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a b s t r a c t

In this work a new model for online clustering named Incremental kernel spectral clustering (IKSC) is
presented. It is based on kernel spectral clustering (KSC), a model designed in the Least Squares Support
Vector Machines (LS-SVMs) framework, with primal-dual setting. The IKSC model is developed to
quickly adapt itself to a changing environment, in order to learn evolving clusters with high accuracy.
In contrast with other existing incremental spectral clustering approaches, the eigen-updating is
performed in a model-based manner, by exploiting one of the Karush–Kuhn–Tucker (KKT) optimality
conditions of the KSC problem. We test the capacities of IKSC with some experiments conducted on
computer-generated data and a real-world data-set of PM10 concentrations registered during a pollution
episode occurred in Northern Europe in January 2010. We observe that our model is able to precisely
recognize the dynamics of shifting patterns in a non-stationary context.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In many real-life applications we face the ambitious challenge
of online clustering of non-stationary data. Voice and face recogni-
tion, community detection of evolving networks such as the World
Wide Web or the metabolic pathways in biological cell, object
tracking in computer vision, represent just few examples. There-
fore researchers perceived the need of developing clustering
methods that can model the complex dynamics of evolving
patterns in a real-time fashion. Indeed, in the recent past many
adaptive clustering models with different inspiration have been
proposed: evolutionary spectral clustering techniques [7,9,18,20],
self-organizing time map [28], dynamic clustering via multiple
kernel learning [27], incremental K-means [8] constitute some
examples. Here we focus our attention on the family of the
Spectral Clustering (SC) approaches [25,31,10], which has shown
its practical success in many application domains. SC is an off-line
algorithm, and the above-cited attempts to make it applicable to
dynamic data-sets, although quite appealing, are at the moment
not very computationally efficient. In [26] and more recently in

[11], the authors propose some incremental eigenvalue solutions
to continuously update the initial eigenvectors found by SC. In this
paper, we follow this direction, but with an important difference.
The incremental eigen-update we introduce is model-based and
cast in a machine learning framework, since our core model is
kernel spectral clustering (KSC, [3]). KSC is an LS-SVM formulation
[29] of Spectral Clustering with two main advantages: an orga-
nized model-selection procedure based on several criteria (BLF,
Modularity, AMS, [3,17,19]) and the extension of the clustering
model to out-of-sample data. Moreover, it can scale to large data
as it has been shown in [23,24] and very sparse models can be
constructed [22,2]. In KSC a clustering model can be trained on
a subset of the data and then applied to the rest of the data in
a learning framework. The out-of-sample extension allows then to
predict the memberships of a new point thanks to the previously
learned model. The out-of-sample extension alone, without the
need of ad-hoc eigen-approximation techniques like the ones
proposed in [26] and[11], can be used to accurately cluster stationary
data-streams. For instance, in [16], KSC has been applied for online
fault detection of an industrial machine. In this work KSC was trained
offline to recognize two main working regimes, namely good and
faulty state. Then it was used in an online fashion via the out-of-
sample extension to raise an early warning when necessary.

However, if the data are generated according to some distribu-
tion which change over time (i.e. non-stationary), the initial KSC
model must be updated. In order to solve this issue we introduce
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the Incremental Kernel Spectral Clustering Algorithm (IKSC).
The IKSC method takes advantage of the work presented in [4]
to continuously adjust the initial KSC model over-time, in order to
learn the complex dynamics characterizing the non-stationary
data.

The remainder of this paper is structured as follows: in Section
2 we briefly recall the KSC model. Section 3 introduces the new
IKSC algorithm. Section 4 describes the data-sets used in the
experiments. In Section 5 we discuss the simulation results and we
compare our method with incremental K-means (IKM).To better
understand our technique and the experimental findings we
advice the readers to take a look at the demonstrative videos
present in the supplementary material of this paper. Finally,
Section 6 concludes the paper.

