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Deep neural networks (DNNs) have now demonstrated state-of-the-art detection performance on
pedestrian datasets. However, because of their high computational complexity, detection efficiency is
still a frustrating problem even with the help of Graphics Processing Units (GPUs). To improve detection
efficiency, this paper proposes to share features across a group of DNNs that correspond to pedestrian
models of different sizes. By sharing features, the computational burden for extracting features from an
image pyramid can be significantly reduced. Simultaneously, we can detect pedestrians of several dif-
ferent scales on one single layer of an image pyramid. Furthermore, the improvement of detection
efficiency is achieved with negligible loss of detection accuracy. Experimental results demonstrate the
robustness and efficiency of the proposed algorithm.

© 2015 AUTHOR. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The past few years have witnessed the successful application of
deep neural networks (DNNs) in the field of computer vision
[1,6,11,12,15,17,19,28,34]. Especially, convolutional neural net-
works (ConvNets) have attracted much attention on object clas-
sification and object detection [2,7,9,16,20,25,29]. To testify the
effectiveness of DNNs, pedestrian detection (a canonical instance
of object detection) [3,4,24] inevitably becomes the focus since
pedestrian usually presents a wide variety of appearances due
to body pose, occlusions, clothing, lighting, and backgrounds.
Furthermore, pedestrian detection has direct applications in car
safety, surveillance, and robotics.

Although several previous works on DNNs for pedestrian
detection have achieved promising performance, they paid more
attention to improve the detection accuracy rather than the effi-
ciency. Typically, a trained DNN detector takes as input one fixed-
size image patch, which is obtained by means of sliding window
technique [13,26,27] or region proposal methods [7]. The high
computational cost of the DNN detector makes sliding window
method unattractive because of the resulting countless image
patches. Region proposal methods [31,33] can generate a reduced
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set of image patches, usually two orders of magnitude fewer
compared to the sliding window approach. However, the recall of
region proposal methods drops sharply with the increase of
Intersection-over-Union (IoU) threshold, thus significantly decre-
asing the detection accuracy. An alternative is to use dynamic
programming to speed up DNN detectors [8]. Dynamic program-
ming method differs from sliding window approach in that it
extracts image-level features once and for all. The final decision is
made at the top layer (i.e., the last feature layer) in sliding window
fashion. Image-level scanning avoids the heavy computation
wasted at overlapping regions between neighbouring image
patches, thus speeding up the detection process by orders of
magnitude.

Even by adopting image-level scanning, it is necessary to con-
struct an image pyramid with dozens of layers. In this paper, based
on image-level scanning, we propose to share features across a
group of DNN detectors that correspond to pedestrian models of
different sizes. The final decision made at the top layer of the
shared features can simultaneously detect pedestrians of several
different scales. This strategy can reduce the number of image
pyramid layers that are needed for extracting features and thus
relieve computational burden. Note that in this paper, we focus on
speeding up the DNN based pedestrian detectors while main-
taining the detection accuracy. A comprehensive comparison of
pedestrian detectors with different DNN architectures is beyond
the scope of this paper.
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In summary, the main contribution of the paper is as follows.
(1) We propose to share features across a group of DNNs corre-
sponding to pedestrian models of different sizes. (2) We propose
to simultaneously detect pedestrians of several different scales on
one layer of an image pyramid. The rest of the paper is organized
as follows. Section 2 reviews some previous works on DNNs.
Section 3 presents the image-level scanning method when expl-
oiting DNN based object detectors. Our method is presented in
detail in Section 4. Experimental results are reported in Section 5.
Finally, conclusions are presented in Section 6.

2. Related work

The great success of ConvNets on the 2012 ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [15] aroused broader
interest in DNNs among researchers. Other than classification task,
DNNs have also been used for detection task on ImageNet and
Pascal VOC categories. The most successful generic object detec-
tors are based on variants of the R-CNN framework [7]. In the R-
CNN framework, selective search method [31] is utilized to first
generate a relatively small set of detection proposals from the
input image, and then these proposals are evaluated via a
ConvNet.

