstandard classification problem [11], which
attempts to minimize the difference between the predicted labels
and the real labels. Classification with monotonic constraints is
also considered to be a nonstandard supervised learning problem
[11].

Formally, monotonic classification aims to predict the class
label y from input vector x with Q number of features, where
ye¥ ={h,h,...,l.} and x represents an individual of our classifi-
cation problem. The categories % are arranged in an order relation
<asl; <l <...<I.And, as the main property of monotonic clas-
sification, the attributes and class predictions are monotonically
constrained by the  problem  prior-knowledge, i.e.
x =X — f(x) = f(x') [26], where x = x’ implies Vj_1 _q,% > xj, that
is, x dominates x'. Therefore, the main objective is to build classi-
fiers that do not violate these constraints, otherwise known as
monotonic classifiers.

Two different types of monotonic classifiers can be distin-
guished: approximate monotonic models, which minimizes the
number of monotonic violations in their decisions and pure mono-
tonic classifiers, whose predictions are always monotonic concern-
ing the training and future examples. The latter is hard to achieve,
particularly in real-life applications where the training data-sets
are rarely purely monotonic. To be considered monotonic, all of
the pairs of instances in a data-set must be monotonic [2]:
X=X —Y; =Y, Vij.

2.2. Monotonic k-nearest neighbors

MENN [15] modifies the standard nearest neighbor rule of the
well-known lazy learning method to avoid monotonic violations
in its predictions. To do so, MkNN computes for each new example
x; the range 1i = [Vmin, Ymax) Of valid class labels, which satisfies the
monotonic constraints. The lower-bound y,,;, of r; is computed as
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the highest class label of all instances in the training set %
below the example x;. Analogously the upper-bound y,,, is the
minimum class label of the instances in 2 that are higher than x;
(see Eq. (1)).

. { Ymin = Max{y | (x,¥) € 2 AX; = X}
=

Yo = MIn{y | (X,y) € Z AX = Xi}

Two different MKNN variants can be distinguished depending
on how the neighbors are extracted for a new instance x;. The
InRange variant considers the k nearest examples x; with their class
labels y; in the range [V, Ymex)- The OutRange version extracts first
the k nearest neighbors x; and then, those neighbors outside of the
range r; are filtered out from the decision. If all of them are
removed, a random label in r; is chosen. As in the standard k-NN
method, the majority class among the k neighbors is used as the
predicted label.

MKNN is one of the methods that require monotonic data-sets
to work properly [15]. Since, with monotonicity violations, the
range r; could not be correctly computed, a relabeling technique
should be used to transform the non-monotonic training data into
monotonic data. These techniques intend to identify and remove
the monotonicity violations by making the fewest possible changes
with minimum class difference. [15,35,16].

(1)

2.3. Fuzzy k-Nearest Neighbors

Fuzzy Sets [39] express the uncertainty of the example member-
ships to each class label. The memberships of the example x; are rep-
resented as a degree of each class belonging u; = (U1, up, . . ., Ui),
where u; € [0,1] and 37 ,uy = 1. Nowadays, development in fuzzy
sets and classifiers is still an ongoing process [37].

Fuzzy k-Nearest Neighbors algorithms [14] incorporate fuzzy
concepts into the classical k-NN decision rule to learn from fuzzy
sets and produce fuzzy classification rules. Recently, different
approaches have been proposed based on distinct fuzzy set exten-
sions. However, the original Fuzzy k-NN [25] (FkKNN) is still one of
the best approaches [14]. Recent approaches provide for the opti-
mization of parameters in FKNN [6].

For a given new instance x;, Fuzzy k-NN [25] extracts its K near-
est neighbors in the same manner as the standard k-NN. Then, its
memberships for each class | are computed with the following
expression:

K
1
2yt # e
>
=1 x| ™"D

As shown in Eq. (2), the membership u(x;,l) = u; of sample x;
to class [ is assigned with the product of the class membership
u(x;,l) of the neighbors x; and the inverse of their distances to
x;. The latter serves as a weight that biases towards the member-
ships of nearer samples. The parameter m determines the degree
of influence of the neighbor distances. The recommended value
m =2 [25] makes the contributions of the neighboring samples
reciprocal to their distances. A crisp class label for the example
x; can be decided as being the label | with the greatest member-
ship degree uj.

Facing a labeled training set, Fuzzy k-NN [25] brings it into a
fuzzy set with sample memberships using the nearest neighbor
rule. For each training sample x;, k nearest neighbors are extracted
using the leave-one-out scheme. Then memberships u(x;, ) for
each class I are computed according to Eq. (3) with the number
of neighbors nn, found for each class I. This transformation has pro-
ven useful against noisy samples as the memberships lose influ-
ence as they are spread to the surrounding classes (not the
assigned class).

u(x,l) =

(2)
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0.51+0.49 « (nmy/k), if y,=1
0.49 = (nn;/k), otherwise

u(xi,l) = 3)

{

3. Monotonic fuzzy k-Nearest Neighbors

In this section, we explain our approach in detail - MonFkNN
and all its mechanisms that consider monotonicity constraints. In
SubSection 3.1, we explain how MonFkNN gives a final class from
class memberships in a more proper manner according to mono-
tonicity. SubSection 3.2 is dedicated to the extraction of the class
memberships from the training set and redesigned to reduce the
impact of monotonic noise without the need for monotonic rela-
beling. In SubSection 3.3, the class membership aggregation
built-in MonFkNN is explained and related to the robustness and
flexibility of the classifier using its parameters. Finally, we discuss
the algorithmic differences between our proposal and the original
FkNN in SubSection 3.4.

3.1. From class memberships to the final class label

Since FKNN works with class memberships, a mechanism that
respects monotonicity is needed to get a final class from a vector
whose elements sum up to the value of one. The class with the
greatest membership is the most common decision in multiple
classifiers. The original Fuzzy k-NN gives their crisp predictions
as the class label with the highest membership.

However, this might not be appropriate for scenarios with
monotonic constraints. For example, let x; <x; and their class
memberships u; = (0.2,0.2,0.4,0.2,0.0) and u; =(0.0,0.4,0.3,
0.2,0.1), then their final classes chosen with the highest member-
ship break the monotonicity: argmax(u;) = I3 > I, = argmax(u;).
Even though, the instance x; has more weight values assigned to
the higher labels than instance x;. In fact, u; weakly dominates u;
according to the first degree stochastic dominance relation (FSD)
[28] since the x; cumulative distribution function U; = (0.2,0.4,
0.8,1.0,1.0) is greater, element by element, than U; = (0.0,0.4,
0.7, 0.9,1.0), that is, u=psptlj <= (VI € %) (U;(l) = Uj(l)). To make
FSD applicable, class membership vectors are normalized to sum
up to the value of one and treated as probability mass functions.
Therefore, a cumulative distribution function U can be computed
for given normalized class memberships, where FSD is defined.
This transformation can be done thanks to the order relation
between classes in monotonic classification. FSD is useful for defin-
ing monotonicity constraints in probabilistic classifications
[31,30], with the expression x; < X; = U;j=gspl;j.