2. Kernel spectral clustering (KSC)

Spectral clustering methods use the eigenvectors of the graph
Laplacian to unfold the data manifold and properly group the data-
points. In contrast with classical spectral clustering, KSC is con-
sidered in a learning framework. This allows the out-of-sample
extension of the clustering model to test points in a straightfor-
ward way. With training data D¼ fxigNi ¼ 1; xiARd and the number
of clusters k, the kernel spectral clustering optimization problem
can be stated in the following way [3]:

min
wðlÞ ;eðlÞ ;bl

1
2

∑
k�1

l ¼ 1
wðlÞT wðlÞ � 1

2N
∑
k�1

l ¼ 1
γle

ðlÞT D�1eðlÞ ð1Þ

such that eðlÞ ¼ΦwðlÞ þbl1N : ð2Þ
This is a weighted kernel PCA formulation, being the weighting
matrix equal to the degree matrix D associated to the training
kernel matrix. The objective consists of minimizing the regular-
ization terms and maximizing the weighted variance of the
projections of the data points in the feature space. The score
variables1 are named eðlÞ ¼ ½eðlÞ1 ;…; eðlÞN �T , l¼ 1;…; k�1 indicates the
number of score variables needed to encode the k clusters to find,
D�1ARN�N is the inverse of the degree matrix D, Φ is the N � dh
feature matrix Φ¼ ½φðx1ÞT ;…;φðxNÞT � and γlARþ are regulariza-
tion constants. The multiway clustering model in the primal space
is expressed by a set of k�1 binary problems, which are combined
in an Error Correcting Output Code (ECOC) encoding scheme:

eðlÞi ¼wðlÞTφðxiÞþbl; i¼ 1;…;N; l¼ 1;…; k�1: ð3Þ

where wðlÞARdh is the parameter vector in the primal space
associated with the l-th binary clustering, bl are bias terms, φ :

Rd-Rdh is the mapping of the input points xi into a high-
dimensional feature space of dimension dh. The projections eðlÞi
represent the latent variables of the group of k�1 binary cluster-
ing indicators given by signðeðlÞi Þ. Thus every point xi is associated
with a latent variable ½eð1Þi ;…; eðk�1Þ

i � which lives in the low-
dimensional space spanned by wðlÞ. The set of binary indicators
signðeðlÞi Þ; i¼ 1;…;N; l¼ 1;…; k�1 form a code-book CB¼ fcpgkp ¼ 1,
where each code-word is a binary word of length k�1 represent-
ing a cluster.

As for all the kernel-based methods, since an explicit formula of
the feature map φð�Þ is in general unknown, the dual of problem
(1) is derived. As a consequence, we go from the parametric
representation of the clustering model expressed by Eq. (3) to a
non-parametric representation in the dual space denoted by (5).

Here only dot products between the mapped points in φð�Þ appear,
which can be easily computed using the kernel trick derived by the
Mercer theorem: φðxiÞTφðxjÞ ¼ Kðxi; xjÞ. In Fig. 1 for the sake of
clarity we illustrate, in the case of a synthetic dataset consisting of
three intertwined spirals, the points mapped in the space of the
eigenvectors αðlÞ and the space of the latent variables eðlÞ.

The Lagrangian associated with the primal problem, written in
matrix form, is

LðwðlÞ; eðlÞ; bl;αðlÞÞ ¼ 1
2

∑
k�1

l ¼ 1
wðlÞT wðlÞ � 1

2N
∑
k�1

l ¼ 1
γle

ðlÞT D�1eðlÞ

� ∑
k�1

l ¼ 1
αðlÞT ðeðlÞ �ΦwðlÞ �bl1NÞ

where αðlÞ are the Lagrange multipliers. The KKT optimality
conditions are the following:

∂L
∂wðlÞ ¼ 0-wðlÞ ¼ΦTαðlÞ;

∂L
∂eðlÞ

¼ 0-αðlÞ ¼ γl
N
D�1eðlÞ;

∂L
∂bl

¼ 0-1T
Nα

ðlÞ ¼ 0;

∂L
∂αðlÞ ¼ 0-eðlÞ �ΦwðlÞ �bl1N ¼ 0:

Once we have solved the KKT conditions for optimality, we can
derive the following dual problem:

D�1MDΩαðlÞ ¼ λlαðlÞ ð4Þ
where Ω is the kernel matrix with ij-th entry Ωij ¼ Kðxi; xjÞ ¼
φðxiÞTφðxjÞ, D is the related graph degree matrix which is diagonal
with positive elements Dii ¼∑jΩij, MD is a centering matrix
defined as

MD ¼ IN�
1

1T
ND

�11N
1N1

T
ND

�1;

αðlÞ are the dual variables, λl ¼N=γl and K : Rd � Rd-R is the
kernel function and captures the similarity between the data-
points. The clustering model in the dual space evaluated on
training data becomes

eðlÞ ¼ΩαðlÞ þbl1N ; l¼ 1;…; k�1: ð5Þ
The eigenvectors αðlÞ express an embedding of the input data that
reveals the underlying clustering structure. They are linked to the
wðlÞ through the first KKT condition.

In order to cope with truly non-stationary data arriving over
time, the initial αðlÞ must be modified in response to the new
inputs. This issue is tackled by means of the incremental kernel
spectral clustering algorithm, which will be explained in detail in
the next section.

The out-of-sample extension is performed by the ECOC decod-
ing scheme. In the decoding process the cluster indicators found in
the validation/test stage are compared with the code-book and the
nearest code-word indicated by the Hamming distance is selected.
The cluster indicators are the results of binarizing the score
variables for test points:

signðeðlÞtestÞ ¼ signðΩtestαðlÞ þbl1NtestÞ ð6Þ
with l¼ 1;…; k�1. Ωtest is the Ntest � N kernel matrix evaluated
using the test points with entriesΩtest;ri ¼ Kðxtestr ; xiÞ, r¼ 1;…;Ntest,
i¼ 1;…;N.

In the first two synthetic experiments that will be presented in
Section 4.1.1 (Drifting Gaussians and Merging Gaussians) we use
the RBF kernel function defined by Kðxi; xjÞ ¼ expð�‖xi�xj‖22=s2Þ.
The symbol s indicates the bandwidth parameter and xi is the
i-th data point. In the analysis of the third synthetic data

1 We use interchangeably the terms projections, score variables, latent
variables to name the eðlÞ .
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(synthetic time-series) and the PM10 data, xi represents the i-th
time-series. In this case to better capture the similarity between
the time-series we use the RBF kernel with the correlation
distance [21]. Thus Kðxi; xjÞ ¼ expð�‖xi�xj‖2cd=s

2Þ, where ‖xi�

xj‖cd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 ð1�RijÞ

q
, with Rij indicating the Pearson correlation

coefficient between time-series xi and xj. By means of extensive
experiments we empirically observed that this kernel is positive
definite. Moreover the RBF kernel with Euclidean distance has
been mathematically proven to fulfil the positive definitiveness
property.

3. Incremental kernel spectral clustering (IKSC)

3.1. Model-based update

In contrast with other techniques that compute approximate
eigenvectors of large matrices like the Nystrom̈ method [32], the
work presented in [14] or the above-mentioned algorithms [11]
and [26], the eigen-approximation we use to evolve the initial
model is model-based [4]. This means that based on a training set
(in our case the cluster centroids) out-of-sample eigenvectors are
calculated using Eq. (7). These approximate eigenvectors are then
used to adapt the initial clustering model over-time. In principle,

if the training model has been properly constructed, this guarantees
high accuracy of the approximated eigenvectors due to the good
generalization ability of KSC and LS-SVMs in general [3,30] (see also
the discussion in Section 5.2).

Fig. 1. Schematic illustration of KSC main variable spaces for the 2D three spiral dataset. The original data D¼ fxigNi ¼ 1 are mapped into a high dimensional Reproducing
Kernel Hilbert Space (RKHS) by means of the feature map φð�Þ. In the feature space a linear model succeeds in separating the clusters, resulting in a non-linear clustering
boundary in the input space. Top left: original data. Top right: clustering results. Bottom left: eigenspace. Bottom right: projection space.