However, when it comes to works on DNNs for pedestrian
detection, few uses generic methods (e.g., selective search [31] and
edge boxes [33]) to generate detection proposals. As pointed out in
[10], a sophisticated pedestrian detector such as SquaresChnFtrs
[2] can generate much better proposals than the state-of-the-art
generic methods. Taking a deeper insight into generic methods, it
is observed that the recall of ground truth annotations drops
sharply when the IoU threshold increases. A low recall means that
the generic methods would reject the majority of pedestrian
instances in advance, resulting in a high miss rate even though the
pedestrian detector performs very well. On the other hand, as the
object detector is sensitive to object location [30], a coarse pro-
posal location (i.e., a proposal with low IoU value) is likely to result
in a low decision score. A low score also leads to losing one
potential pedestrian instance, thus increasing the miss rate. In
other words, the current generic proposal methods fail to generate
detection proposals that are good enough for pedestrian detection.

Instead of using generic proposal methods, DNN based pedes-
trian detection works typically adopt another two approaches to
generate detection proposals. Sermanet et al. [26] designed a
ConvNet based pedestrian detector by combining features from
the last two layers for detection. This ConvNet detector is then
applied in sliding window fashion during detection stage, with a
scale stride of 1.10 between each scale. A different line of work
utilizes existing sophisticated detectors to generate detection
proposals. In [21], Ouyang et al. proposed to construct a dis-
criminative deep model with a stack of Restricted Boltzmann
Machines (RBMs). This deep model extends classic deformable
part model (DPM) [5] and is able to reason about pedestrian parts
and occlusions. Later, Ouyang et al. [23] further extended the deep
model to account for person-to-person relations. The above two
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works use DPM detector for proposals. In [22], Ouyang et al.
incorporated feature extraction, deformation handling, occlusion
handling, and classification into a new deep ConvNet and opti-
mized the four components jointly. This new deep ConvNet uti-
lizes a HOG + CSS+linear SVM detector [32] to generate proposals
since it is of high computational complexity. The multi-stage
contextual deep model (MSCD) [35] feeds each layer with con-
textual features computed at different scales around the candidate
pedestrian detection. Switchable deep network (SDN) [18] imp-
roves ConvNet for pedestrian detection by adding multiple
switchable layers built with a new switchable RBM. Both MSCD
and SDN also use a HOG+CSS+linear SVM detector for proposals.
Hosang et al. [10] used straightforward ConvNets (i.e., ConvNets
without custom designs) such as the small CifarNet [14] and the
big AlexNet [15] for pedestrian detection and adopted the Squar-
esChnFtrs detector [2] to generate proposals. Those sophisticated
detectors mentioned above can generate good detection proposals
for DNN based pedestrian detectors. However, they are in them-
selves very time consuming and take most of the detection time.
It is computationally prohibitive to scan an image with DNNs
by means of sliding window, even utilizing GPU technique. The
reason is that the neighbouring image patches are typically heavily
overlapped and thus a significant amount of redundant compu-
tation is consumed. Luckily, it is pointed out in [8] that the scan-
ning process of ConvNets can be speeded up by computing all
convolutions in the first layer on the entire input image, and then
computing all convolutions in subsequent layers on the resulting
extended maps. This kind of scanning which is called image-level
scanning can avoid redundant computation consumed by patch-
level scanning. In [30], by applying image-level scanning flexibly,
the authors could adjust the scanning resolution in the input
dimension along each axis. We will briefly review the image-level
scanning method in the next section as it is the foundation of our
approach. Readers can refer to [8] for fully detailed information.

