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Spiking Neural Networks (SNNs) are being explored to emulate the astounding capabilities of human
brain that can learn to perform robust and efficient computations with noisy spikes. A variety of spiking
neuron models have been proposed to resemble biological neuronal functionalities. The simplest and
most commonly used among these SNNs are leaky-integrate-and-fire (LIF), which contain a leak path
in their membrane potential and integrate-and-fire (IF), where the leakage path is absent. While the
LIF models have been argued as more bio-plausible, a comparative analysis between models with and
without leak from a purely computational point of view demands attention, which we try to address
in this paper. Our results reveal that LIF model provides improved robustness and better generalization
compared to IF. Frequency domain analysis demonstrates that leak aids in eliminating high-frequency
components from the input, thus enhancing noise-robustness of SNNs. Additionally, we compare the
sparsity of computation between these models. In general, for the same input, the LIF model would be
expected to achieve higher sparsity compared to IF due to the layer-wise decay of spikes caused by mem-
brane potential leak with time. However, contrary to this expectation, we observe that leak decreases the
sparsity of computation. Therefore, there exists a trade-off between robustness and energy-efficiency in
SNNs which can be optimized through suitable choice of amount of leak in the models.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Over the past few years, the advancements of deep artificial
neural networks (ANNs) have led to remarkable success in various
cognitive tasks (e:g., vision, language and behavior). In some cases,
neural networks have outperformed the conventional algorithms
and achieved human-level performance [1,2]. However, recent
ANNs are extremely compute-intensive [3] and often suffer from
severe accuracy degradation if the testing data is corrupted with
noise [4], which was unseen during training. On the other hand,
human brain can reliably learn and compute intricate cognitive
tasks with only a few watts of power budget. Inspired by this,
Spiking Neural Networks (SNNs) have been explored recently
towards realizing robust and energy-efficient machine intelligence
taking cues from neuroscience experiments [5].

SNNs are categorized as the new generation neural networks [6]
based on their neuronal functionalities. A spiking neuron inte-
grates the inputs over time and fires a spike-output whenever
the membrane potential exceeds a threshold. A variety of spiking
neuron models largely resemble biological neuronal mechanisms,
which transmit information through discrete spatio-temporal
events (or spikes). These spiking neuron models can be character-
ized by their internal state called the membrane potential. There
exists a range of neuron models which vary in model complexity
and degree of capacity to emulate biological neuronal behavior
[7–9]. Among them, the Hodgkin–Huxley model [10] lies at the
high end of the complexity spectrum, which can capture the inter-
relation between various biophysical observables. However, for
SNN architectures comprising of a large number of neurons, it
becomes challenging to find the right set of parameters for such
complex models. Additionally, the computational power required
to simulate sophisticated neural models with multiple differential
equations (e:g., Hodgkin–Huxley [10], Izhikevich [11]) also
increase greatly [12]. Because of these reasons, there is a lack of
understanding of how each of the factors determining the biologi-
cal neuronal response can be effectively used in learning. On the
other hand, the simplified and computationally compact leaky-
integrate-and-fire (LIF) model provides a suitable compromise
between complexity and analytical tractability when implemented
for large neural networks. In this context, Teeter et al. [12] report
various important aspects of using LIF neurons in computational
models including satisfactory level of biologically realistic behav-
ior, linearity of the dynamical equations and ease of interpretabil-
ity. In addition to model complexity, another aspect of choosing LIF
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models is the availability of learning algorithms for large scale
SNNs. Several recent works [13–15] have successfully imple-
mented surrogate gradient methods using LIF models for training
deep SNN. However, training multi-layer SNNs using the complex
neuron models (e:g., Hodgkin–Huxley [10], Izhikevich [11])
remains a challenge till date. It is difficult to investigate the effect
of leak if we cannot train models adequately and figure out the role
played by the leak parameter. Hence, in this work, we focus on
computational models for spiking neurons which either use a
Leaky Integrate and Fire (LIF) model with a built-in leaky behavior
in the membrane potential, or the simpler Integrate and Fire (IF)
with no leak in the membrane potential [16]. Reference [17] pro-
posed a temporal coding scheme based on spike-timing of neurons
using IF neurons to avoid the problem of the non-differentiability
of spike activation function. Although it achieved competitive per-
formance on MNIST, custom constraints on synaptic weights and a
gradient normalization strategy had to be adopted to overcome the
problems of dead neuron and gradient explosion, respectively.
Meanwhile, IF neuron based time-to-first-spike coding scheme
was proposed in [18] to obtain satisfactory results on MNIST. How-
ever, these methods focused on shallow networks consisting of lin-
ear layers only. Zhang et al. [19] introduced Rectified Linear
Postsynaptic Potential function (ReL-PSP) as a new IF neuron
model to overcome the challenges of training deep SNNs. The
ReL-PSP based model achieved state-of-the-art performance on
MNIST using deep convolutional SNNs. Moreover, the researchers
in [19] were able to obtain high energy-efficiency due to sparsity
of spikes.

The IF and LIF models differ in terms of temporal model dynam-
ics of the membrane potential, for the IF model, this potential
maintains a steady state unless new inputs are received, whereas
for the LIF model, at each timestep, the potential decays at a certain
rate. As a result, some component of input decays out over time,
however it is pivotal to investigate the consequences of such mem-
brane potential decay with respect to model performance in classi-
fication under noisy conditions and energy-efficient computation.
Since biological neuron models have been reported to contain leak
(e:g., sodium ion-channel leak [20]), it would be important to
quantitatively analyze the advantages and disadvantages of using
leaky behavior. Furthermore, the choice of LIF model introduces
minimal risk of obscuring important synaptic effects and provides
a good basis for comparison as it is widely used as a standard neu-
ral model [21].