Fig. 2. IKSC update scheme.
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3.2. The algorithm

One big advantage of a model-based clustering tool like KSC is
that we can use it online in a straightforward way. Indeed, once we
built-up our optimal model during the training phase, we can
estimate the cluster membership for every new test point by
simply applying Eq. (6) and the ECOC decoding procedure. How-
ever, if the data source is non-stationary, this scheme fails since
the initial model is not representative any more of the new data
distribution. Therefore to cope with non-stationary data the
starting code-book must be adjusted accordingly. Here, instead
of using the code-book and the ECOC procedure, we propose to
express our model in terms of the centroids in the eigenspace and
to compute the cluster memberships as measured by the eucli-
dean distance from these centers. In this way it is possible to
continuously update the model in response to the new data-
stream. In order to calculate the projection in the eigenspace for
every new point, we can exploit the second KKT condition for
optimality which links the eigenvectors and the score variables
for training data

αðlÞ
test ¼

1
λl
D�1
teste

ðlÞ
test ð7Þ

with D�1
test ¼ diagð1=degðxtest1 Þ;…;1=degðxtestNtestÞÞARNtest � RNtest indi-

cating the inverse degree matrix for test data. The out-of-sample
eigenvectors αðlÞ

test represent the model-based eigen-approximation

with the same properties as the original eigenvectors αðlÞ for
training data. With the term eigen-approximation we mean that
these eigenvectors are not the solution of an eigenvalue problem,
but they are estimated by means of a model built during the
training phase of KSC [4]. To summarize, once one or more new
points belonging to a data-stream are collected, we update the
IKSC model as follows:

� Calculate the out-of-sample extension using Eq. (6), where the
training points xi are the centroids in the input space C1;…;Ck,
and the αðlÞ are the centroids in the eigenspace Cα1 ;…;Cαk .� Calculate the out-of-sample eigenvectors by means of Eq. (7).

� Assign the new points to the closest centroids in the
eigenspace.

� Update the centroids in the eigenspace.
� Update the centroids in the input space.

To update online a centroid Cold given a new sample xnew, we can
use the following formula [15]:

Cnew ¼ Coldþ
xnew�Cold

nold
ð8Þ

where nold is the number of samples previously assigned to the
cluster center Cold. The same procedure can be used to update
the cluster centers in the eigenspace: in this way the initial αðlÞ

provided by KSC are changed over time to model the non-stationary

Fig. 3. Drifting Gaussian distributions. Some snapshots of the evolution of the distributions (top and bottom left), and the whole data all at once (bottom right).
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Fig. 4. Merging Gaussian distributions. Some snapshots of the evolution of the distributions (top and bottom left), and the whole data all at once (bottom right).

Fig. 5. Synthetic time-series. At t1 ¼ 150 and t2 ¼ 300 two change points (change in frequency) can be observed.
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behaviour of the system. A schematic visualization of this procedure
is depicted in Fig. 2. Finally, here we sketch the complete IKSC
algorithm:

Algorithm. Incremental kernel spectral clustering algorithm
(IKSC).

Input: Training set D¼ fxigNi ¼ 1 for the initialization stage, initial
centroids in the input space C1;…;Ck (training set online
stage), initial centroids in the eigenspace Cα1 ;…;Cαk (initial

clustering model), kernel function K : Rd � Rd-Rþ positive
definite and localized (Kðxi; xjÞ-0 if xi and xj belong to
different clusters), kernel parameters (if any), number of
clusters k.

Output: Updated clusters fA1;…;Apg, cluster centroids in the
input space (training set online stage) C1;…;Ck, cluster
centroids in the eigenspace (clustering model) Cα1 ;…;Cαk .

Initialization:
1. Acquire N points.
2. Train the KSC model by solving Eq. (4).
3. Obtain the initial centroids in the input space C1;…;Ck and
the initial centroids in the eigenspace Cα1 ;…;Cαk .

Online IKSC:
for i¼Nþ1 to the end of the data-stream

1. compute the out-of-sample eigenvectors using Eq. (7)
2. calculate cluster membership for the new point (or the new
batch of points) according to the distance between the out-of-
sample eigenvectors and the centroids Cα1 ;…;Cαk
3. update centroids in the eigenspace Cα1 ;…;Cαk using Eq. (8)
4. update centroids in the input space C1;…;Ck according to
Eq. (8)
5. new cluster check
6. merge check
7. cluster death

endfor
Outlier elimination.