3. Image-level scanning

A ConvNet typically owns convolutional and pooling layers. The
convolutional layer generates output feature maps by convolving
the input maps (input image or output feature maps of the last
layer) with a stack of kernels. The pooling layer pools information
of a given region on the output maps. Given an image patch of
32 x 32 pixels, one can construct a ConvNet that contains two
convolutional layers, two pooling layers, and one fully-connected
layer, as shown in Fig. 1. The two convolutional layers both have a
kernel of size 5 x 5 with a stride of 1 pixel, and the two pooling
layers both have a kernel of size 2 x 2 with a stride of 1 pixel. The
final fully-connected layer is represented by a convolutional kernel
of size 5 x 5, which is exactly the same size of the input map.

As shown in Fig. 1, the ConvNet produces a single spatial output
during training state. When applied at test time over an image
(much larger than 32 x 32) in patch-level scanning fashion with a
stride of 4 pixels, for example, it produces a single spatial output
every time it moves, as shown in Fig. 2.

i .' mE
5x5

10x10
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Fig. 1. An example of ConvNet.
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Apparently, convolutions are re-evaluated on overlapping reg-
ions between adjacent image patches, consuming a huge amount
of redundant computation. Instead, image-level scanning can
avoid redundant convolution because it convolves the entire input
maps at a time, as shown in Fig. 3. In Fig. 3, when applied at test
time over a larger image (36 x 36) in image-level scanning way,
the ConvNet only spends extra computation on the yellow regions.
Therefore, it is better to compute each convolution only once for
the whole input image and the resulting set of maps contains the
maps for each patch contained in the input image. Moreover, each
of the final 2 x 2 outputs corresponds to a single spatial output
obtained in patch-level scanning shown in Fig. 2. This is because
the two pooling layers, each of which has a kernel of size 2 x 2,
result in a total sub-sampling ratio of 2 x 2 or 4 in the ConvNet
described above. As a result, a stride of 1 pixel on the second
pooling layer (output map of size 6 x 6) corresponds to a stride of
4 pixels on the input image. Therefore, in the case of ConvNets,
image-level scanning approach inherently is similar to patch-level
scanning, except for that it is much more efficient.

4. Our method

Pedestrian usually varies largely in size in a given image. At test
time, two strategies are generally used to detect pedestrians of
different sizes. One strategy is to keep the pedestrian model
unchanged and iteratively shrink the image by a constant scaling
factor (e.g. 1.25). On the contrary, the other strategy is to keep the
input image unchanged and utilize a series of pedestrian models of
different sizes. In this paper, based on image-level scanning, we
propose to share features across a group of ConvNets corre-
sponding to pedestrian models of different sizes and detect
pedestrians of several different sizes on one layer of an image
pyramid. The proposed method is characterized by traits of both
strategies above. On the one hand, we also scale the input image,

Input 36x36

Fig. 2. Patch-level scanning.

—
pooling

but with a much larger scaling factor. On the other hand, we use a
group of pedestrian models of different sizes.

4.1. Sharing features across multi-scale models

In [7], it is demonstrated that a large ConvNet (called as Alex-
Net) trained for whole-image classification on ImageNet works
well for detecting objects in PASCAL. Furthermore, in [10], AlexNet
shows promising performance on the task of detecting pedestrian,
even without fine-tuning on pedestrian dataset. The success of
transferring image representation of ConvNets from one task (or
dataset) to another task (or dataset) is mainly attributed to their
ability to learn a hierarchy of features. It should be noted that
previous works focused on the transferring between different
datasets. However, in this paper, we propose to share features
across a group of ConvNet based pedestrian detectors with model
windows of different sizes. This means that we concentrate on the
transferring among models of different sizes on the same pedes-
trian dataset.

A typical choice for pedestrian detectors is a model window of
128 x 64 pixels, based on which we present our ConvNet detector
in Fig. 4(a). We call it PedConv 1. PedConv 1 contains five layers
with weights: the first four are convolutional and the last one is
fully connected. The last layer (output layer) can be denoted in
convolutional form with a kernel of size 14 x 6 x 128. This is
because there are 128 output maps obtained from the fourth
convolutional layer, and each of the output maps is of size 14 x 6
pixels.