Therefore, the function that transfers a membership vector to a
class label must satisfy u;j=ppt; = y; <y;. Centrality measures,
such as mean and median, have proven to be good solutions
[28,31]. Particularly, the median is applicable to ordinal problems.
Following the traditional definition of median as the 50th per-
centile, the median is computed as the range [l;5, ly]:

1/2}
1/2}

where [ is a class label of possible labels %, U{X < I} is the cumula-
tive membership/probability of belonging to a class smaller or equal
to I and U{X > [} is the analogous definition for a class greater or
equal to L

Going back to the previous example, the classes for x; and x;
chosen by the median does not break monotonicity:
med(u;) = med(y;) = 3. For I, #ly, any class label [ which
In<l<Ily must have a membership u(l)=0 and
U(lm) = U(ly) = 1/2. For example, instance x, with class member-

In = min{l € % | U{X

Iy =max{l e #|U{X @

<h oz
=1} >
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ships u; =(0.2,0.3,0,0.3,0.2) could be assigned to the classes
med(u;) = [2,4] = 3.

3.2. Class memberships robust to monotonic noise

In this subsection, the class membership calculation redesigned
to monotonic classification is explained. The objective of this first
stage is to fix or reduce the influence of non-monotonic examples
in the classification. Our method uses the robustness of the tradi-
tional Fuzzy k-NN within the knowledge of the monotonic rela-
tions between the neighbors. Algorithm 1 summarizes the
procedure of obtaining robust noise class memberships for the
training set.

Algorithm 1. Training class memberships extraction

First, we have to deal with the simplest monotonic violations,
that is, instances with the same input values and different classes
(Lines 2-13 of Algorithm 1). These mislabels frequently appear in
traditional data-sets [2] of classification with monotonic con-
straints as these sets are rankings or evaluations made by different
experts.

Therefore, MonFkNN first substitutes the replicas of any exam-
ple x with one feature vector x and its memberships u(x). The
membership u(x, ) of the instance x to the class [ is computed with
the frequency of duplicated examples x; in the training set &
belonging to class I (y; = I), as shown in the following expression:

Hxez2iki=xny; =1}
M =T e g =

()

The class label of an instance x after the elimination of its repli-
cas is obtained by the median of the resulting memberships, as
shown in Line 13 of Algorithm 1. However, this vector will be used
in the classification function with the membership aggregation as
stated in the next subsection.

Then, MonFkNN estimates the memberships of the remaining
instances, which corresponds to Lines 13-24 of Algorithm 1. This
estimation is made using the information of the nearest neighbors
of each instance. However, these nearest neighbors are extracted
with a monotonic nearest neighbor rule (MkNN) instead of a tradi-
tional rule as we aim for memberships that respect monotonic con-
straints as much as possible. Algorithm 2 exemplifies the
extraction of these monotonically constrained neighbors for a
given instance x as in MkNN.

Algorithm 2. Monotonic nearest neighbor rule

1: function NeighborsAsMkNNx - tested sample, r - range of
valid classes, k - considered neighbors, typeRange - inRange
or outRange, {2,y} - Training data-set

2: initialize: nn = {}

3: forx; € 2 do

4 if typeRange == outRange or y; € r then
5: if Size(nn) < k then

6: Insert x; in nn

7 else

8: Xmax = arg MaXyenn||X — X;||
9: if [|x — xi]| < [[% — Xmax|
10: Replace xpmqx by x; in nn
11: end if

12: end if

13: end if

14: end for

15: output: nn

16: end function
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In this case, Algorithm 2 is configured as an inRange variant as
pointed out in Line 16 of Algorithm 1. That is, the nearest neighbors
of an example x; are constrained to a range 1; = [V nin, Ymax) Of POSSI-
ble classes (Line 17), which preserves the monotonicity of the data-
set.

Once the nearest neighbors for each example x; are obtained,
the information of the neighbor classes is fused into x; class mem-
berships (Line 20). For an instance x;, the membership u(x;,[) to
class | is computed with the following expression:

RCr + (nny/k) = (1 — RCr)
(nmy/k) « (1 — RCr)

if y=1

u(x;,l) = { (6)

where nn; is the number of nearest neighbors of the class I, k the
total number of neighbors extracted for instance x; and y; is the
original class label of the example x;. RCr is a new parameter called
“Real Class relevance”.

Apart from the use of the monotonic nearest neighbor rule, the
inclusion of RCr is another main difference between our approach
MonFkNN and the original Fuzzy k-NN. RCr can be seen as the min-
imum membership assigned to original class y; of the instance x;, in
case there are no neighbors labeled with y;. In FkNN, RCr corre-
sponds to the value of 0.51, that is, every instance maintains its
real class, even those noisy examples surrounded by other classes.
By being a parameter, our method lets the user control the treat-
ment of monotonic noise.

There are some values for RCr in the range [0, 1] that have very
interesting and distinct behaviors. In the case of a really noisy data-
set where no labels can be trusted, RCr could be set to 0. This leaves
all the responsibility to the calculation of the range of valid classes
r; and the nearest neighbors. In the presence of instances with the
same input values and different classes, the user could choose only
to treat them with RCr = 1. Finally, if practitioners want to con-
sider the originally labeled instances, we recommend assigning
RCr to 0.5. This value ensures that the actual class is within the
set of medians. In contrast to Fuzzy k-NN and its 0.51, if all neigh-
bors belong to a same single class that is different to the current
class, our method forces to choose in between these two classes.
Usually, this last value (RCr = 0.5) is a good trade-off, mainly stable
and with better performance.

During this process, the impact of monotonic inconsistencies
will be either reduced or fixed. The inconsistencies of instances
with the same input vectors and different classes are completely
fixed by being substituted by only a sample and class memberships
with the information of their different classes. The mislabeled sam-
ples, i.e. noisy or non-monotonic examples, will have less influence
towards their noisy class as they will be surrounded by more
appropriated classes and their class memberships will be shared
into classes in which they fit monotonically. This is the first mech-
anism of our method to alleviate the presence of monotonic viola-
tions, without the need for relabeling.

3.3. Flexible membership aggregation

After estimating the class memberships of every training
instance, our algorithm is ready to predict new examples. This last
phase has been designed to cover different needs of monotonic
scenarios. In addition to the control of noise treatment, greater
flexibility has been sought, allowing users to choose between more
accurate or pure monotonic predictions.