The adaptation to non-stationarities relates to identifying changes
in the number of clusters occurring over time by means of some
inspections:

� The new cluster check allows to dynamically create a new
cluster if necessary. For every new point the related degree dtesti
is calculated. If dtesti oϵ where ϵ is a user-defined threshold,
it means that the point is dissimilar to the actual centroids.
Therefore it becomes the centroid of a new cluster and it is
added to the model. Moreover, the old eigenspace is updated in

Fig. 6. PM10 data. Top: AirBase monitoring stations. Bottom: some representative time-series of PM10 concentrations for the whole period under investigation.

R. Langone et al. / Neurocomputing 139 (2014) 246–260 251



the following way. If at time t a new cluster is created, the
number of cluster centers increases from kold to knew. Then a
kernel matrix involving only the centroids of dimension knew �
knew is created and problem (4) with k¼ knew is solved. In this
way the cluster prototypes are now represented in a knew
dimensional eigenspace, and the same applies for the next
points of the data stream.

� Throughout the merge check, if two centroids become too
similar they are merged into one center, and the number of
clusters is decreased. In this case the dimension of the eigen-
space is not changed.

� If the centroid of a cluster is not updated any more the
algorithm considers that cluster as disappeared (cluster death).

Finally, if one cluster is formed by less than 5 points it is consi-
dered as outlier and it is eliminated in the end of the data-stream
acquisition.

Fig. 8. Silhouette for drifting Gaussian distributions. The mean silhouette value
related to the clusters detected by IKSC stays high over time, meaning that our
method is able to model the drift of the distributions.

Fig. 10. Silhouette for the merging Gaussian distributions experiment. The silhou-
ette value related to the clusters detected by IKSC remains high over time. Thus,
also in this case IKSC manages to properly follow the non-stationary behaviour of
the clusters for the whole duration of the experiment.

Fig. 7. Results of IKSC on the drifting Gaussian distributions. Evolution of the
centroids in the input space. We can notice that the IKSC model can recognize
the drifting targets without errors. A video of the simulation is present in the
supplementary material of this paper.

Fig. 9. Results of IKSC on the merging Gaussian distributions. Top: evolution of the
centroids in the input space. Bottom: model evolution in the eigenspace. A video of
the simulation is provided as supplementary material of this paper.
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3.3. Computational complexity

In the initialization stage we have to solve the eigenvalue
problem (4) involving an N � N matrix, which has quadratic
complexity if we use fast solvers like the Lanczos algorithm [6].
Then before the data-stream acquisition we compute the k initial
centroids in the input space and the corresponding centroids in
the eigenspace. During the online stage involving the data-stream

processing, we consider as training set only the k centers in the
input space C1;…;Ck, while the k centers in the eigenspace
Cα1 ;…;Cαk represent the clustering model. For every new point
of the data-stream, as explained in the previous section, we
have to compute the out-of-sample extension, the corresponding

out-of-sample eigenvectors by means of Eq. (7) and the update of
both the model and the training set.2 In this case the main
contribution to the computational complexity is due to the out-
of-sample extension part:

eðlÞtest ¼ΩtestαðlÞ þbl1Ntest; l¼ 1;…; k�1: ð9Þ
The evaluation of the kernel matrix Ωtest needs Oðk2dÞ operations
to be performed. The calculation of the score variables eðlÞtest takes
then Oðk2dþk2þkÞ time. This operation has to be repeated for the
Ntest data-points of the data-stream, so the overall time complexity
is OðNtestðk2dþk2þkÞÞ. This can become linear with respect to the
number of data-points (OðNtestÞ) when k5Ntest and d5Ntest,
which is the case in many applications. This is comparable with
other eigen-updating algorithms for spectral clustering like [26]
and [11].

4. Data-sets

4.1. Artificial data

Three simulations are performed: the first and the second by
reproducing the experiments described in [5], and the third with
some computer-generated time-series.