Suppose there is a new ConvNet based pedestrian detector
which has a model window of size 152 x 76 pixels. We now re-use
the same parameters used in the first four layers of PedConv 1. As a
result, the fourth layer outputs 128 maps of size 17 x 7, as shown
in Fig. 4(b). These maps are different from those of size 14 x 6 in
PedConv 1. Therefore, the last layer of Fig. 4(b) is represented by a
kernel of size 17 x 7 x 128. We call this new ConvNet detector
PedConv 2. PedConv 1 and PedConv 2 can be trained on one
pedestrian dataset, respectively. As a result, the parameter values
of PedConv 1 will be totally different from those of PedConv 2. If
we run PedConv 1 and PedConv 2 on one input image in image-
level scanning way, respectively, we have to repeat the convolu-
tional operations in the first four layers because their convolu-
tional kernels have different values.

To reduce redundant convolutional computation, we now
intend to copy all the parameter values of the first four layers of
PedConv 1 when training PedConv 2. That is, the parameter values
of the convolutional layers of both PedConv 1 and PedConv 2 are
the same. As a result, the only difference between PedConv 1 and
PedConv 2 lies in the last layer. Now, if we run PedConv 1 and
PedConv 2 on one input image in image-level scanning way,
respectively, we only need to carry on convolutional computing in
the first four layers once.

If there are a group of ConvNet based pedestrian detectors with
model windows of different sizes, sharing features will result in a
significant decrease in convolutional computation. The problem

A H B H
i "IRE 7,
: I H 55 2x2
H 6x6
T 10x10
14x14 12x12
16x16
2x2 5x5 22 58 qutput
cov pooling cov

Fig. 3. Image-level scanning. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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Fig. 5. Sharing features across a group of ConvNet detectors.

that arises is the feasibility of sharing these features across multi-
scale models. Our answer is yes. ConvNet is characterized by its
large capacity of learning a hierarchy of features. The lower-level
feature layers are able to learn some common simple feature
patterns among different objects, such as line, dot, and cross.
Feature transferring between different datasets [7] has shown
great success and it can benefit from the overlap between classes
in source and target datasets. During our training stage, the source
and target datasets are actually derived from the same pedestrian
dataset, and they only differ in the size of model window (e.g.,
128 x 64 vs. 152 x 76). Therefore, it is feasible to share features
across multi-scale pedestrian models on the same dataset. The
experimental results in next section verify our assumption. One
illustration of sharing features across multi-scale pedestrian
models is shown in Fig. 5. In Fig. 5, a group of pedestrian detectors
with model window of different sizes share the features of the first
four convolutional layers. The first four layers are denoted by C1,
C2, C3, and (4, respectively.

4.2. Multi-scale detection on one single image pyramid layer

Once sharing features across multi-scale pedestrian models, it
is feasible to detect pedestrians of different sizes on one single
layer of an image pyramid. One illustration of multi-scale detec-
tion is shown in Fig. 6. Given one input image (or one layer of an
image pyramid) of size h x w, the final feature maps can be
obtained by running the shared parts of different models on it for
only once in image-level scanning fashion. The size of each feature
map is h' x w. Suppose there are four ConvNet detectors with
model windows of different sizes, then there will be four con-
volutional kernels that are carried out on the final feature maps
accordingly. The four convolutional kernels are denoted by cuboids
of different sizes and colors, as shown in Fig. 6. In fact, each cuboid
on final the feature maps corresponds to an image patch of the
input image.