Algorithm 3 represents in pseudo-code the whole prediction
procedure of our proposal MonFkNN. Particularly, the prediction
of a new instance x; is detailed after having previously computed
the monotonically-constrained class memberships of the training
set as the previous Algorithm 1 is referred in Line 2.
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Algorithm 3. MonFkNN: Prediction stage

As shown in Line 6, MonFkNN embeds another MkNN (Algo-
rithm 2) to obtain the neighbors used in the membership aggrega-
tion and final prediction. This MkNN also has two versions, inRange
and outRange versions. They are, however, substantially different
when compared to original variants.

The inRange alternative is based on the same idea of the original
MEKNN, where the neighbors of an example must belong to a set of
monotonically valid classes. However, this range of classes is
obtained using the medians acquired from the class memberships
of the training instances constrained by monotonicity, as seen in
Line 3 and Line 4. This breakthrough improves our method by
increasing monotonic noise robustness. Firstly, an inRange nearest
neighbor rule removes monotonic inconsistencies in the known
data-set as previously shown in Algorithm 1. Then, the second
MEKNN uses this fixed training set (¢',y’) to give monotonic predic-
tions as seen in Algorithm 3.

The outRange version of our method is completely different
from the previous outRange rule. It has been designed with the
intention of prioritizing to some extent the predictive ability of
the classifier over monotonicity. With this purpose in mind, our
method considers any example as a valid neighbor regardless of
its class label. In contrast to the original model, no filtering or
removal of neighbors outside the valid range is performed. How-
ever, their relevance in the membership aggregation can be
reduced if needed, thanks to a penalty factor introduced in the
aggregation expression.

Then, for a new example ¥, its nearest neighbors are obtained
according to the chosen variant. Their memberships are aggregated
with the original FkNN formula with the addition of the penalty
factor for the outRange version. The following expression shows
how this parameter is integrated:

K OR
§ L]
)k —L
=1 u(xjv I) Hxixjwm—l)
POR;

K
ijl llx=1"=D

As previously, the membership u(x,[) of the new sample x to
the class label I is the result of the sum of the class member-
ships u(x;,l) of the neighbors x; inversely weighted with their
distance to x. In the outRange version of our method, there is
another weighting factor in the contribution to the final mem-
berships, the parameter referred to as “penalty of outRange”
(pOR). The factor pOR; is applicable only if the class y; of the
neighbor x; is not in the valid class range r, of x as exemplified
in Lines 7-13. It can be configured with continuous values from
0 to 1. When it is assigned to 1, no penalty is applied. The value
0 means a full penalty, that is, neighbors with invalid classes
will not participate in the membership aggregation. For all prac-
tical purposes, this last behavior is equivalent to the outRange
MKNN. We recommend using 0.5 since it is a good balance
between reducing their relevance and considering them in the
decision.

Finally, the class prediction of the new example x is the median
of the resulting normalized class memberships.

As presented, MonFkKNN has been developed to be robust to
monotonic noise and versatile in many scenarios. The two versions
inRange and outRange with the parameter pOR and the previously
mentioned RCr help to tune the algorithm according to the neces-
sities of different kinds of problems.

Among the possibilities that offer these parameters, we
have named two configurations with very distinctive behaviors:
Pure Monotonic (MonFkNN-PM or PM) and Approximate Mono-
tonic (MonFkKNN-AM or AM) Fuzzy k-NN. The Pure Monotonic
configuration corresponds to a value of 0.5 for the RCr

u(x,l) =

(7)
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parameter and the use of inRange rule to obtain the member-
ships of new instances. This approach aims to give predictions
with the minimum violations of monotonicity. In every part of
the algorithm, it prioritizes monotonicity over very accurate
predictions.

MonFkNN-AM prioritizes the predictive ability and relaxes the
monotonic constraints. The memberships of the training set are
obtained by the treatment of samples with the same feature values
and different classes. Those unique examples will have a member-
ship of 1 to the actual class and 0 for the rest. This behavior is
achieved with RCr = 1. Then, as we are looking for more accurate
predictions, all instances can be considered to be valid neighbors
and to contribute to the final aggregation. Those instances with
invalid class labels, however, will contribute with only half of their
class memberships (pOR = 0.5).

Our proposal MonFkNN is available at the GitHub Repository.’

3.4. Differences between standard FKNN and MonFkNN: theoretical
discussion

Standard FKNN and MonFkNN have a similar mathematical for-
mulation. In other words, the expressions used by MonFkNN in the
training class membership extraction (Eq. (6)) and and in the mem-
bership aggregation (Eq. (7)) are the same as those used by FKNN
(Egs. (3) and (2)), for RCr = 0.51 and pOR = 1. The global behavior
of our method is however still completely different to the standard
FkNN, due to significant algorithmic differences. Table 1 summa-
rizes the main differences between standard FKNN and our pro-
posal MonFkNN.

Each of the differences mentioned in Table 1 is described and
explained below:

o The data-set used to compute the training class memberships is
modified before applying the neighborhood rule. The inconsis-
tencies of duplicates are eliminated and reduced to a single
instance. The classes of the resultant instances are assigned to
the median calculated with the frequency of the appearance
of duplicates for each class. This procedure could not even be
considered in standard classification, where there is no ordering
relationship between classes.

e The neighborhood considered for each training instance is con-
strained to the monotonicity of the data-set. Then, their resul-
tant class memberships are also monotonically constrained.
These adaptations completely modify the neighbors contribut-
ing in Eq. (3) and the whole procedure. In addition, the value
of 0.51 for RCr is discouraged in MonFkNN in favor of 0.5 due
to its contribution to the medians of the samples, above-
mentioned in Section 3.2.
The original FkNN and MonFkNN also share the same member-
ship aggregation, i.e. their expressions (Egs. (3) and (6)) are the
same for InRange and outRange (with pOR = 1) versions of
MonFkNN. However, their behavior and their predictions are
completely different, due to the differences in the nearest
neighbor rule, in the training set and class memberships used
in the aggregation procedure. As previously explained, the
training class memberships extraction of MonFkNN modifies
the training set fixing some monotonic inconsistencies. Dupli-
cates are removed and some training samples might change
their classes to preserve the monotonicity of the data-set.

o In MonFkNN, the classes of the training samples determine the
monotonically valid classes of the unlabeled instances. Thus,
training samples with classes not valid for an instance x will
be discarded from the neighborhood (inRange version) or penal-

! https://github.com/sergiogvz/MonFkNN.
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Table 1
Summary of algorithmic differences between standard FKNN and MonFkNN.

FkNN MonFkNN

No special treatment of
duplicates.

Standard nearest neighbor rules.

Standard training membership

Duplicates are reduced to a single
instance.