To that end, we focus on two aspects of the leak effect on LIF
SNN models: robustness and spiking sparsity. Ideally, the neural
network models are expected to predict reliable outcomes for
unseen or even noisy data under sparse spiking events. In addition,
compared to ANNs, the main advantage of SNNs is the energy-
efficient event-based computing capability, in which the synaptic
operations occur only when spike-inputs arrive. To that effect,
the computational efficiency of SNNs considerably improves as
spike signals become sparser for specialized SNN hardware plat-
forms such as TrueNorth [22] and Loihi [23]. Keeping these two
key performance metrics in mind (namely robustness and spike
signal sparsity), in this paper, we present a comprehensive and
comparative analysis between models with and without leak to
delve deeper into the role that leak plays in learning. The main con-
tributions of this work are-

� A theoretical analysis of the first-order phenomenological LIF
neuron model is introduced to investigate its low-pass filtering
effect. As a step toward this goal, from frequency domain anal-
yses, we show that the presence of leak helps to cut-off some of
the input components beyond a certain frequency, thereby aid-
ing the networks to predict more robust outcomes for noisy
spike-inputs.
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� We examine the effect of leak on computational requirements
in multi-layered SNNs. Compared to SNNs with IF model, the
ones with LIF model converges with decreased sparsity of spike
signals when trained with surrogate-gradient based backpropa-
gation, resulting in reduced computational efficiency.
� We conduct experiments to validate the robustness of multi-
layered SNNs with IF and LIF neuron models using popular
vision datasets including SVHN and CIFAR-10. Furthermore,
we analyze the improved performance of LIF models by investi-
gating the frequency spectrum of spikes and how well the net-
work generalizes to previously unseen data.

2. Spiking Neural Network fundamentals

2.1. Spiking neuron model

The spiking neurons (generally modeled as IF or LIF) are funda-
mental units in SNNs. The sub-threshold dynamics of an LIF neuron
is governed by

sm
dU
dt
¼ �ðU � UrestÞ þ RI; U 6 Vth ð1Þ

where U is the membrane potential, I denotes the input current that
represents the weighted summation of spike-inputs, sm indicates
the time constant for membrane potential decay, R represents
membrane leakage path resistance and Urest is resting potential.
Fig. 1 depicts the dynamics of LIF neuron and an equivalent circuit
model. The input current is accumulated in the membrane potential
that decays exponentially over time. The degree of exponential
decay is determined by the membrane time constant, sm ¼ RC,
where R represents resistance of membrane leakage path and C is
the membrane capacitance. When the membrane potential exceeds
the firing threshold (Vth), the neuron is triggered to emit an output-
spike and resets the membrane potential to the resting state. The
spike-output can be represented as

O½t� ¼ 1; if U½t� > Vth

0; otherwise

�
ð2Þ

where O½t� and U½t� denote the spike-output and the membrane
potential, respectively, at time instant t. Again, the subthreshold
dynamics of an IF neuron can be modeled as

C
dU
dt
¼ I; U 6 Vth ð3Þ

Note, unlike the LIF case, the IF neuron does not contain any
leakage path, so, the potential accumulates with each new incom-
ing spike in a stair-case fashion without decay till it reaches the
threshold. Upon reaching Vth, the potential is reset and accumula-
tion begins a new cycle.

From a electrical circuit perspective, the neuronal dynamics in
Eq. (1) can be represented by an equivalent RC circuit model [24]
as illustrated in Fig. 1(c). The parallel RC branch acts as a low-
pass filter [25], which has the membrane time constant (sm) equal
to RC. The analysis of neuronal responses with respect to various
frequency components stimulates the following discussion in the
next subsection.

2.2. Frequency domain analyses

In this subsection, the response of an LIF neuron model is ana-
lyzed in relation to the membrane time constant (sm). We investi-
gate the role of leaks in filtering out some of the signal components
in the high-frequency range when driven by white Gaussian noise.
In order to quantify the low-pass filtering effect, we employ the
coherence function, CðxÞ which is a commonly used metric in sig-
nal processing [26] to estimate the power transfer from the input



Fig. 1. An LIF neuron, (a) a schematic connection between three pre-neurons to one post-neuron, (b) temporal dynamics of membrane potential in the post-neuron, (c)
equivalent circuit model of the LIF neuron.

Fig. 2. Illustration of frequency response for IF and LIF neuron models. The
horizontal and vertical axes represent the frequency components and coherence
function, respectively.
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to the output. When the input to a system is sðtÞ and the corre-
sponding output is xðtÞ, the coherence between them is defined as

Cx;sðxÞ ¼ jSx;sðxÞj2
Sx;xðxÞSs;sðxÞ ; ð4Þ

where Sx;sðxÞ is the cross-spectrum of output (x) with input (s),
Sx;xðxÞ and Ss;sðxÞ are the autopower spectrum of xðtÞ and sðtÞ,
respectively. To study the response of the neuron model described
by Eq. (1), we measure the coherence as a function of frequency.
We model the inputs to the neuron as white Gaussian noise current
and derive the corresponding coherence between the noise input
and the output spike train. The resulting coherence function
Cx;sðxÞ is given as

Cx;sðxÞ ¼ 2Dst

D
r0x2

1þx2

Dix�1
l�Vthffiffiffi

D
p

� �
� eDDix�1

l�Urestffiffiffi
D
p

� ���� ���2
Dix

l�Vthffiffiffi
D
p

� ���� ���2 � e2D Dix
l�Urestffiffiffi

D
p

� ���� ���2 ; ð5Þ

where Dst is the intensity of the white noise stimulus, D is total
noise intensity (for our case D=Dst), r0 is the output firing rate,
DðxÞ is a parabolic cylinder function, l is a parameter denoting
DC part of the input (defined in appendix Section A.1) and

D ¼ U2
rest�V2

thþ2lðVth�UrestÞ
4D . The detailed derivation of Eq. (5) starting with

Eqn. 1 is provided in the appendix Section A.
To analyze the frequency responses of the neuron model, the

coherence functions of the IF and the LIF models with high and
low leak cases in relation to frequency (x) are plotted in Fig. 2. This
figure shows that the IF model (green) transmits all input compo-
nents to the outputs across the entire frequency spectrum. On the
other hand, for LIF models (red and blue), the coherence function
decreases as the frequency increases, thereby cutting-off the
high-frequency components propagating to the output. Hence,
contrary to the IF model, the LIF model can negate the noise input
components beyond a certain frequency limit. Similar low-pass fil-
tering of information for LIF neurons has been reported in [25,27].
The authors in [28] also discussed similar characteristics of LIF
neurons from a neuroscience perspective. Drawing inspirations
from such phenomenon, our next goal is to explore whether the
low-pass filtering effect can enable multi-layered SNNs with LIF
neurons to be more robust against noisy inputs. The following sub-
sections focus first on the training methodology adopted in this
work, followed by the noisy input generation methods and corre-
sponding experiments.