4.1.1. Gaussian clouds
In the first simulation two Gaussian distributions evolving over

time are created. These two clouds of points drift toward each
other with increasing dispersal, as illustrated in Fig. 3. In the second
virtual experiment a multi-cluster non-stationary environment is

Fig. 12. Synthetic time-series initial clustering model. Top: signals of the two starting clusters. Bottom left: data in the eigenspace (the points are mapped in the same location
as the related centroids, since the eigenvectors are perfectly piece-wise constant). Bottom right: kernel matrix with a clear block diagonal structure.

Fig. 11. ARI error-Merging Gaussian distributions. The average cumulative ARI error
related to the clusters detected by IKSC is very small over time, with a peak around
the merging step at time t¼6926, in agreement with what was observed also in [5].

2 In this paper we assume that the training set during the online stage consists
of k points, where k is the number of clusters. In some situations it could happen
that such a small number of training points is not enough to define a proper
mapping. Nevertheless, by considering more training points N such that N5Ntest

the overall complexity of the algorithm does not change.
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created. In particular, there are two drifting Gaussian clouds that
come to merge, some isolated data forming an outlier cluster of
4 points and a static cluster consisting of a bi-modal distribution.
This second data-set is depicted in Fig. 4.

4.1.2. Synthetic time-series
In order to test the ability of IKSC to dynamically cluster time-

series rather than data-points, we generated 20 time-series of
three types as depicted in Fig. 5. The idea behind this experiment
is that if we cluster in an online fashion the time-series with
a moving window approach, we should be able to detect the
appearance of a new cluster given the increase in frequency of the
signals of the second type at time step t1 ¼ 150. Moreover, when
these signals get back to their original frequency at time step
t2 ¼ 300, the clustering algorithm must detect this change.

4.2. The PM10 data-set

Particulate Matter (PM) is the term used for solid or liquid particles
found in the air. In particular PM10 refers to those particles whose size
is up to 10 μm in aerodynamic diameter. The inhalation of these

particles is dangerous for human health since it can cause asthma,
lung cancer, cardiovascular issues, etc. Accurate measurements and
estimation of PM is then of vital importance by the health care point
of view. To this aim the European Environmental Agency manages
a publicly available database called AirBase [12]. This air-quality
database contains validated air quality monitoring information of
several pollutants for more than 30 participating countries through-
out Europe.

In this paper we analyze the PM10 data registered by 259
background stations during a heavy pollution episode that took
place between January 20th, 2010 and February 1st, 2010. We
focus on an area comprising four countries: Belgium, Netherlands,
Germany and Luxembourg (see Fig. 6). The experts attributed this
episode to the import of PM originating in Eastern Europe [1].

5. Experimental results

In this section we show how the proposed IKSC model, thanks to
its capacity of adapting to a changing environment, is able to model
the complex behaviour of evolving patterns of non-stationary data.

Fig. 13. Synthetic time-series clusters after creation. Top and center: signals of the three clusters after the creation event. Bottom left data in the eigenspace (the points are
mapped in the same location as the related centroids, since the eigenvectors are perfectly piece-wise constant). Bottom right: kernel matrix. A video of the entire simulation
is present in the supplementary material of the paper.
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To evaluate the outcomes of the model, two cluster quality
measures are computed [13]: the average cumulative adjusted
rand index (ARI) error and the instantaneous silhouette criterion.
The ARI is an external evaluation criterion and measures the
agreement between two partitions (ARI¼ 0 means complete
disagreement and ARI¼ 1 indicates a perfect match). The ARI
error is defined then as 1�ARI, as in [11]. Silhouette is an internal
criterion taking a value in the range ½�1;1� and measures how
tightly grouped all the data in the clusters are.

5.1. Artificial data

The results of testing the IKSC algorithm on the first synthetic
example are presented in Fig. 7. In the initialization phase 30
points are used to construct the model. The IKSC algorithm can
perfectly model the two drifting distributions: the average cumu-
lative ARI error is equal to 0. Moreover the quality of the predicted
clusters remains very high over time, as demonstrated by the
trend of the average silhouette index depicted in Fig. 8. The results
of the simulation related to the second artificial data-set are
depicted in Fig. 9. Similarly to the first artificial experiment, the
cluster quality stays high over time as shown in Fig. 10, and
the partitions found by IKSC are in almost perfect agreement with
the ground truth (small ARI error) for the whole duration of the
simulation (see Fig. 11). Moreover at time-step t¼6926 the two
moving Gaussian clouds are merged, as expected. Only in this case,
as observed also in [5], there is a small increase in the average
cumulative ARI error. The small cluster at the bottom left side of
Fig. 4 is detected as outlier after the data acquisition.