Monotonic nearest neighbor rules.
Monotonically constrained class

extraction. memberships.

Conservation of original classes Loss of influence of original class towards
in the

training class membership monotonicity with RCr <= 0.5.
extraction.

Value 0.51 in Eq. (3)

Standard class membership
aggregation.

No penalty to any neighbors in
Eq. (2)

Final class as highest
membership

Parameter RCr in Eq. (6)

Monotonically constrained membership
aggregation.

POR Penalty to out-of-range neighbors in
Eq. (7).

Final class as median of class
memberships

ized with the parameter pOR (outRange version). The configura-
tion outRange version with pOR = 1 is also discouraged since the
final purpose of MonFkNN is to take monotonic constraints into
consideration, at least to some extent.

o These mechanics acquire different neighbors to those drawn by
FkNN for the same test sample, that is, different class member-
ships and prediction. Finally, the median as the final class of the
class membership vector already implies a significant change in
the behavior of the method.

These differences between our proposal and the traditional
FkNN are clearly supported by the experiments carried out in
Section 5.1.

4. Experimental framework

This section is devoted to introducing the experimental frame-
work used in the different empirical studies of the paper. In our
experiments, we have included 12 data-sets of a good variety of
problems presenting real monotonic constraints. The data-sets
can be seen in Table 2, where the number of instances, attributes
and classes are detailed for each data-set in the column Ins., At.
and Cl., respectively. The column At. Directions indicates the
monotonic direction of the relationship between each attribute
and the class: direct (+) or inverse monotony (-). This information
is extracted from the description of the problems involving the
data-sets. The column Comparable Pairs shows the percentage of
pairs of comparable samples over the total number of pairs. Two
instances x; and x; are comparable if their inputs have an order
relation, i.e. X; = X; or x; < X;. On average, one-third of the total
number of pairs of these data-sets are comparable and potential

Table 2
Description of the 12 data-sets used.
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violations of monotonicity in the classification process. This quite
large amount cannot be neglected.

These data-sets are chosen as the most frequently used in the
monotonic classification literature. The classical monotonic set
ERA, ESL, LEV and SWD [2] are also considered in the study. Addi-
tionally, the data-set artiset is employed for a comparative study
on monotonic noise robustness of MonFkNN (see SubSection 5.4).
Artiset is an artificial data-set with two attributes (x;,x,) and nCl
number of classes. For attributes x;,x; € [0, 1], the class is com-
puted as the truncation of the outcome of the following formula:

242
XX

2

A 10-fold cross-validation scheme (10-fcv) is carried out to run
the different classifiers over these sets. Their partitions have been
extracted from the KEEL repository [38].

The classifiers involved in the empirical comparisons are:

fx1,%2) = (%1 + )% nCl

e Monotonic k-NN (MkNN) [15]

e Ordinal Stochastic Dominance Learning (OSDL) [31]

e Ordinal Learning Module (OLM) [2]

e Monotonic Multi-Layer Perceptron network (MonMLP) [27]
e (4.5 decision tree for monotonic induction (MID) [3]

¢ Rank Discrimination Measure Tree (RDMT) [32]

o Partially Monotonic Decision Tree (PMDT) [34]

Table 3 details the parameters chosen according to the recom-
mendations found in the original papers. As a requirement of
MKNN, a relabeling technique [16] is applied to training data-sets
before fitting MkNN. On the contrary, the rest of the algorithms,
including MonFkNN, do not need this relabeling procedure. There-
fore, all the results shown for MkNN are obtained with relabeled
training sets, while other methods are trained with the original
training data-sets.

In order to evaluate the classifiers’ proficiency, we have
employed three measures of different aspects of their perfor-
mance: predictive capability, error cost and monotonicity. Stan-
dard accuracy is used to evaluate the predictive capability of the
models. Mean Absolute Error (MAE) is computed as the average
differences of the true instance ranks and the predicted ranks. To
evaluate monotonicity, Non-Monotonic Index (NMI) [9] measures
the ratio of pairs of samples (NMP) that break monotonicity among
the total of pairs, with N being the number of samples in the data-
set:

NMP
N> —N
These measures are computed over a set merged from the test

predictions of 10-fcv sets for each data-set and classifier. Finally,
the Wilcoxon statistical test, Friedman rank test [20,19] with Holm

NMI =

Data-set Ins. At. Cl At. Directions Comparable Pairs
artiset 1000 2 10 All direct directions 49.79%
balance 625 4 3 {— — + +} 25.64%
bostonhousing4cl 506 13 4 {(—+ =+ -+ -+ - — — + =} 14.85%
car 1728 6 4 All direct directions 14.36%
ERA 1000 4 9 All direct directions 16.77%
ESL 488 4 9 All direct directions 70.65%
LEV 1000 4 5 All direct directions 24.08%
machineCPU 209 6 4 — 49.53%
qualitative_bankruptcy 250 6 2 All inverse directions 43.77%
SWD 1000 10 4 All direct directions 12.62%
windsorhousing 546 11 2 All direct directions 27.07%
wisconsin 683 9 2 All direct directions 58.04%
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Table 3
Parameters considered for the algorithms compared.
Algorithm Parameters
MKNN [15] k = 5, distance = euclidean, neighborsType = inRange
OSDL [31] balanced = No, classificationType = median,
lowerBound = 0, upperBound = 1
tunelnterpolationParameter = No, weighted = No,
interpolationStepSize = 10,
interpolationParameter = 0.5
OLM [2] modeResolution = conservative
modeClassification = conservative
MonMLP [27] default parameters, hidden1 = 8
iter.max = 1000, monotonic = all att
MID (3] R =1, confidence = 0.25, items per leaf = 2
RDMT [32] H = Pessimistic rank discrimination measure,
measureThreshold = 0, items per leaf = 2
PMDT [34] threshold 0 = 0, items per leaf = 2
FKNN [25] k=5, K =9, distance = euclidean
MonFkNN k=5, K =9, distance = euclidean

Pure Monotonic
Approximate
Monotonic

RCr = 0.5, neighborsType = inRange
RCr = 1, neighborsType = outRange, pOR = 0.5

post hoc procedure [24] and Bayesian Sign test [5] are used to val-
idate the results of the empirical comparisons. In the Bayesian Sign
test, a distribution of the differences of the results achieved by
methods A and B is computed thanks to the Dirichlet Process. This
distribution is shown in a graphical space divided into 3 regions:
left, rope and right. The location of the majority of distribution in
these sectors indicates the final decision of the pairwise Bayesian
non-parametric sign test: superiority of algorithm B (left sector),
statistical equivalence (rope sector) and superiority of algorithm
A (right sector). For the accuracy and MAE results, we have set
the inferior and superior limit of the rope region to —0.01 and
0.01, respectively. However, we have adjusted the limits to
—0.0001 and 0.0001 for NMI since NMI values tend to be signifi-
cantly smaller due to the big difference between the numbers of
comparable instance pairs and all possible pairs. The R package
rNPBST [10] has been used to extract the graphical representations
of the Bayesian Sign tests analyzed in the following empirical
studies.