2.3. Gradient descent learning in SNNs

The gradient-based method, namely backpropagation (BP)
learning [29], is a widely employed method for training traditional
85
deep ANNs. While ANN neuron models with continuous functions
(such as sigmoid; tanh or ReLU) are compatible with the gradient-
based learning, it has been a challenge to directly train SNNs with
BP method in their native form. This is due to the spike-output
being binary-valued (i:e., zero or one), which renders the spike gen-
eration function non-differentiable and discontinuous. To get
around this issue, standard BP has been adapted for the spike-
based learning domain which we refer to as ‘spike-based back-
propagation’. The spike-based BP method overcomes the discontin-
uous spiking functionality by approximately estimating the
surrogate gradient of spike generation function. Several surrogate
gradient methods have been introduced in the literature
[13,14,30]. In this work, we employ the LIF neuronal surrogate gra-
dient function that accounts for the leaky behavior as proposed in
[15].

The training procedure is composed of two phases (e:g., forward
and backward). In the forward phase, the hidden layer neurons
accumulate the weighted sum of spike-inputs in the membrane
potential. When this potential exceeds the threshold, the neuron
fires a spike-output and resets the potential to the resting state
(zero). Otherwise, membrane potential decays exponentially. The
final layer neurons do not generate spike output and decay over
time, accumulating a weighted sum of spike-inputs. At the last
time step, the final prediction outcomes are estimated by dividing
the final layer membrane potential (UL½T�) by the total number of
time-steps (T). Then, the final errors are evaluated by comparing
the final prediction outcomes with the ground truth (label). The
loss function (Loss) is obtained by computing the summation of
squared error as shown below,
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Loss ¼ 1
2

UL½T�
T
� label

� �2

;
@Ol½t�
@Ul½t� ¼

1
Vth þ � ðOl½t� > 0Þ; ð6Þ

where UL ½T�
T is the final prediction outcome. In the backward phase,

the final errors are propagated backward while unrolling the net-
work in time using the surrogate gradient method. This procedure
is often regarded as Backpropagation Through Time (BPTT) [31].
The surrogate gradient of LIF neuronal function is computed by
combining the straight through estimation [32] and leak correc-
tional term (�) as given by the second equation in Eq. (6). Here,
the straight-through estimation (i:e:; 1

Vth
) calculates the derivative

of IF neuronal function and � compensates the leaky effect of the
membrane potential. Finally, the network parameters are updated
based on the partial derivatives of the loss with respect to weights
for all discrete time steps. The trained SNNs can incorporate tempo-
ral and leak statistics from direct spike-inputs over time. The
pseudo-code of the spike-based BP learning is given in Algorithm 1.

Algorithm 1. Procedure of spike-based backpropagation
learning for an iteration.

Input: pixel-based inputs (inputs), total number of time steps
(#timesteps), number of layers (L), weights (W), membrane
potential (U), membrane time constant (sm), firing
threshold (Vth)

Initialize: Ul½t� ¼ 0;8l ¼ 1; . . . ; L
// Forward Phase
for t  1 to #timesteps do

// generate Poisson spike-inputs of a mini-batch data
O1½t� ¼ PoissonðinputsÞ;
for l 2 to L� 1 do
// membrane potential integrates weighted sum of spike-

inputs
Ul½t� ¼ Ul½t � 1� þWlOl�1½t�
if Ul½t� > Vth then
// if membrane potential exceeds Vth, a neuron fires a

spike
Ol½t� ¼ 1;Ul½t� ¼ 0

else
// else, membrane potential decays exponentially

Ol½t� ¼ 0;Ul½t� ¼ e�
1
sm � Ul½t�

end if
end for
// final layer neuron does not fire

UL½t� ¼ e�
1
sm � UL½t � 1� þWLOL�1½t�

end for
// Backward Phase
for t  #timesteps to 1 do

for l L� 1 to 1 do
// evaluate partial derivatives of loss with respect to

weight by unrolling the network over time

MWl½t� ¼ @Loss
@Ol ½t�

@Ol ½t�
@Ul ½t�

@Ul ½t�
@Wl ½t�

end for
end for
3. Poisson spike generation under noisy environments

In Section 4.2, the spike-inputs with external random noise are
used for experimentally evaluating the noise robustness (i:e., the
capability of maintaining a certain prediction accuracy under
stochastic perturbations) of multi-layered SNNs. Keeping that goal
in mind, here we explain the noisy spike-input generation methods
used in our work. Specifically, two different sources of random
86
noise are considered, namely Gaussian noise and Impulse noise
[4]. The choice of these noise sources is mainly inspired from com-
mon noise sources that corrupt digital images. During the data
acquisition and transmission phase, image quality often deterio-
rates due to different types of noise and two widely used noise
models are Gaussian and Impulse noise [33]. In our work, we train
the models with clean (non-noisy) images and test the robustness
of LIF and IF models against images which may get noise-corrupted
in a real-life scenario, where clean inputs may not always be pre-
sented to the neural network. In general, Gaussian noise arises in
digital images during acquisition. The variability in the level of illu-
mination and fluctuations in the temperature of the sensor induces
some inherent noise in it. Moreover, the electronic circuits inside
the sensor may also inject their own circuit noise [34]. This Gaus-
sian noise is often modeled as the most frequently occurring noise
in image noise modeling [35], so we also use this as a noise model
to investigate our model robustness. Other common noise source is
impulse noise which can be caused by analog-to-digital converter
errors, bit errors in transmission, etc. [35,36].

Algorithm 2. Poisson spike generation scheme under noise

Input: pixel-based inputs (inputs), total number of time steps
(#timesteps), external random noise (n), uniform random
number (X)

Output: spike-based inputs (O1½t�)
for t  1 to #timesteps do

if Scenario1 then
// External noise (n) is added to input pixel
inputsc = inputsþ n
// If noisy input (inputsc) is greater than uniform random

number, a spike-input (O1½t�) is generated
if inputsc > X then
O1½t� ¼ 1

else
O1½t� ¼ 0

end if
else if Scenario2 then
// External noise (n) is added to input channel
if inputs > X then
O1½t� ¼ 1þ n

else
O1½t� ¼ n

end if
end if

end for

We would also like to mention that noisy input currents for LIF
neurons are often modeled as Gaussian white noise sources in lit-
erature [37,27]. Again, if we consider image processing literature, it
is quite common Gaussian and impulse noise sources [38]. There-
fore, we consider these two common noise models. For each noise
source under consideration, two noise injection scenarios are
introduced for producing the noisy spike-inputs. Each noisy
spike-input generation procedure is depicted in Algorithm 2. In
our analysis, clean spike-inputs refer to homogeneous Poisson
spikes where spike-firing probability remains constant in the
entire period of input generation. Therefore, inter-spike-intervals
(ISI) of such homogeneous Poisson spikes conform to Poisson
statistics.