One specific instance of multi-scale detection is presented in
Fig. 7. For simplicity, we just use one final feature map. There are
four ConvNet based pedestrian detectors, the sizes of model
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Fig. 6. Multi-scale detection on one layer of an image pyramid.
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Fig. 7. One specific instance of multi-scale pedestrian detection on one single layer of an image pyramid.

windows of which are 128 x 64, 152 x 76, 184 x 92, and 220 x 110,
respectively. On the final feature map, the sizes of the corre-
sponding feature patches are 14 x6, 17 x 7, 21 x 9, and 25 x 11,
respectively. Suppose there are three pooling layers, each of which
has a pooling region of size 2 x 2 and a stride of 1 pixel. Then, if
the feature patch moves with a one-pixel stride in sliding window
fashion, the corresponding image patch will move with a eight-
pixel stride on the input image. As a result, sliding the four feature
patches on the final feature map means that it is able to detect
pedestrians of four different scales on the input image.

Unlike traditional sliding window approach which needs a fine
or small scaling factor when generating an image pyramid, the
proposed method only needs a coarse or much larger scaling
factor. Suppose the scaling factor between each scale is s when
using only one ConvNet detector, then the scaling factor s when
using n ConvNet detectors can be denoted by s’ =s". As a result,
the layers that are needed for extracting features can be largely
reduced. In other words, this strategy can reduce the computation
spent on extracting features.

5. Experiments

It should be noted that ConvNet based pedestrian detectors
have achieved state-of-the-art performance on pedestrian datasets
[10]. In this paper, we mainly focus on improving the efficiency of
ConvNet based pedestrian detectors. Therefore, the comparison of

different ConvNets is beyond our scope. The proposed method can
be applied to any other ConvNet based object detectors. We
evaluate our method on two standard pedestrian detection data-
sets: INRIA [3] and Caltech-USA [4]. However, we only train on the
INRIA dataset because of its diversity. Caltech-USA is now the
predominant benchmark for pedestrian detection as it is com-
paratively large and challenging. In addition, we do not pre-train
the ConvNet detectors on any other dataset as detection perfor-
mance is not our focus. It should be noted again that our purpose
is to improve the detection efficiency of ConvNet based pedestrian
detectors while maintaining their detection performance.

5.1. Data preparation

The ConvNet based pedestrian detector is trained on the INRIA
pedestrian dataset. As pointed out in Section 4.1, we intend to train
a group of ConvNet detectors that have model windows of dif-
ferent sizes. The basic ConvNet detector has a model window of
size 128 x 64. The size of each model window increases gradually
by a scaling factor 1.20 because it is typically adopted by other
methods. Firstly, pedestrians are extracted into windows of 128
pixels in height and 64 pixels in width. Each pedestrian image is
mirrored along the horizontal axis to expand the dataset. In
addition, we add eight translation variations of both original and
mirrored sample using a constant translation stride of two pixels,
that is, from top left (—2, —2) to bottom right (2, 2). This results
in a total of 21,744 pedestrian samples. An equal amount of
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background samples are extracted at random from negative ima-
ges. We take 10% of all the extracted samples for validation,
yielding a validation set with 4348 samples and a training set with
39140 samples. Secondly, we resize the samples of both validation
set and training set in accordance with the sizes of other model
windows. In our experiment, the smallest model window is of size
128 x 64. Therefore, in Caltech-USA test dataset, we only evaluate
pedestrians that are bigger than 85 pixels in height.
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5.2. Training

In our experiment, we utilize MatConvNet provided by VLFeat
open source library. MatConvNet is a MATLAB toolbox imple-
menting CNNs for computer vision applications. It is simple and
efficient and can run and learn state-of-the-art CNNs. To begin the
experiment, we firstly train a ConvNet based pedestrian detector
with model window of size 128 x 64 and use it as the baseline
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Fig. 8. Training results by sharing features. (a) Model window of size 128 x 64, end-end training. (b), (c) and (d) have model windows of sizes 152 x 76, 184 x 92 and
220 x 110, respectively, only training the last layer by sharing features learned from (a).
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detector. We call it PedConv 1 as we do in Section 4.1. The structure of
PedConv 1 is presented in Fig. 4(a). After obtaining PedConv 1, we
obtain PedConv 2, PedConv 3, and PedConv 4 by just training the
corresponding last convolutional layers, respectively. As depicted in
Fig. 5, the last layers of PedConv 2, PedConv 3, and PedConv 4
have convolutional kernels of 17 x 7 x 128,21 x 9 x 128, and
25 x 11 x 128, respectively.