5. Results and analysis

This section presents the results of the empirical studies and
their analyses. First, the two configurations of MonFkNN are com-
pared in SubSection 5.1, showing their different strengths. Then,
our proposal is compared to methods from the state-of-the-art in
terms of prediction capability and monotonicity in SubSection 5.3
and SubSection 5.3, respectively. In SubSection 5.4, the last exper-
iment tests the noise robustness of MonFkNN in contrast to MkNN.

5.1. Evaluation of Monotonic Fuzzy k-NN approaches. Pure Monotonic
vs Approximate Monotonic

A comparison between the Pure and Approximate Monotonic
version of MonFkNN stresses the different behaviors and aspects
of their performance. Additionally, the performance differences
between the original FkNN and MonFkNN are analyzed. Table 4
shows the results of FkNN and the two configurations of our pro-
posal MonFkNN in terms of Accuracy, MAE and NMI. Bold-face font
indicates the best results obtained for each data-set and metric.

In Table 4, the differences between both approaches (PM and
AM) can be seen clearly. Just as they were designed, MonFkNN-
AM has better accuracy on average, while MonFkNN-PM achieves
monotonically reliable predictions. Both have good, stable results
in terms of MAE, with AM coming out slightly on top.
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AM configuration obtains the most accurate predictions for
more than 50% of the benchmark used. On the other hand, the
PM model achieves better results according to monotonicity in
10 of the 12 data-sets used, with large differences in Windsorhous-
ing and MachineCPU problems. When compared with FkNN,
MonFkNN greatly improves the performance of the original algo-
rithm. Both versions of MonFkNN (PM and AM) are better on aver-
age for each of the three different measures. Particularly, there is
an overwhelmingly large difference between FKNN and MonFk-
NN-PM in terms of monotonicity. FkNN is better only for 3 data-
sets when taking just accuracy and MAE into consideration. How-
ever, it does not outperform the monotonic predictions of
MonFkNN.

This improvement is also reflected in the Wilcoxon statistical
test applied to the results achieved using these methods. Table 5
presents the hypothesis of equivalence of the Wilcoxon test for
o = 0.1 on the pairwise comparison of FkKNN (1) and our two pro-
posals (MonFkKNN-PM (2) and MonFkNN-AM (3)). As shown in
Table 5, MonFkNN-AM is statistically better than FkNN in terms
of accuracy and MAE with p-Values under 0.1. Considering mono-
tonicity, MonFkNN-PM and -AM statistically outperform FKNN
with very low p-Values. Overall, MonFkNN is clearly superior to
FkNN in scenarios with monotonic constraints.

The reasons for these differences in results are clear and mainly
due to their algorithmic differences. MonFkNN has learning proce-
dures with notions in the order relation of classes and the mono-
tonic constraints between input and output, which explain an
overall better performance in terms of MAE and NMI. Additionally,
MonFkNN has a greater awareness and treatment of noisy data,
which helps obtain better accuracy.

Since monotonicity is usually prioritized in classification with
monotonic constraints, we will use MonFkNN-PM in the following
empirical studies.

5.2. Comparison with the state-of-the-art: prediction capabilities

Here we evaluate the performance of our approach in compar-
ison to methods from the state-of-the-art of monotonic classifica-
tion. In this comparison, we look for a balance between accurate
and monotonic predictions. Therefore, we compare the results
obtained in terms of the selected metrics independently. Then,
we draw our conclusions and check if our approach behaves well
in the different aspects of classification with monotonic
constraints.

First, we evaluate the prediction capability of our method.
Table 6 gathers the accuracy results for the different data-sets
obtained by the tested algorithms. With these outcomes, MonFk-
NN-PM performs overwhelmingly better than the rest in terms of
accuracy. Our approach achieves the most accurate predictions
on average with a wide margin. Additionally, it obtains the best
results for 5 data-sets, with particularly remarkable cases, such
as balance. PMDT is the second best method in terms of accuracy
and it is the only method that come close to the performance of
MonFkNN-PM. However, it obtains the overall best results for
one data-set only (bostonhousing).

As mentioned before, we have used the Friedman rank test and
the Bayesian Sign test to corroborate the significance of the differ-
ences of our approach and the selected methods. Table 7 includes
the outcome of the Friedman rank and Holm tests in relation to the
obtained Accuracy results. MonFkNN-PM is ranked first with a high
ranking value compared to others. All the hypotheses of equiva-
lence are rejected with small p-values with the exception of PMDT,
which would be rejected for « = 0.1. The distance between the
ranks of MonFkNN-PM and PMDT is still quite large.

Fig. 1 graphically represents the difference between MonFkNN-
PM and other methods and its statistical significance in terms of
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Table 4
Results for the Pure and Approximate Monotonic Fuzzy k-NN.
Accuracy MAE NMI
FKNN MonFkNN-PM MonFkNN-AM FKNN MonFkNN-PM MonFkNN-AM FKNN MonFkNN-PM MonFkNN-AM

artiset 0.9339 0.9309 0.9349 0.0661 0.0691 0.0651 0.0000 0.0000 0.0000
balance 0.8896 0.9307 0.9008 0.1424  0.0853 0.1168 0.0000  0.0000 0.0001
bostonhousing4cl 0.7174 0.6561 0.7134 0.3241 0.3972 0.3261 0.0004 0.0000 0.0001
car 0.9311 0.9740 0.9834 0.0793 0.0295 0.0195 0.0002 0.0000 0.0000
ERA 0.1730 0.2420 0.2430 1.6660 1.2813 1.2993 0.0141 0.0052 0.0052
ESL 0.6783 0.7036 0.7131 0.3484 0.3149 0.3053 0.0014 0.0004 0.0003
LEV 0.6020 0.6377 0.6110 0.4330 0.3927 0.4223 0.0021 0.0004 0.0009
machineCPU 0.6699 0.7033 0.6699 0.3589  0.3158 0.3493 0.0058 0.0002 0.0017
qualitative_bankruptcy 0.9960 0.9960 0.9960 0.0040 0.0040 0.0040 0.0000 0.0000 0.0000
SWD 0.5350 0.5807 0.5833 0.5180 04370 0.4380 0.0027 0.0007 0.0003
windsorhousing 0.7857 0.7576 0.7839 0.2143 0.2424 0.2161 0.0062 0.0005 0.0051
wisconsin 0.9678 0.9653 0.9663 0.0322 0.0347 0.0337 0.0000 0.0000 0.0000
Avg: 0.7400 0.7565 0.7583 0.3489 0.3003 0.2996 0.0027 0.0006 0.0012