Finally, we discuss the results of IKSC on the synthetic time-
series experiment. In the initialization phase the algorithm
recognizes 2 clusters, which are shown in Fig. 12. After some time,
we notice that IKSC successfully detects the first change in

frequency of the signals of the second type (see Section 4.1.2) by
creating a new cluster at time step t¼223, as depicted in Fig. 13.
Moreover the second change point is detected at time step t¼382,
when a merging of two clusters is performed, as illustrated in
Fig. 14. A video of this simulation is also present in the supple-
mentary material of the paper.

5.2. The approximated model-based eigenvectors

Here we discuss on the quality of our model-based eigen-
updating for kernel spectral clustering. In Fig. 15 the exact and the
approximated eigenvector related to the largest eigenvalue of (4)
for the drifting Gaussians example are shown. We notice that the

Fig. 14. Synthetic time-series final clustering model. Top: two final clusters after the merging event. Bottom left: clustered data in the eigenspace (the points are mapped in
the same location as the related centroids, since the eigenvectors are perfectly piece-wise constant). Bottom right: kernel matrix.

Fig. 15. Eigenvector-Drifting Gaussian distributions. Exact and approximated
eigenvector corresponding to the largest eigenvalue of the problem (4), for the
first synthetic example.
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model-based eigenvectors are less noisy with respect to the exact
eigenvectors and a multiplicative bias is present. The first property
is quite surprising: basically we are able to recover the perfect
separation between the two clusters even when this is somehow
masked by the data. This occurs mainly in the end of the
simulation when the two Gaussian clouds approach each other.
In this case the exact eigenvector is not exactly piece-wise
constant due to a small overlap, while the model-based eigenvec-
tor is much less perturbed. The multiplicative bias is probably due
to the fact that the out-of-sample eigenvectors are computed using

an ultra-sparse training set (only the two cluster centroids). The
latter allows to process the data-stream very quickly, but lacks the
information related to the spread of the data-points, which may
cause the bias. Similar considerations can be done for the second
synthetic experiment, i.e. the merging Gaussians. The three
eigenvectors corresponding to the largest eigenvalues of (4) are
represented in Fig. 16. In the third approximated eigenvector we
can notice 4 levels, which are not present in the exact eigenvector.
Once again this testifies the tight relation between the clustering
model of IKSC (the 4 centroids) and the approximated eigenvec-
tors, which is a unique property of our framework.

5.3. PM10 data

In the initialization phase our data-set consists of a time-series
of 96 time steps (i.e. four days) for each station. In order to build-
up an initial clustering model we tune the number of clusters k
and the proper s for the RBF kernel by using the AMS (Average
Membership Strength) model selection criterion [19]. In the cited
work a method to obtain soft cluster memberships from KSC has
been introduced. Based on this soft assignment technique a new
model selection method has been derived. It works by computing
a kind of mean membership per cluster indicating the average
degree of belonging of the points to that cluster. By repeating the
same procedure for every cluster and taking the mean, we obtain
the AMS criterion. Unlike previously proposed model selection
criteria as BLF [3] and Modularity [17], AMS works fine with
overlapping clusters and can be used for large scale data analysis.

After tuning we find k¼2 and s2 ¼ 0:05 as optimal parameters,
as depicted in Fig. 17. The initial model, based on these parameters,
is illustrated in Fig. 18. In this case the 2 centroids in the input
space are the time-series representing the two clusters, while in
the eigenspace they are points of dimension k�1 (anyway for
visualization purposes we always use a 3D plot).