The training results are presented in Fig. 8. It is seen that the
validation error increases gradually from PedConv 1 to PedConv 4.
This is because the size of input image patch increases quickly
from PedConv 1 to PedConv 4. The scaling factor between the
input image patch of each detector is 1.2. The model window size
of PedConv 4 is 220 x 110, which is about 1.7 times as big as that of
PedConv 1. Therefore, the shared features learned from PedConv
1 do not perform so well in PedConv 4. As shown in Fig. 8, the
bigger the model window is, the higher the validation error is. To
ensure that our method maintains the detection performance,
we adopt at most four detectors with model windows of
different sizes.

5.3. Results
During testing phase, the images are sub-sampled. When using

only one ConvNet detector, that is, the baseline PedConv 1, we use
a scaling stride of 1.20 between each scale. The scaling stride
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Fig. 9. Pedestrian detection results on: (a) the INRIA dataset, and (b) the Caltech-
USA dataset. The detection performance maintains relatively stable when using
four detectors by sharing features.

Table 1

Time spent on processing input images of three different sizes. The column denoted
by ‘Single’ means we use PedConv 1 only. Columns denoted by ‘Multi-scale ()
mean we use multiple models by sharing features.

Input image  Time (s)
Single Multi-scale (2) Multi-scale (3) Multi-scale (4)
320 x 240 0.044 0.028 0.026 0.021
640 x 480 0.190 0.128 0.112 0.104
960 x 720 0.456 0.320 0.272 0.261

increases by 1.2 as we add one more detector. Fig. 9 presents the
detection results on INRIA dataset and Caltech-USA dataset,
respectively. The results are measured in log-average miss-rate
(MR, lower is better). The numbers 1, 2, 3, and 4 denote the
number of detectors used during detection process. It can be seen
that the MR increases a little every time we add one more
detector. However, the detection performance maintains relatively
stable. On the INRIA dataset, the MR only increases by 0.86% when
all the four detectors are used. On the more challenging Caltech-
USA dataset, the MR increases by 1.04% when all the four detectors
are used.

We use the time spent on processing one input image to
evaluate the efficiency of our method. Table 1 presents the results.
In our experiment, we use one single GTX 750 GPU which has only
2GB memory. As shown in Table 1, we test on images of three
different sizes. The time decreases gradually as we use more
detectors. Column denoted by ‘Multi-scale (2) means we use
PedConv1 and PedConv 2 by sharing features. Column denoted by
‘Multi-scale (3)’ means we use PedConv1, PedConv 2, and PedConv
3 by sharing features. Column denoted by ‘Multi-scale (4)' means
we use all the four detectors by sharing features. Compared to one
single detector, four detectors can decrease the processing time by
approximately 50%. Take image of size 640 x 320 as an example,
we can deal with almost 10 frames per second. Simultaneously,
our method only results in a very small decline in detection
performance.

6. Conclusion

We have demonstrated that our method can improve the effi-
ciency of ConvNets for pedestrian detection. The improvement
comes from two aspects. (1) We share features across a group of
ConvNet based pedestrian detectors that have model windows of
different sizes. (2) We simultaneously detect pedestrians of several
scales on one single layer of an image pyramid. Compared to tra-
ditional scanning method, the proposed method can reduce the
number of layers that are needed for extracting features. To make
sure that the detection performance stays stable, we used at most
four ConvNet detectors in our experiment. With four detectors,
our method can decrease the detection time by almost 50%. Our
future work will focus on further improving the detection effi-
ciency of ConvNets for pedestrian detection.
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