For scenario 1, an independent random noise is added to an
image pixel at each time step. The combination of pixel input
and noise is compared with an uniformly distributed random num-
ber to generate Poisson-distributed spike-inputs. Hence, for a given
period of time, the stream of spike-inputs incorporates the noise
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over time. In this case, the firing probability varies at every time
step, which results in inhomogeneous Poisson spikes with ran-
domly varying firing probability every time step. Here, what varies
is the ISI distribution. For scenario 2, an independent random noise
is added (at each time step) to the Poisson spike trains generated
from the original image pixels. The major difference between
two scenarios is whether the random noise is added before or after
comparing with a random number (Poisson spike generation pro-
cess). Note, in scenario 1, spikes are generated as a post-process
of adding noise to image pixels, making the input spike train
strictly binary, but in scenario 2, noise is added directly to the
spikes, so the resultant noisy spikes contain perturbations around
their clean spike values (0 or 1). Since the spikes are generated
from the Poisson process in scenario 2, the ISI distribution remains
identical to that of clean spike-inputs. Instead, the amplitude of
each spike varies. The random noise injection process is performed
in the input layer only.
4. Experiments

4.1. Experimental setup

We examine the robustness of multi-layered SNNs against noisy
spike-inputs on two standard vision benchmarks, namely SVHN
and CIFAR-10, which are composed of color (three-dimensional)
inputs. We experiment with multi-layered SNN models, which
comprise of 32 � 32 color inputs, convolutional (C) layers with
3 � 3 weight kernels, average-pooling (P) layers with fixed 2 � 2
kernel followed by fully-connected (FC) layers. The details of the
chosen SNN models are as follows: model used for CIFAR-10 is
(32 � 32-64C3-64C3-2P-128C3-128C3-2P-256C3-256C3-256C3-2
s-1024FC-10o) and model used for SVHN is (32 � 32-64C3-64C3-
2P-256C3-256C3-256C3-2s-1024FC-10o). We follow the training
protocols as described in [15]. Each network model with different
membrane time constant is independently trained with clean
training data. Note, the membrane time constant is not considered
as a trainable parameter and remains fixed during training and
testing. All network models are trained with mini-batch spike-
based BP for 150 epochs with a batch size of 64, while decreasing

the learning rate at 70th and 100th epoch. After normalizing each
image sample to zero mean and scaling to the range [�1, 1], Pois-
son spike trains are generated for 100 time-steps during training
and testing. The reported results are the average score from three
independently trained networks. We implemented the multi-
layered SNNs using Pytorch deep learning package.
4.2. Robustness against noisy spike-inputs

First, we compare the noise robustness results with different
membrane time constants (e:g; sm ¼ 30;100 and infinity). The LIF
neuron models are associated with relatively smaller membrane
time constants (e:g:; sm = 30 and 100) compared to IF neuron
model with an infinitely large membrane time constant
(e:g:; sm = infinity). Since our goal here is to investigate the effect
of leak (determined as expð�1=smÞ), we vary sm as a hyperpa-
rameter among various models. For the IF case, there is no leak,
so only possible value of membrane time constant is sm = infinity.
On the other hand, leaky models can have a wide range of sm
values. On the lower extreme, we observe from our experiments
that training loss diverges when the chosen membrane time con-
stant is too small (sm < 30). In this case, the spiking activities
decrease severely due to extremely high leak while passing
through the layers, causing convergence issues in multi-layered
SNN training [15]. So, sm ¼ 30 is chosen as a high leak model.
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In addition, we use sm ¼ 100 for a low leak model as an in
between point between IF and high leak cases. The robustness
of each SNN model is measured in terms of the stability of the
classification accuracy against noisy spike-inputs. The perfor-
mances of SNNs are scored across eight severity levels with each
noise type (e:g., Gaussian noise and Impulse noise). The severity
level indicates the strength of input noise.

In both benchmark datasets (CIFAR-10, SVHN), the baseline
testing accuracy is almost the same under different leak param-
eters as presented in the first row of Table 1. Fig. 3 shows the
accuracy results with increasing level of noise severity across
different benchmarks (first row: noisy spike generation scenario
1, second row: noisy spike generation scenario 2). For both the
noisy spike generation scenarios, SNNs with LIF neurons (blue,
red) achieve improved noise robustness whereas the ones with
IF neurons (green) suffer from severe accuracy degradation for
high noise severity levels as displayed in Fig. 3. We would like
to mention here that all network models are trained on clean
spike-inputs, but tested with noisy ones. We adopt such training
and testing scheme for two reasons. Firstly, if both models were
trained with noisy data in addition to clean data, both models
would perform well during testing since the network would be
trained to perform well for noisy inputs as well as clean inputs.
In that case, it would be difficult to distinguish their perfor-
mance and we would not be able to investigate the inherent
robustness that the leaky behavior offers in LIF models compared
to IF ones. Moreover, it would be difficult to decipher whether
the resulting robustness is obtained from data augmentation
using noisy inputs or from LIF model dynamics. Secondly, the
noise that may be present in images during test time is inher-
ently stochastic and thus, it is difficult to account for all different
types of noises by training the model with each class of noise.
Moreover, models trained with one type of noise may not gener-
alize to other noises. Our goal here is not to enhance model
robustness through data augmentation (by incorporating noisy
inputs to training data), rather to explore the robustness that
the model dynamics provides. So, we adopt the ‘train with clean
input, and test with noisy ones’ approach. Similar scheme has
been adopted in [39]. We observe that the models trained with
the highest amount of leak (blue) retain the baseline accuracy to
a greater extent compared to a non-leaky model. The LIF model
with sm = 100 shows relatively higher accuracy degradation
compared to one with sm = 30. However, both models show
improved robustness compared to the IF model. These trends
hold true for all noisy spike-input generation scenarios.