Table 5
Wilcoxon test applied to the results obtained by Fuzzy k-NN algorithms: FKNN (1), MonFkNN-PM (2) and MonFkNN-AM (3)
Comparison R* R™ Hypothesis (« = 0.1) p-Value
Accuracy:
(2) vs. (1) 49.0 17.0 Not Rejected 0.1748
(3) vs. (1) 61.5 16.5 Rejected 0.0847
MAE:
(2) vs. (1) 51.0 15.0 Not Rejected 0.1230
(3) vs. (1) 57.0 9.0 Rejected 0.0322
NMI:
(2) vs. (1) 76.5 1.50 Rejected 0.0012
(3) vs. (1) 72.5 5.50 Rejected 0.0059
Table 6
Results in terms of Accuracy achieved by the tested algorithms.
MonFkNN-PM MkKNN OSDL OLM MonMLP MID RDMT PMDT
artiset 0.9309 0.9199 0.1952 0.7948 0.9463 0.7237 0.8749 0.8539
balance 0.9307 0.8624 0.6352 0.8320 0.9131 0.7808 0.7216 0.7792
bostonhousing4cl 0.6561 0.6126 0.2787 0.5277 0.3979 0.6739 0.6304 0.6739
car 0.9740 0.9711 0.9549 0.9543 0.8474 0.8027 0.7297 0.9682
ERA 0.2420 0.1990 0.2320 0.1690 0.2380 0.2760 0.2390 0.2430
ESL 0.7036 0.6332 0.6721 0.5738 0.7234 0.6414 0.5635 0.6598
LEV 0.6377 0.4630 0.6400 0.4250 0.6167 0.6070 0.5210 0.6370
machineCPU 0.7033 0.6890 0.2919 0.6746 0.6730 0.6220 0.6555 0.6507
qualitative_bankruptcy 0.9960 0.9960 0.9160 0.9800 0.6427 0.9840 0.9840 0.9920
SWD 0.5807 0.5200 0.5840 0.4160 0.5063 0.5540 0.5180 0.5830
windsorhousing 0.7576 0.5861 0.4927 0.7564 0.7790 0.8205 0.8022 0.7564
wisconsin 0.9653 0.9649 0.9590 0.8873 0.8604 0.9517 0.9502 0.9561
Avg: 0.7565 0.7014 0.5710 0.6659 0.6787 0.7031 0.6825 0.7294

Table 7
Holm test applied to the Accuracy results among the tested algorithms.

Control Method: MonFkNN-PM (2.04)

i Algorithm (Rank) Z p-Value Hypothesis (o« = 0.05)
7 OLM (6.13) 4.083 0.00004 Rejected

6 OSDL (5.42) 3.375 0.00073 Rejected

5 RDMT (5.38) 3.333 0.00085 Rejected

4 MonMLP (4.67) 2.625 0.00866 Rejected

3 MID (4.42) 2.375 0.01754 Rejected

2 MKNN (4.21) 2.167 0.03026 Rejected

1 PMDT (3.75) 1.708 0.08757 Not Rejected

accuracy. In order to save space and avoid plotting 7 heat-maps for sector means the statistical superiority of MonFkNN-PM over the

each metric, we have only included PMDT, as it is the best and compared method, the rope sector is the statistical equivalency
most recent algorithm among the monotonic decision trees [34]. and the left side indicates the superiority of the other algorithm.
As mentioned before, the position of the majority of the distribu- These heat-maps clearly indicate the significant superiority of

tion in these maps determines the decision of the test: the right MonFkNN-PM over all methods except PMDT as the computed dis-

113



S. Gonzilez, S. Garcia, Sheng-Tun Li et al.

tributions are always located in the right region. The most signifi-
cant outcome is the comparison with OLM (Fig. 1c), even though it
does not obtain the worst results. For MkNN (Fig. 1a) and and OSDL
(Fig. 1b), there are a few cases where their performances are stat-
ically equivalent to MonFkNN-PM. On the contrary, MonMLP is sig-
nificantly more accurate in a few data-sets, although the
MonFkNN-PM is clearly superior (Fig. 1d). Considering the compar-
ison with PMDT (Fig. 1d), the majority of the distribution is located
in the statistical equivalence. However, it is still shifted to the right
with a large number of points, indicating a better performance for
MonFkNN-PM. Almost none support the performance of PMDT.

Error costs could be essential for monotonic ranking problems.
Table 8 shows the error in the form of MAE made by the evaluated
classifiers. As was the case in accuracy performance, MonFkNN-PM
clearly performs better than the rest, with the smallest error on
average and for 4 of the data-sets. It also achieves similar results
in problems where other algorithms come out on top, such as
LEV or wisconsin.

Table 9 shows the ranking of the methods and p-values
obtained with the post hoc test for the MAE comparison. As in
the accuracy tests, our proposal is once again ranked as the best
method with a solid statistical significance as compared to almost
all algorithms. PMDT still achieves similar results to MonFkNN-PM
with a p-value that does not reject the hypothesis for o = 0.05, but
does for oo = 0.1. In this case, the p-value of PMDT is smaller and its
rank difference with our proposal is larger than that obtained in
terms of accuracy.

Fig. 2 shows the Bayesian Sign test on pairwise comparison with
our method according to MAE. As shown by the distributions in the
right part of the majority of the figures, MonFkNN-PM is definitely
better when considering error costs. This is more statistically sig-
nificant as compared to OLM (Fig. 2¢), where nearly the entire dis-
tribution is in the right region. MonFkNN, MkNN and OSDL share

rope

100

rope

100

(d) vs. MonMLP
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some good results, but these last two are not statistically better
than the former in any circumstance as seen in Fig. 2a and
Fig. 2b. As we have also seen in the accuracy comparison, Fig. 2d
points out the statistical superiority of MonFkNN-PM over
MonMLP, but the latter has a better MAE in some cases. Given
Fig. 2e, MonFkKNN-PM and PMDT can be considered to be statisti-
cally the same in terms of error costs. However, MonFkNN-PM per-
forms better statistically than PMDT in an important part of the
benchmark, as a fragment of the distribution is located on the right
side and almost none are found on the left.

5.3. Comparison with the state-of-the-art: monotonicity

Now we will analyze the performance according to the mono-
tonicity of our proposal compared to methods chosen from the
state-of-the-art. Table 10 shows the NMI results achieved by the
selected models. In this case, the competition is close. Monotonic
decision trees (MID, RDMT, and PMDT) clearly obtain less mono-
tonic predictions. MID has the worst behavior considering only
monotonicity and PMDT is the most monotonic decision tree clas-
sifier. OLM and MonMLP are slightly better than PMDT, but they
still do not come close to the best methods. MonFkNN-PM, MkNN,
and OSDL perform similarly. MonFkNN-PM and OSDL are slightly
better on average. It is worth mentioning the existence of simpler
data-sets, such as artiset and wisconsin, in relation to monotonicity
as almost every algorithm accomplishes the same good results. The
best results for the more complex sets are shared by the different
methods.