During the online stage, by adopting a moving window
approach, our data-set at time t corresponds to the PM10 concen-
trations measured from time t�96 to time t. In this way we are
able to track the evolution of the pollutants over-time. In fact, after
some time the IKSC model creates a new cluster, as depicted in
Fig. 19. Later on these three clusters evolve until a merge of two of
them occurs at time step t¼251 (see Fig. 20). If we analyse more in
detail the clustering results (see video in the supplementary
material), we can notice how the new cluster (represented in
blue) is concentrated mainly in the Northern region of Germany.
Moreover the creation occurs at time step t¼143, when the
window describes the start of the pollution episode in Germany
(see Section 4.2). Afterwards, the new cluster starts expanding in
direction South-West. Basically, IKSC is detecting the arrival of the
pollution episode originated in Eastern Europe and driven by the
wind toward the West. This ability of our clustering model of
detecting the dynamics of the pollution cloud at this level of
accuracy is rather unexpected. Indeed, IKSC does not have any
information about the spatial localization of the stations and the
meteorological conditions. At time step t¼251 two clusters are
merged. This can be explained by the fact that the window covers
the unusually high PM10 concentrations as well as the end of the
episode, registered by many of the stations.

5.4. Comparison with incremental K-means (IKM)

One of the most popular data clustering methods in many
scientific domains is K-means clustering because of its simplicity
and computational efficiency. K-means clustering works by choos-
ing some random initial centers and then iteratively moves the
centers to minimize the total within cluster variance. In its
incremental variant, the K-means clustering algorithm is applied

Fig. 16. Eigenvectors-Merging Gaussian distributions. Exact and approximated
eigenvectors corresponding to the 3 largest eigenvalues of the problem (4),
for the second synthetic experiment.
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online to a data stream. At each time-step Incremental K-means
(IKM) uses the previous centroids to find the new cluster centers,
instead of rerunning the K-means algorithm from scratch [8].

In Table 1 a summary of the results regarding all the experiments
is presented. The performance of IKSC and IKM is compared in

terms of mean ARI and mean Silhouette index over time. Concern-
ing the experiments with the Gaussian clouds IKSC achieves better
cluster accuracy (higher ARI), with a slightly worse Silhouette value
with respect to IKM. In the case of the synthetic time-series and the
PM10 data IKSC outperforms IKM in terms of the Silhouette index.

Fig. 17. Model selection. Tuning of the number of clusters and the bandwidth of the RBF kernel in the initialization phase of IKSC for the analysis of the PM10 data.

Fig. 18. Initial clustering model for the PM10 monitoring stations. Top: signals for the two starting clusters. Bottom left: spatial distribution of the clusters. Bottom right: data
mapped in the eigenspace. A video showing the whole simulation can be found in the supplementary material of the paper.
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Fig. 19. PM10 clusters after creation. Top: signals for the three clusters after the creation event. Bottom left: spatial distribution of the clusters. Interestingly, the new cluster
comprises stations located in the North-East part of Germany, which is the area where the pollutants coming from Eastern Europe started to spread during the heavy
pollution episode of January 2010. Bottom right: data in the eigenspace.

Fig. 20. Clustering model of PM10 stations after merging. Top: two clusters left after the merging event occurred at time step t¼251. Bottom left: spatial distribution of the
clusters. Bottom right: data in the eigenspace.
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6. Conclusions

In this work an adaptive clustering model called incremental
kernel spectral clustering (IKSC) has been introduced. IKSC
takes advantage of the out-of-sample property of kernel spectral
clustering (KSC) to adjust the initial model over time. Thus, in
contrast with other existing incremental spectral clustering tech-
niques, we propose a model-based eigen-update, which guaran-
tees high accuracy. On some toy-data we have shown the
effectiveness of IKSC in modelling the cluster evolution over-
time (drifting, merging, outlier elimination, etc.). Then we ana-
lysed a real-world data-set consisting of PM10 concentrations
registered during a heavy pollution episode that took place in
Northern Europe in January 2010. Also in this case IKSC was able to
recognize some interesting patterns and track their evolution
over-time, in spite of dealing with the complex dynamics of
PM10 concentration.
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Experiment Algorithm Silhouette ARI

Drifting Gaussians IKM 0.89 1
IKSC 0.88 1

Merging Gaussians IKM 0.91 0.95
IKSC 0.90 0.99

Synthetic time-series IKM 0.90 –

IKSC 0.92 –

PM10 data IKM 0.27 –

IKSC 0.32 –
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