To further compare between leaky and non-leaky spiking mod-
els in presence of noise, we perform an additional experiment. Fol-
lowing the analysis of [17], we train a fully connected network
topology with one hidden layer (784-800-10) on MNIST. Two net-
works are trained with different spike-input cases: the first with
non-noisy spike-inputs and the second with noise-corrupted
spike-inputs. For noise-corrupted spike input generation, we adopt
the noise generation scenario 1 where an independent random
Gaussian noise is added to an image pixel at each time step (de-
tailed descriptions are illustrated in Algorithm 2). After training,
we validate the classification error with non-noisy spike-inputs
and noise-corrupted spike-inputs using the test dataset. Table 2
shows the classification error results for the two different training
schemes where in one case, noise is included during training, and
in the other case, training is performed without noise. The third
row shows the first network result where the network is trained
with non-noisy spike-inputs. Similar to the results obtained using
SVHN and CIFAR10 dataset, the classification errors of LIF model
(e.g., sm = 100 and 30) are smaller than IF model when tested with
noise-corrupted spike-inputs. Note, the networks with LIF models



Fig. 3. Classification accuracy at each level of noise severity. The horizontal and vertical axes present the input noise severity and classification accuracy, respectively. (a,b,c,d)
Results from noisy input generation scenario 1. (e,f,g,h) Results from noisy input generation scenario 2.

Table 1
Comparison between the network models with different leak amounts. The first row corresponds to baseline accuracy. The second and the third rows correspond to the sum-
squared errors averaged over 130–150 epochs for testing and training data, respectively. The fourth and the fifth rows correspond to average spiking activity and the total number
of synaptic operations, respectively.

Dataset CIFAR-10 SVHN

sm 30 100 inf 30 100 inf

Accuracyð%Þ 89.65 90.19 90.30 96.12 96.32 96.32
SSETest 2.93 3.45 3.83 0.72 0.75 0.82
SSETrain 1.88 1.92 2.20 1.26 1.40 1.60
Spikesð%Þ 9.45 5.26 4.94 14.07 12.09 11.85
#SynapticOps 1.59E9 7.92E8 7.18E8 3.99E9 3.88E9 3.79E9

Table 2
Classification error (%) on MNIST.

Train/test scheme Non-noisy test Noise-corrupted test

sm 30 100 inf 30 100 inf

Non-noisy training 3.05 2.91 2.99 3.97 4.00 4.05
Noise-corrupted training 3.41 3.47 3.53 3.31 3.36 3.37

Fig. 4. Histogram of the spectrum of spike trains per image for clean and noisy
(Gaussian noise) inputs with corresponding distribution curves.
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(e.g., sm = 100 and 30) show higher classification error than the one
with IF model when tested with non-noisy spike-inputs, indicating
that for clean test data, IF model performs better. Next, the fourth
row shows the second network result where the network is trained
with noise-corrupted spike-inputs. For this configuration, the net-
work with LIF models show superior test results compared to IF
both for noise-corrupted as well as non-noisy test data. To obtain
a measure of robustness provided by the models when testing data
differs from training data in terms of noise incorporation, we take
the difference between classification error of individual models
when tested with and without noise. We observe that the network
with LIF models (e.g., sm = 100 and 30) show smaller classification
error difference (0.10% and 0.11%) than the one with IF models
(0.16%), which further validates enhanced robustness of LIF models
compared to the IF model (see Table 2).

4.3. Spectrum analysis

To analyze the improved noise robustness of LIF models, we
perform a spectrum analysis of inputs and the corresponding
88
network outputs for both clean and noisy data. In general, the noise
spectrum contains components over a wide frequency band. The
single-sided spectra of input-spike trains (averaged over test sam-
ples) for the clean and the noisy cases are shown in Fig. 4. It can be
observed that the mean spectrum distribution with noisy
spike-inputs remains roughly the same compared to the clean case.
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However, this spectrum of noisy data spreads over a wider band,
resulting in more components in higher frequency bands. These
changes in the spectrum distribution can significantly alter the
spike patterns propagating through the layers compared to the
clean input. As previously explained in Section 2.2, the leaky neu-
ron models only pass inputs with low-frequency components.
Hence, the leaky neuron models can eliminate some of the high-
frequency noise components, thus helping to maintain the baseline
performance. However, the low-frequency noise components pass
through the LIF and IF models in a similar way. Thus, the accuracy
degradation due to such components remains alike for both leaky
and non-leaky neurons.

Next, let us consider the spectrum of the target output neuron
(node corresponding to the ground truth label) in the final layer,
since the changes concerning this output neuron largely determine
the correct or wrong classification. For each image, we measure the
average spectrum of the target output neuron and calculate the
critical frequency up to which the significant power (70%) of the
total spectrum resides. This critical frequency distribution is exam-
ined over all the samples and plotted in Fig. 5(a)–(c). Interestingly,
with an increasing amount of leak, we found that the mean spec-
trum shifts towards the left. We anticipate this shift towards the
lower frequency band is owing to the inherent low-pass filtering
effect of leak. The normalized mean critical frequency components
for the target neuron corresponding to sm = infinity;100 and 30 are
0.345, 0.317 and 0.255 respectively, for the clean testing samples,
while for the noisy inputs (for noise severity level of five), the same
frequency components become 0.350, 0.330 and 0.298, respec-
tively. These outcomes along with Fig. 5(a)–(c) clearly indicate that
frequency components of target neuron’s output response become
higher with noisy spike-inputs compared to the clean input case.
As IF neurons have much wider pass-band, the higher frequency
components are not filtered out as shown in Fig. 5(a), thus making
the network more prone to have noise errors. In contrast, for the
LIF models, most of the high-frequency components are eliminated
through the low-pass filtering effect, as demonstrated in Fig. 5(b)
and (c) which results in maintaining the baseline accuracy.