Table 11 summarizes the comparison according to monotonic-
ity with the Friedman statistical test results. In this case, MonFk-
NN-PM is barely selected as the control method. For half of the
benchmark (OSDL, MkNN, MonMLP and OLM), the hypotheses of
equivalence are not rejected for oo = 0.05. On the contrary, all

rope
100

(e) vs. PMDT

Fig. 1. Bayesian Sign Test heat-map for MonFkKNN-PM vs. the rest in terms of accuracy.
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Table 8
Results in terms of MAE achieved by the tested algorithms.
MonFkNN-PM MKNN OSDL OLM MonMLP MID RDMT PMDT
artiset 0.0691 0.0771 1.6897 0.2082 0.0537 0.3123 0.1251 0.1471
balance 0.0853 0.1504 0.4912 0.1920 0.0992 0.3360 0.3840 0.2560
bostonhousing4cl 0.3972 0.4901 0.9368 0.5988 0.7655 0.3893 0.4249 0.3676
car 0.0295 0.0359 0.0475 0.0538 0.1599 0.2506 0.3079 0.0365
ERA 1.2813 1.4270 1.2850 2.1500 1.2317 1.2970 1.3060 1.2870
ESL 0.3149 0.3791 0.3607 0.4734 0.2910 0.3934 0.4918 0.3750
LEV 0.3927 0.5740 0.3920 0.6680 0.4170 0.4290 0.5430 0.3940
machineCPU 0.3158 0.3301 0.9043 0.3589 0.3413 0.4211 0.3589 0.3732
qualitative_bankruptcy 0.0040 0.0040 0.0840 0.0200 0.3573 0.0160 0.0160 0.0080
SWD 0.4370 0.4840 0.4370 0.7630 0.5167 0.4750 0.4990 0.4340
windsorhousing 0.2424 0.4304 0.5073 0.2436 0.2210 0.1795 0.1978 0.2436
wisconsin 0.0347 0.0337 0.0410 0.1127 0.1396 0.0483 0.0498 0.0439
Avg: 0.3003 0.3680 0.5980 0.4869 0.3828 0.3790 0.3920 0.3305

Table 9
Holm test applied to the MAE results among the tested algorithms

Control Method: MonFkNN-PM (2.00)

i Algorithm (Rank) Z p-Value Hypothesis (o = 0.05)
7 OLM (6.17) 4.167 0.00003 Rejected

6 RDMT (5.54) 3.542 0.00040 Rejected

5 OSDL (5.29) 3.292 0.00099 Rejected

4 MID (4.96) 2.958 0.00309 Rejected

3 MonMLP (4.25) 2.250 0.02445 Rejected

2 MEKNN (4.04) 2.042 0.04119 Rejected

1 PMDT (3.75) 1.750 0.08011 Not Rejected

rope rope rope
x 100 x 100 x 100

%

(d) vs. MonMLP (e) vs. PMDT

Fig. 2. Bayesian Sign Test heat-map for MonFkNN-PM vs. the rest in terms of MAE.
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Table 10
Results in terms of NMI achieved by the tested algorithms.
MonFkNN-PM MkKNN OSDL OLM MonMLP MID RDMT PMDT

artiset 0.0000 0.0000 0.0000 0.0000 0.0000 0.0039 0.0000 0.0001
balance 0.0000 0.0001 0.0006 0.0000 0.0000 0.0017 0.0029 0.0010
bostonhousing4cl 0.0000 0.0000 0.0000 0.0003 0.0007 0.0022 0.0010 0.0010
car 0.0000 0.0000 0.0000 0.0000 0.0001 0.0046 0.0002 0.0000
ERA 0.0052 0.0056 0.0049 0.0063 0.0026 0.0082 0.0085 0.0058
ESL 0.0004 0.0012 0.0006 0.0025 0.0003 0.0021 0.0066 0.0032
LEV 0.0004 0.0010 0.0004 0.0043 0.0008 0.0018 0.0086 0.0006
machineCPU 0.0002 0.0000 0.0000 0.0014 0.0001 0.0037 0.0047 0.0028
qualitative_bankruptcy 0.0000 0.0000 0.0003 0.0000 0.0079 0.0002 0.0000 0.0000
SWD 0.0007 0.0005 0.0009 0.0015 0.0004 0.0020 0.0000 0.0010
windsorhousing 0.0005 0.0000 0.0000 0.0000 0.0000 0.0030 0.0002 0.0059
wisconsin 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000
Avg: 0.0006 0.0007 0.0006 0.0014 0.0011 0.0028 0.0027 0.0018

Table 11

Holm test applied to the NMI results among the tested algorithms.

Control Method: MonFkNN-PM (2.9583)

i Algorithm (Rank) z p-Value Hypothesis (o = 0.05)
7 MID (7.00) 4.042 0.00005 Rejected
6 RDMT (6.33) 3.375 0.00074 Rejected
5 PMDT (5.75) 2.792 0.00524 Rejected
4 OLM (4.13) 1.167 0.24335 Not Rejected
3 MonMLP (3.63) 0.667 0.50499 Not Rejected
2 MENN (3.13) 0.167 0.86763 Not Rejected
1 OSDL (3.08) 0.125 0.90052 Not Rejected

monotonic decision trees are statistically worse than MonFkNN-
PM by a wide margin. The best monotonic decision tree (PMDT)
does not reach good performance in terms of monotonicity of the
best algorithms. This is probably due to the greedy construction
of monotonic constraints into the tree.

In Fig. 3, the statistical comparisons of the NMI results are rep-
resented with Bayesian Sign Test heat-maps. These plots show
similar conclusions extracted from the previous table with NMI
results. MonFkNN is significantly superior to PMDT (Fig. 3e). In
Fig. 3c, the right-shifted distribution points out that MonFkNN-
PM is better than OLM. Although they share a part of the distribu-
tion in the rope section, OLM has too few individuals in its left sec-
tion (Fig. 3c). When compared with MkNN (Fig. 3a), OSDL (Fig. 3b)
and and MonMLP (Fig. 3c), big parts of the distributions are located
in all the decision sectors. Even though their distributions are
slightly shifted to the right (Fig. 3a and Fig. 3b), the core of the dis-
tributions are found in the rope. Then, we can roughly assume sta-
tistical equivalence.