4.4. Analyses of generalization

In order to ascertain the improved noise robustness from
another perspective, we extend our analysis to generalization.
We hypothesize that leaky neuron models enable SNNs to better
generalize to previously unseen examples, and examine the impact
of leak on generalization. While training multi-layered SNNs over
Fig. 5. Histogram of average normalized critical frequency components of target output n
test data with respect to the ones of training data on (d) CIFAR-10 and (e) SVHN benchma
train and test data, respectively.
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150 epochs, we recorded the sum of squared error (SSE) on the
testing and the training samples to highlight the performance dif-
ferences. As training progresses towards the end, we found that
SNNs with LIF models yield lower testing SSE with the same train-
ing effort and reach lower final testing and training SSE than the
ones with IF models. The second and the third rows of Table 1 pre-
sent the testing and training SSE averaged over 130–150 epochs.
We also analyze the testing SSE attained as a function of the train-
ing SSE. Fig. 5(d,e) shows the testing SSE with respect to the train-
ing SSE for different membrane time constants. We found that at
the same training SSE, LIF models (blue, red) yield lower testing
SSE than IF models (green), hinting towards better generalization.
Notably, the advantage of better generalization is the mitigation of
overfitting in large neural networks [40,41].

4.5. Input activity analysis

While the enhanced robustness achieved through leaky neuron
models is advantageous, it is also pivotal to consider the associated
computations and energy costs of using LIF and IF models. To infer
an output class, SNNs need the spike-inputs to be fed over a num-
ber of times steps, performing event-based synaptic operations
that take place only when spike-inputs arrive. In this respect, the
total number of synaptic operations is typically considered as a
metric for benchmarking the computational costs in neuromorphic
hardware [23,42]. This subsection explores the impact of leaky
neuron models on the spiking sparsity and the number of compu-
tations, two critical factors that directly determine the computa-
tional efficiency of SNNs. In Table 1, the fourth and fifth rows
present the average spike activities and the total synaptic opera-
tions, respectively, for different leak parameters. We found that
the overall spiking activities increase with a higher leak, thereby
resulting in more synaptic computations. An important insight
from here is that, with respect to the degree of leak, there exists
a trade-off between noise robustness and compute requirements.

To investigate the reason behind the increased spiking activities
with higher leak, we measure the Euclidean norm of the weighted
sum of spike-inputs (referred to as ‘ENWSI’ subsequently) over
time for each hidden layer. We would like to note that ENWSI is
representative of a combination of spiking activities and weights
that determine the net input information to the corresponding lay-
ers. Fig. 6 illustrates the ENWSI for different membrane time con-
stants (e:g:; sm = 30;100 and infinity). We found that SNNs with LIF
neurons (blue, red) receive higher ENWSI across the layers than
those with IF neurons (green). The model with the largest leak
euron for (a) sm ¼ infinity, (b) sm ¼ 100 and (c) sm ¼ 30. The sum-squared errors of
rks. The horizontal and vertical axes present the sum-squared error (in log scale) on



Fig. 6. Layer-wise Euclidean norm of the weighted sum of spike-inputs of multi-layered SNNs for (a) CIFAR-10 and (b) SVHN datasets.
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(blue) receives the highest ENWSI compared to the other models
under consideration as evidenced in Fig. 6.

It is widely understood that if IF and LIF neurons were to receive
the same weighted sum of inputs, the LIF neurons would produce
comparatively lesser outputs due to their inherent leak. However,
that would lead the LIF models not to have enough spikes in the
deeper layers due to the layerwise gradual reduction in spiking
activities. Hence, the resultant network would fail to converge with
acceptable accuracy. To overcome the leak effect and to have suffi-
cient spiking activities for proper training, spike-based BP training
tailors the LIF models to increase the weighted sum of hidden layer
input activities beyond what is needed for IF models. Conse-
quently, LIF models converge to configurations with increased
spiking activities, allowing for sufficient weighted sum of input
activities in the deeper layers. In particular, from Fig. 6, we note
that if the ENWSIs are normalized at each layer, the difference in
input activity between IF and LIF models is more prominent at
the first 2 layers compared to the later layers. Interestingly, if we
just consider the ENWSIs for the model with sm = 30, we notice
an exponential increase if we consider moving from the deeper lay-
ers to the initial layers. This is due to the fact that, compared to an
IF model, the spiking activity of an LIF model with sm = 30 experi-
ences layer-wise exponential decay due to the leak effect. As a
result, for the network to learn, it requires much higher ENWSIs
at the initial layers so that the deeper layers can have enough
spikes to overcome the leak and still propagate sufficient
information.

5. Discussion and conclusion

In the neuroscience literature, the existence of leak in biological
neurons has been reported in the context of sodium ion channels
[20,43], synaptic transmission in visual cortex [44,45], etc. SNN
models take the bio-plausibility of leak into account through the
leaky neuron models [46,47]. In those models, the leak acts as a
hyperparameter that controls the decay of membrane potentials
in the neurons over time. However, the effect of leak in learning
and the resultant neuronal responses have not been studied com-
prehensively, to the best of our knowledge. Recognizing this gap, in
this paper we investigate IF and LIF neuron models to analyze the
role that leak plays in learning and their impact on noise robust-
ness and spiking sparsity. It is to be noted that there are opportu-
nities to further explore the effect of leak, especially in terms of
other more complicated neuron models closer to biological ones
(e:g., Hodgkin–Huxley [10] and exponential integrate-and-fire
[9]). However, till date, there exists a lack of suitable methodolo-
gies for training deep SNNs for complex learning tasks with accept-
able accuracy using such sophisticated neuron models. Therefore,
the study of leak in the context of such models has not been con-
sidered in this work.

As regards to studying the consequences of leak, we first
focused on the robustness of SNNs to common corruptions, which
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has been a significant concern in neural networks and motivated a
number of recent works. Data augmentation [4,48,49] and quanti-
zation [50,51] have been shown to achieve robust performance in
both SNNs and ANNs. However, data augmentation-based tech-
niques usually do not generalize well to other types of noise than
those used during training, necessitating expensive iterative train-
ing efforts using diverse augmented samples. Moreover, the input
and weight quantization techniques are reported to be susceptible
to error amplification due to enlarged quantization noise in multi-
layered networks [52], leading to considerable loss of accuracy.
Our work is pertinent in this respect, since the experimental
results show that the leaky neuron models enable improved
robustness against random noise, without the need for costly re-
training procedures or error amplification. We attribute this
enhanced robustness to the better generalization and low-pass fil-
tering effects of the LIF neuron models.

However, introducing the leak in the SNN models (while train-
ing with backpropagation) comes at the expense of higher spiking
activities compared to the IF models. To that effect, with respect to
the usage of leaky neuron models, there is a trade-off between
noise robustness and computational efficiency. At sm = 100, SNNs
with LIF neurons achieve substantially improved robustness com-
pared to the ones with IF neurons while maintaining reasonable
spiking sparsity. Training with higher leak (sm = 30) further
improves the robustness; however, the spiking activities also
increase considerably. It would be interesting to further validate
our findings on large-scale datasets such as Imagenet [53], how-
ever it has remained a challenging problem to train SNNs on Ima-
genet type of datasets satisfactorily without using ANN-SNN
conversion techniques. But in those conversion methods, the learn-
ing mainly occurs in the ANN domain and hence the effect of leak
in the context of SNN domain learning would not be obvious. Since
our concentration is not proposing a new learning paradigm, rather
exploring the impact of leak parameter in SNNmodels, we focus on
training the SNNs using spike-based backpropagation from scratch
and use relatively smaller datasets.

As we analyze the impacts of leak on robustness and sparsity,
we expect our study to be particularly useful for designing
resource-constrained edge applications in noisy environments
(e:g., self-driving vehicles in adverse weather and rescue robots
in disasters etc). Considering that leak is an essential bio-
plausible element in SNN models, we believe a better understand-
ing of its effects will help to design improved bio-inspired architec-
tures by making optimal choices concerning the involved trade-
offs. Furthermore, an efficient algorithm-hardware co-design con-
sidering the leak impacts would be of interest for future research
directions. To conclude, the understanding of leak provides another
knob for designing SNNs, enabling us to obtain a robustly trained
network without sacrificing compute-efficiency significantly. Our
anticipation is that the findings of this work will contribute
towards bridging the two seemingly disparate fields of neuro-
science and machine learning.
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Appendix A. Detailed formulation of coherence function

In this section, we present the derivations of the coherence
function, CðxÞ between the input stimulus for the Leaky Integrate
and Fire (LIF) neuron and output spike train, guided by [37,54]. The
discussion is divided into two parts: first we formulate the equa-
tion describing the neuron model in subSection 6.1, next using this
formulated model, we derive equations to calculate coherence
in subsection A.2.

A.1. LIF model equation

The dynamics of an LIF neuron is modeled as follows:

sm
dU
dt
¼ �ðU � UrestÞ þ RI; U 6 Vth ðA:1Þ

where U is the membrane potential, I denotes the input current, sm
indicates the membrane time constant, R represents membrane
resistance and Urest is the resting potential. Note, an equivalent par-
allel resistor–capacitor (RC) circuit model of the LIF neuron is illus-
trated in Fig. 1(c) in the main manuscript.

Let us consider the case where the input IðtÞ to the model
described in Eq. (1) is a white Gaussian noise with a constant mean
value hIi and a correlation function
hðIðtÞ � hIiÞðIðt0Þ � hIiÞi ¼ 2DIdðt � t0Þ (here, we denote the mean of
a parameter H as hHi). Let us make the following variable changes:

v ¼ U � Urest

Vth � Urest
; t�! t

sm
: ðA:aÞ

When the membrane potential is U, the input current through
the resistance branch of the RC circuit model becomes
ðU � UrestÞ=R. We denote the opposite of this input current as
ImodelðUÞ ¼ �ðU � UrestÞ=R. Taking the variable changes from (A.a)
into account and differentiating v with respect to time, we get:

dv
dt
¼ _v ¼ sm

Vth � Urest

dU
dt

: ðA:bÞ

In addition, using the scaling property of the delta function [26],
the correlation function of IðtÞ becomes 2DI

sm dðt � t0Þ (since

dðsmtÞ ¼ 1
sm dðtÞ). Accordingly, we denote input IðtÞ as follows:
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IðtÞ ¼ hIi þ
ffiffiffiffiffiffiffiffi
2DI

sm

s
nðtÞ; ðA:cÞ

where nðtÞ is a zero-mean white Gaussian noise with
hnðtÞnðt0Þi ¼ dðt � t0Þ. Using the relations from (A.b) and (A.c) and
dividing both sides by ðVth � UrestÞ in Eqn. 1, we obtain the following
equation:

_v ¼ �ðU � UrestÞ
Vth � Urest

þ R
Vth � Urest

hIi þ R
Vth � Urest

ffiffiffiffiffiffiffiffi
2DI

sm

s
nðtÞ: ðA:2Þ

Considering v ¼ U�Urest
Vth�Urest

, we acquire ðVth � UrestÞv þ Urest ¼ U.

Therefore, we can get:

ImodelððVth � UrestÞv þ UrestÞ ¼ ImodelðUÞ ¼ �U � Urest

R
ðA:3Þ

Based on Eq. (A.3), the first term on the right-hand side in Eq.
(A.2) can be written as:

R
Vth�Urest

�ðU�Urest Þ
R ¼ R

Vth�Urest
½ImodelððVth � UrestÞv þ UrestÞ�

¼ R
Vth�Urest

½ImodelððVth � UrestÞv þ UrestÞ � ImodelðUrestÞ�
þ R

Vth�Urest
½ImodelðUrestÞ�:

Next, by merging the time-invariant term, R
Vth�Urest

½ImodelðUrestÞ�
with the R

Vth�Urest
hIi term on the right-hand side in Eqn. A.2, we

can define the f modelðvÞ;l and D as-

f modelðvÞ ¼
R

Vth � Urest
½ImodelððVth � UrestÞv þ UrestÞ

� ImodelðUrestÞ�; ðA:dÞ

l ¼ R
Vth � Urest

½hIi þ ImodelðUrestÞ�; ðA:eÞ

and

D ¼ DIR
2

smðVth � UrestÞ2
: ðA:fÞ

Here, l and D are input parameters that represent the mean and
the intensity of the fluctuating input in our model, respectively.
Using the definitions from (A.d), (A.e) and (A.f), Eq. (A.2) can be fur-
ther written as follows:

_v ¼ f modelðvÞ þ lþ
ffiffiffiffiffiffiffi
2D
p

nðtÞ: ðA:4Þ
Now, ImodelðUrestÞ ¼ �ðUrest � UrestÞ=R ¼ 0. Therefore, from Eqn.