In summary, MonFkNN-PM obtains significantly better results
in terms of accuracy and error cost than almost all of the consid-
ered methods. Our approach also achieves the most monotonic
predictions alongside OSDL. MonFkNN-PM is slightly and non-
statistically better than PMDT in terms of accuracy and error costs,
but the former overwhelmingly outperforms PMDT considering
monotonicity. Therefore, MonFkNN-PM is an overall better
method.

The main reason behind the remarkable performance of
MonFkNN is its capability of not sacrificing any objective of mono-
tonic classification. Usually, some classifiers, such as OSDL, sacri-
fice accurate predictions in order to accomplish monotonic
models. The results of OSDL for artiset and bostonhousing and the
outcome of MkNN for balance are good examples of this statement.
On the other hand, other methods, such as monotonic decision
trees and particularly PMDT, achieve accurate predictions but
break the monotonic constraints in their predictions more fre-
quently. However, the MonFkNN procedure of training class mem-
bership extraction is designed to mitigate the influence of non-
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monotonic noisy data, without the need to aggressively modify
the training data as done by relabeling in MkNN. The MonFkNN
prediction stage offers the flexibility of choice for most accurate
or monotonic predictions. Additionally, MonFkNN includes tech-
nologies that are more appropriate for ordinal and monotonic clas-
sification, such as median as a final class.

5.4. On the robustness of Monotonic Fuzzy k-NN to monotonic noise

With this last empirical study, we aim to test the robustness of
MonFkNN-PM to the presence of monotonic violations or noise in
the training sets as compared to MkNN. Thus, we have introduced
different amounts of noisy instances in the training partitions of
the artificial data-set Artiset. Then, the performance of MonFkNN-
PM and MkNN is measured and compared in terms of accuracy,
MAE and NMI while the noise ratio increases.

In order to increase the impact of class noise, we have randomly
under-sampled every training set to 25% of their instances. Then, a
subset of randomly selected instances is converted to noise by
changing their class labels. This label modification is done accord-
ing to the adjacent classes of the implicated instance. Specifically, a
large number of neighbors are computed for the future noisy
example x;. 15 nearest neighbors were the value used in this exper-
iment. Next, the neighbors with the same class as x; are removed
and a new class is randomly obtained in relation to the presence
ratio of other classes in its filtered neighbors. This ensures a certain
degree of proximity between the changed sample and its new
class.

This process is executed following the same cross-validation
scheme mentioned earlier. Since the noise generation has a ran-
dom component, the experiment was repeated three times with
different seeds, averaging the obtained results. After the noise gen-
eration and before the execution of MkNN, a relabeling technique
[16] was applied to the resultant data-sets.

Fig. 4 shows the impact of increasing noise on the number of
monotonic violations in Artiset training sets. This effect is mea-
sured by the Non-Monotonic Index (NMI) over the resulting train-
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Fig. 3. Bayesian Sign Test heat-map for MonFkKNN-PM vs. the rest in terms of NMI.
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Fig. 4. Impact of the addition of class noise in Artiset on monotonic violations measured by NMI.

ing samples. As previously mentioned, class noise significantly
aggravates the monotonicity of the data-sets. The increase in
NMI is directly proportional to the increase in noise as clearly
shown in Fig. 4.

Fig. 5 shows the performance of MonFkNN-PM and MkNN (dar-
ker and lighter lines, respectively) on the basis of precision (5a),
MAE (5b) and NMI (5c¢), with the progression of noise. As expected,
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while the amount of noise grows, the performance of both meth-
ods get worse, that is, their accuracy decreases and errors and
non-monotonic predictions increases. However, there are some
big differences between classifiers.

Firstly, the behavior of MonFkNN-PM facing noise is clearly bet-
ter than that of MkNN in every tested aspect. The black lines are
always located above the lighter ones in Fig. 5a, which indicates
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Fig. 5. Comparison of MonFkNN-PM and MkNN performance on Artiset data-set with the different amounts of noisy samples.

greater accuracy, and under them in Figs. 5b and 5¢, meaning bet-
ter MAE and NMI for MonFkNN-PM. Usually, the distance between
both methods is large, with the exception of the NMI results
obtained for the smallest values of noise. In addition, while the
noise ratio increases, their differences also increase.

The slope of deterioration of MonFkNN-PM performance
remains stable, even being reduced in some cases, while the MKNN
slope becomes steeper as the amount of noise increases. This last
event can be clearly seen when the noise ratio reaches the 25% of
the instances, where the decline of MkNN is magnified, especially
in terms of monotonicity (Fig. 5¢). On the other hand, the NMI
results of MonFkNN-PM seem to increase at a slower rate by that
point. This exhibits the great robustness of MonFkNN-PM to mono-
tonic violations.

Next, the behavior of both methods in relation to noise are ana-
lyzed using a graphical example. Fig. 6 is a graphical representation
of the predictions and classification boundaries inferred by MkNN
and MonFkNN-PM for Artiset with 35% noise. Fig. 6a represents the
perfect class surfaces defined by Artiset generation expression (see
Section 4) and and the training samples. In Fig. 6a, black points rep-
resent the noise artificially introduced into the data-set. In Figs. 6b
and 6¢, the black examples are wrongly classified instances, while
the right predictions are colored in white.

The first clear difference between the MKNN and MonFkNN-PM
performances shown in Figs. 6b and 6c is the amount of black dots.
MonFkNN has far fewer classification mistakes than MkNN. Addi-

118

tionally, MonFkNN-PM is better at conserving the right regions
for the classes, while MKNN can lose nearly all the entire sections
of some of them. The regions in lighter and brighter yellow are
shrunk by MkNN in favor of their adjacent classes.

With these experiments, MonFkNN has shown strong robust-
ness to monotonic noise preserving the decision boundaries as pre-
cisely as possible, and hence, has performed well in terms of
precision, error costs and monotonicity. This robustness is the
result of all the procedures included in MonFkNN, but it may also
be mainly due to the reduction of the impact of non-monotonic
noise during the extraction of the class memberships of the train-
ing instances.

6. Conclusion

In this paper, we proposed a Fuzzy k-Nearest Neighbors model
for classification with monotonic constraints. The final class label
obtained from membership functions has been revised to respect
these constraints. MonFkNN has been designed with different
mechanisms to reduce the influence of monotonic violations. As
a demonstration of its flexibility, two different model configura-
tions with different behaviors have been presented.

Over the course of the experimental analyses, the great poten-
tial of both proposed versions, namely Pure and Approximate
Monotonic Fuzzy k-NN, has been shown in relation to monotonic-
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Fig. 6. Classification boundaries inferred by MkNN and MonFkNN-PM from the plotted Artiset with 35% noisy instances. Black points represent the instances wrongly
classified by the decision surfaces shown.
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