(A.d), f modelðvÞ for the LIF model can be transformed as follows:

f LIF ¼ f modelðvÞ ¼ R
Vth�Urest

½ImodelððVth � UrestÞv þ UrestÞ � ImodelðUrestÞ�
¼ R

Vth�Urest
½ImodelððVth � UrestÞv þ UrestÞ�; ½*ImodelðUrestÞ ¼ 0�

¼ R
Vth�Urest

�ðU�Urest Þ
R ; ½using Eq: ð3Þ�

¼ �ðU�Urest Þ
Vth�Urest

¼ �v ; ½fromðaÞ�;

Therefore, Eq. (A.4) becomes as follows:

_v ¼ �v þ lþ
ffiffiffiffiffiffiffi
2D
p

nðtÞ; ðA:5Þ
which is the formalism also used in [37] and will be followed for the
remaining discussions in this study.

A.2. Coherence function

Our analysis is based on the parallel RC circuit model of the LIF
neuron [24] as depicted by Eq. (1). Here, the membrane capaci-
tance C integrates the input currents over time and the resistance
branch R represents the leakage path of membrane potential. For IF
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neuron model, since there is no leak path, the R branch is consid-
ered as an open circuit. Hence, in this case, Imodel ¼ �ðU�UrestÞ

R ¼ 0
and the RC circuit model only contains the capacitor C path. This
implies that, for the IF model, R becomes infinity, and correspond-
ingly the membrane time constant sm, which is equal to RC, also
becomes infinity. On the other hand, for LIF neuron model, the R
branch plays a role as the leakage path of membrane potential.
When the leakage current through the resistance path increases,
the resistance value R and the membrane time constant sm gradu-
ally decrease. Furthermore, the parameters l and

Dð¼ DIR
2

smðVth�Urest Þ2
¼ DIR

CðVth�Urest Þ2
Þ become proportional to R according

to Eqs. (A.e) and (A.f), respectively. Therefore, for the LIF neuron
models, D and l gradually decrease with the increase in leak
amount.

The author in [37] considered D ¼ Dbg þ Dst in Eq. (A.5), where
Dbg is the background noise intensity, Dst is the intensity of the
stimulus (Gaussian white noise input) and D is the total noise
intensity. For our analysis, by assuming Dbg ¼ 0, we get D ¼ Dst

(note, a similar consideration was made in [37] for the results
and analysis). Now, let us consider the output spike train of the
model described by Eq. (A.5) is xðtÞ ¼P

d½t � tk�, where tk is the

kth instant of spike timing, when the input stimulus (s) is Gaussian
white noise input. We quantify the information transmission of the
spiking model by means of the spectral coherence function. To that
end, the Fourier transform of xðtÞ in a time window ½0; T� becomes

as follows: ~xTðxÞ ¼
R T
0 xðtÞejxtdt. The cross-spectrum of output

spike train (x) and input stimulus (s) is given as [26]:

Sx;sðxÞ ¼ limT!1
h~xðxÞ~s�ðxÞi

T , and the spike train power spectrum is

defined as: Sx;xðxÞ ¼ limT!1
h~xðxÞ~x�ðxÞi

T . The coherence function is for-
mally defined as the squared correlation coefficient between the
input and output as follows:

Cx;sðxÞ ¼ jSx;sðxÞj2
Sx;xðxÞSs;sðxÞ : ðA:6Þ

The coherence function Cx;sðxÞ generates an output number
between 0 and 1 at each measurement frequency. The amount of
information transmission at each frequency is proportional to the
coherence at that particular frequency, with 1 and 0 denoting full
and null transmission, respectively. For a system acting as a low-
pass filter, the coherence output under white-noise stimulation
decreases in the high-frequency domain.

Next, we analyze the low-pass filtering effect of the LIF neuron
model as described by Eq. (A.5). The analytical expression for
Sx;sðxÞ is given as follows [37,55,56]:

Sx;sðxÞ ¼ 2Dstffiffiffiffi
D
p r0ix

ix� 1

Dix�1
l�Vthffiffiffi

D
p

� �
� eDDix�1

l�Urestffiffiffi
D
p

� �
Dix

l�Vthffiffiffi
D
p

� �
� eDeixsrDix

l�Urestffiffiffi
D
p

� � ; ðA:7Þ

where D ¼ U2
rest�V2

thþ2lðVth�UrestÞ
4D ; sr is the refractory period and DðxÞ is

the parabolic cylinder function. In our case, we follow the same
assumptions as in [37] where Urest ¼ 0; sr ¼ 0 and Vth ¼ 1. The fir-
ing rate r0 is given by calculating the following [37]:

r0 ¼ sr þ
ffiffiffiffi
p
p Z l�Urestffiffiffiffi

2D
p

l�Vthffiffiffiffi
2D
p

dzez
2
erfcðzÞ

" #�1
:

The power spectrum of the output spike train is given by [57],
calculated as follows:

Sx;xðxÞ ¼ r0
Dix

l�Vthffiffiffi
D
p

� ���� ���2 � e2D Dix
l�Urestffiffiffi

D
p

� ���� ���2
Dix

l�Vthffiffiffi
D
p

� �
� eDeixsrDix

l�Urestffiffiffi
D
p

� ���� ���2 ; ðA:8Þ
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and the noise input spectrum becomes [37]:

Ss;sðxÞ ¼ 2Dst : ðA:9Þ
Taking the magnitude square of the quantity in Eq. (A.7), we

derive the following,

jSx;sðxÞj2 ¼ 4D2
st

D
r20x2

1þx2

jDix�1
l�Vthffiffiffi

D
p

� �
� eDDix�1

l�Urestffiffiffi
D
p

� �
j2

jDix
l�Vthffiffiffi

D
p

� �
� eDeixsrDix

l�Urestffiffiffi
D
p

� �
j2
: ðA:10Þ

Finally, plugging the values of Sx;xðxÞ; Ss;sðxÞ and jSx;sðxÞj2 into
Eq. (A.6), we obtain the resultant coherence function as follows:

Cx;sðxÞ ¼ 2Dst

D
r0x2

1þx2

Dix�1
l�Vthffiffiffi

D
p

� �
� eDDix�1

l�Urestffiffiffi
D
p

� ���� ���2
Dix

l�Vthffiffiffi
D
p

� ���� ���2 � e2D Dix
l�Urestffiffiffi

D
p

� ���� ���2 : ðA:11Þ
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